5STR 09F1620
TS - TP/096/03 Jul-10 1 of 8
5STR 09F1620
Old part no. TP 918F-870-16
Reverse Conducting Thyristor
Properties Key Parameters
§ Integrated freewheeling diode VDRM
=
1 600 V
§ Optimized for low dynamic losses ITAVm
=
814 A
ITSM
=
13 000
A
VTO
=
1.594 V
Applications rT
=
0.145 m
Traction tq
=
20 µs
Types
VDRM
5STR 09F1620..1625
5STR 09F1420..1425
1 600 V
1 400 V
Conditions:
Tj =-40 ÷ 125 °C, half sine waveform,
f = 50 Hz
Mechanical Data
Fm Mounting
force 22 ± 2
kN
m Weight 0.480
kg
DS Surface
creepage
distance
25
mm
Da Air strike
distance 15
mm
Fig. 1 Case
ABB s.r.o.
Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
tel.: +420 261 306 250, http://www.abb.com/semiconductors
5STR 09F1620
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TP/096/03 Jul-10 2 of 8
Maximum Ratings - Thyristor Maximum Limits Unit
VDRM
Repetitive peak off-state
voltage
Tj = -40 ÷ 125 °C
5STR 09F1620..1625
5STR 09F1420..1425
1 600
1 400 V
ITRMS RMS on-state current
Tc = 70 °C, half sine waveform, f = 50 Hz 1 279 A
ITAVm Average on-state current
Tc = 70 °C, half sine waveform, f = 50 Hz 814
A
ITSM Peak non-repetitive surge
half sine pulse, VR = 0 V tp = 10 ms
tp = 8.3 ms 13 000
13 900 A
I2t Limiting load integral
half sine pulse, VR = 0 V tp = 10 ms
tp = 8.3 ms 845 000
800 000 A2s
(diT/dt)cr Critical rate of rise of on-state current
IT = 2000 A, VD = 0.67VDRM ,
half sine waveform, f = 50 Hz
400 A/µs
(dvD/dt)cr Critical rate of rise of off-state voltage
VD = 0.67 VDRM 1 000 A/µs
PAV Maximum average gate power losses 5 W
IGTM Peak gate current 10 A
VGTM Peak gate voltage 15 V
VRGTM Reverse peak gate voltage 2 V
Tjmin - Tjmax Operating temperature range -40 ÷ 125 °C
Tstgmin -
Tstgmax Storage temperature range -40 ÷ 125 °C
Unless otherwise specified Tj = 125 °C
Maximum Ratings - Diode Maximum Limits Unit
VRRM Repetitive peak reverse
voltage
Tj = -40 ÷ 125 °C
5STR 09F1620..1625
5STR 09F1420..1425
1 600
1 400 V
IFRMS RMS forward current
Tc = 70 °C, half sine waveform, f = 50 Hz 430 A
IFAVm Average forward current
Tc = 70 °C, half sine waveform, f = 50 Hz 274 A
IFSM Peak non-repetitive surge
half sine pulse, VR = 0 V tp = 10 ms
tp = 8.3 ms 4 000
4 270 A
I2t Limiting load integral
half sine pulse, VR = 0 V tp = 10 ms
tp = 8.3 ms 80 000
75 800 A2s
Unless otherwise specified Tj = 125 °C
5STR 09F1620
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TP/096/03 Jul-10 3 of 8
Characteristics Thyristor Value Unit
min. typ. max.
VTM Maximum peak on-state voltage
ITM = 2000 A 1.900
V
VT0 Threshold voltage 1.594
V
rT Slope resistance
IT1 = 1367 A, IT2 = 4100 A 0.145
m
IDM Peak off-state current
VD = VDRM 100 mA
tgd Delay time
Tj = 25 °C, VD = 100 V, ITM = ITAVm, tr = 0.5 µs, IGT = 2 A 1 µs
tgt Switch-on time
the same conditions as at tgd 4 µs
group of tq
tq Turn-off time
IT = ITAVm, diT/dt = -50 A/µs,
VD = 0.67 VDRM, dvD/dt = 50 V/µs 5STR 09F1620
5STR 09F1420
5STR 09F1625
5STR 09F1425
20
25
µs
IH Holding current Tj = 25 °C
Tj = 125 °C 200 mA
IL Latching current Tj = 25 °C
Tj = 125 °C 250 mA
VGT Gate trigger voltage
VD = 12V, IT = 4 A Tj = - 40 °C
Tj = +25 °C
Tj = +125 °C
3.5
V
IGT
Gate trigger current
VD = 12V, IT = 4 A Tj = - 40 °C
Tj = +25 °C
Tj = +125 °C
10
600
350
250
mA
Unless otherwise specified Tj = 125 °C
5STR 09F1620
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TP/096/03 Jul-10 4 of 8
Characteristics Diode Value Unit
min. typ. max.
VFM Maximum forward voltage
IFM = 1250 A 2.390
V
VT0 Threshold voltage
IF1 = 360 A, IF2 = 1084 A 1.006
V
rT Forward slope resistance 1.123
m
Qrr Reverse recovery charge
IFM = 320 A, di/dt = -50 A/µs, VD = 100 V 200 µC
IrrM Maximum reverse recovery current
the same conditions as at Qrr A
trr Reverse recovery time
the same conditions as at Qrr 4.8 µs
Unless otherwise specified Tj = 125 °C
Thermal Parameters - Thyristor Value Unit
Rthjc Thermal resistance junction to case
double side cooling 30 K/kW
anode side cooling 57
cathode side cooling 64
Rthch Thermal resistance case to heatsink
double side cooling 10 K/kW
single side cooling 20
Thermal Parameters - Diode Value Unit
Rthjc Thermal resistance junction to case
double side cooling 100 K/kW
anode side cooling 140
cathode side cooling 370
5STR 09F1620
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TP/096/03 Jul-10 5 of 8
Transient Thermal Impedance - Thyristor
i 1 2 3 4 5
τi ( s ) 0.3289 0.1375 0.0343 0.0037 0.0003
Ri( K/kW )
9.02 11.50 6.02 3.06 0.39
0
5
10
15
20
25
30
35
0,001 0,01 0,1 1 10
Square wave pulse duration td ( s )
Transient thermal impedance junction
to case Zthjc ( K/kW )
Correction for periodic
waveforms - Thyristor
180°
sine: add 5.8 K/kW
180°
rectangular:
add 4.5 K/kW
120°
rectangular:
add 7.6 K/kW
60°
rectangular:
add 13.1 K/kW
Analytical function for transient
thermal impedance
== 5
1))/exp(1(
iiithjc tRZ τ
Conditions:
Fm = 10 ± 2 kN, Double side cooled
Fig. 2
Dependence transient thermal impedance junction
to case on square pulse - Thyristor
Diode
Correction for periodic
waveforms - Diode
180°
sine: add 13.6 K/kW
180°
rectangular:
add 10.7 K/kW
120°
rectangular:
add 18.1 K/kW
60°
rectangular:
add 32.4 K/kW
i 1 2 3 4 5
τi ( s ) 0.3819 0.1733 0.0171 0.0046 0.0003
Ri( K/kW )
62.39 23.99 4.05 7.85 1.73
0
20
40
60
80
100
120
0,001 0,01 0,1 1 10
Square wave pulse duration td ( s )
Transient thermal impedance junction
to case Zthjc ( K/kW )
Fig. 3
Dependence transient thermal impedance junction
to case on square pulse - Diode
5STR 09F1620
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TP/096/03 Jul-10 6 of 8
0
1000
2000
3000
4000
5000
6000
7000
0 1 2 3
VT ( V )
IT ( A )
Tj = 25°C
125°C
7
9
11
13
15
17
19
21
1 10 100
t ( ms )
ITSM ( kA )
0,2
0,4
0,6
0,8
1
1,2
i2dt (106 A2s)
I
TSM
i
2
dt
Fig. 4
Maximum on-state characteristics Fig. 5
Surge on-state current vs. pulse length,
half sine wave, single pulse,
VR = 0 V, Tj = Tjmax
0,1
1
10
100
0,1 1 10 100
IFGM ( A )
tgd ( µs )
10
20
30
40
50
60
70
80
90
100
20 40 60 80 100 120 140
Tj ( °C )
%
min.
max.
average
Fig. 6
Delay time vs. forward gate current,
Tj = 25 °C, VD = 100 V, ITM = ITAVm,
tr 0.5 µs, tp =1 ms
Fig. 7
Relative value of turn-off time
vs. junction temperature
5STR 09F1620
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TP/096/03 Jul-10 7 of 8
0
400
800
1200
1600
2000
0 200 400 600 800 1000
ITAV ( A )
PT ( W )
ψ = 30° 60°
90°
120°
180
DC
0
400
800
1200
1600
2000
0200 400 600 800 1000
ITAV ( A )
PT ( W )
ψ
= 30°
60°
90°
120°
180°
270°
DC
Fig. 8
On-state power loss vs. average on-state
current, sine waveform, f = 50 Hz, T = 1/f Fig. 9
On-state power loss vs. average on-state
current, square waveform, f = 50 Hz, T = 1/f
60
70
80
90
100
110
120
130
0 200 400 600 800 1000
ITAV ( A )
TC ( °C )
180°
60°
90°
120°
ψ
= 30°
DC
60
70
80
90
100
110
120
130
0200 400 600 800 1000
ITAV ( A )
TC ( °C )
180°
DC
270°
120°
90°
60°
ψ
= 30°
Fig. 10
Max. case temperature vs. aver. on-state
current, sine waveform, f = 50 Hz, T = 1/f Fig. 11
Max. case temperature vs. aver. on-state
current, square waveform, f = 50 Hz, T = 1/f
5STR 09F1620
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TP/096/03 Jul-10 8 of 8
0
500
1000
1500
2000
2500
3000
01234
VF ( V )
IF ( A )
Tj = 25°C 125°C
2
2,5
3
3,5
4
4,5
5
5,5
6
6,5
110 100
t ( ms )
IFSM ( kA )
0,02
0,04
0,06
0,08
0,1
0,12
i2dt (106 A2s)
I
FSM
i2dt
Fig. 12
Maximum forward voltage drop
characteristics of the diode Fig. 13
Surge on-state current vs. pulse length
of the diode. Half sine wave, single pulse,
VR = 0 V, Tj = Tjmax
Notes: