Silicon Bipolar MMIC 2.5 GHz Variable Gain Amplifier Technical Data IVA-14208 IVA-14228 Features Description * Differential Input and Output Capability * DC to 2.5 GHz Bandwidth; 3.4 Gbits/s Data Rates * High Gain: 24 dB Typical * Wide Gain Control Range: 34 dB Typical * 6 V Bias * 5 V VGC Control Range, IGC <3 mA * Fast Gain Response: <10 nsec Typical * IVA-14208: Low Cost Plastic Surface Mount Package * IVA-14228: Hermetic Ceramic Surface Mount Package The IVA-14 series MMlCs are variable gain amplifiers. The IVA-14208 is housed in a miniature low cost plastic surface mount package. The IVA-14228 is housed in a miniature hermetic ceramic surface mount package. Both devices can be used in any combination of single-ended or differential inputs or outputs (see Functional Block Diagram). The lowest frequency of operation is limited only by the values of user selected blocking and bypass capacitors. 30 VGC < 3 V Typical applications include variable gain amplification or limiting for fiber optic systems (e.g. SONET) with data rates up to 3.4 Gbits/s, mobile radio and satellite receivers, millimeter wave receiver IF amplifiers and communications receivers. IVA-14208 Plastic SO-8 Package PIN 1 IVA-14228 Ceramic `28' Package PIN 1 Functional Block Diagram and Pin Configuration PIN 1 PIN 8 20 3.75 V GAIN (dB) 10 4.0 V 0 -10 -20 -30 0.1 5.0 V 1.0 FREQUENCY (GHz) Figure 1. IVA-14228 Typical Variable Gain vs. Frequency and VGC at VCC = 6 V, Tcase = 25C. 3.0 The IVA series of variable gain amplifiers is fabricated using Agilent's 10 GHz fT, 25 GHz fMAX ISOSATTM-1 silicon bipolar process. This process uses nitride self-alignment, submicrometer lithography, trench isolation, ion implantation, gold metallization and polyimide inter-metal dielectric and scratch protection to achieve excellent performance, uniformity and reliability. PIN DESCRIPTION 1. 2. 3. 4. INPUT + V EE , AC GROUND V EE , AC GROUND INPUT - 8. 7. 6. 5. V GC OUTPUT + OUTPUT - V CC IVA-14228 PACKAGE BOTTOM IS V EEAC GROUND. 2 IVA-14208, -14228 Absolute Maximum Ratings[1] Symbol VCC-VEE Pin VGC-VEE Ti Tstg Pt Parameter Device Voltage, Tcase = 25C Input Power, Tcase = 25C Control Voltage, Tcase = 25C Junction Temperature+ Storage Temperature Total Device Dissipation Units IVA-14208 IVA-14228 Volts dBm Volts C C mW 12 13 10 150 -65 to +150 1000[2] 12 13 10 200 -65 to +200 1000[3] Thermal Resistance: IVA-14208 Thermal Resistance Junction to Case[4]: jc = 68C/W IVA-14228 Thermal Resistance Junction to Case[4]: jc = 63C/W Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to the device. 2. Tcase = 25C. Derate at 14.7 mW/C for Tcase > 82C. 3. Tcase = 25C. Derate at 15.9 mW/C for Tcase > 137C. 4. Tj = 150C. IVA-14208, -14228 Guaranteed Electrical Specifications All measurements reflect single-ended (unbalanced) performance. Tcase = 25C. VCC = 6 V, VEE = 0 V, VGC = 0 V, Z L = 50 IVA-14208 Symbol Parameter Units Min. 20 GP Power Gain (|S21|2), f = 1 GHz dB GP Gain Flatness, f = 0.05 to 2 GHz dB f3dB 3 dB Bandwidth Range[2], GCR Gain Control VGC = 0 to 5 V f = 1 GHz, ISO Reverse Isolation (|S12|2), f = 1 GHz, VGC = 0 to 5 V VSWR IVA-14228 Typ. Max. Min. 24 22 1.2 Typ. 24 0.7 GHz 2.0 2.5 2.2 2.5 dB 30 34 30 34 dB 37 40 Input VSWR, f = 0.05 to 2.0 GHz, VGC = 0 to 5 V 2:1 2:1 Output VSWR, f = 0.05 to 2.0 GHz, VGC = 0 to 5 V 2:1 2.5:1 NF 50 Noise Figure, f = 1 GHz dB 9.0 9.0 PldB Output Power at 1 dB Gain, Compression f = 1 GHz dBm -2.0 -2.0 VOUT Pk-Pk Single-ended Output Voltage, f = 1 GHz mVpp 450 450 IP3 Third Order Intercept Point, f = 1 GHz dBm 8 8 tD Group Delay, f = 1 GHz psec 450 450 Icc Supply Current mA 28 38 Max. 48 28 38 48 Notes: 1. The recommended operating voltage range for these devices is 5 to 8 V. Typical performance as a function of voltage is shown in the graphs on the following pages. 2. The recommended gain control range for these devices for dynamic control is 0 to 4.2 V. Operation at gain control settings above 4.2 V may result in gain control increase rather than gain decrease. See figures 4 and 19. 3 IVA-14228 Typical Performance Curves 30 VGC < 3 V INPUT + V GC 20 3.75 V 10 GAIN (dB) OUTPUT + 50 4.0 V 0 -10 INPUT - V CC -20 5.0 V -30 0.1 ALL C = 1000 pF 1.0 3.0 FREQUENCY (GHz) Figure 2. IVA-142X8 Connection Diagram Showing Balanced Inputs and Unbalanced Outputs. Inputs and Outputs May Be Either Balanced or Unbalanced. 30 4 25 GAIN 20 20 0 P 1dB -10 -20 3 VGC = 3.75 V I GC (mA) 10 NOISE FIGURE (dB) P 1dB(dBm), GAIN (dB) Figure 3. IVA-14228 Gain vs. Frequency and VGC; VCC = 6 V, Tcase = 25C. 15 10 2 1 VGC = 0 V -30 -40 0 1 2 3 0 5 0.1 5 4 1.0 3.0 0 FREQUENCY (GHz) V GC (VOLTS) Figure 4. IVA-14228 P1dB and Gain vs. VGC; VCC = 6 V, Tcase = 25C. 2 4 3 5 VGC (VOLTS) Figure 5. IVA-14228 Noise Figure vs. Frequency and VGC; VCC = 6 V, Tcase = 25C. 4:1 1 Figure 6. IVA-14228 I GC vs. VGC; 6 V, Tcase = 25C. VCC = 500 3:1 TIME DELAY (pS) 400 3:1 VSWR VSWR OUTPUT OUTPUT 2:1 INPUT 2:1 200 INPUT 1:1 0.1 300 1.0 3.0 FREQUENCY (GHz) Figure 7. IVA-14228 VSWR vs. Frequency; VCC = 6 V, VGC = 0 V, Tcase = 25C. 1:1 0.1 1.0 3.0 FREQUENCY (GHz) Figure 8. IVA-14228 VSWR vs. Frequency; VCC = 6 V, VGC = 5 V, Tcase = 25C. 100 0.1 1.0 FREQUENCY (GHz) Figure 9. IVA-14228 Group Delay vs. Frequency; VGC = 0 V, VCC = 6 V, Tcase = 25C. 3.0 4 IVA-14228 Typical Performance Curves (cont.) 28 26 2 0 < GAIN 26 -55C 125C 0 25 -1 24 -2 25C 22 -2 -55C -4 23 -3 20 P 1dB > -6 18 16 0.1 1.0 22 -8 0.1 3.0 1.0 FREQUENCY (GHz) 21 -55 3.0 FREQUENCY (GHz) Figure 10. IVA-14228 Gain vs. Frequency and Temperature; VCC = 6 V, VGC = 0 V. -25 0 55 25 85 -5 125 TEMPERATURE (C) Figure 11: IVA-14228 P1dB vs. Frequency and Temperature; VCC = 6 V, VGC = 0 V. 20 Figure 12. IVA-14228 Gain and P1dB vs. Temperature; VCC = 6 V, VGC = 0 V, Frequency = 1 GHz. 45 60 40 50 (mA) 15 CC 35 125C 40 I d I (mA) NOISE FIGURE (dB) -4 25C 10 125C 30 30 -55C 25C -55C 5 0.1 1.0 25 -55 3.0 FREQUENCY (GHz) 20 -25 0 25 55 85 125 TEMPERATURE (C) Figure 13. IVA-14228 Noise Figure vs. Frequency and Temperature; VCC = 6 V, VGC = 0 V. 27 125C -2 (dBm) 125C -1dB 24 25C 25C -4 -55C P GAIN (dB) 26 25 23 -6 22 -55C -8 21 20 5 5.5 6 6.5 VCC (VOLTS) Figure 16. IVA-14228 Gain vs. VCC and Temperature; VGC = 0 V, Frequency = 1 GHz. 7 -10 5 5.5 6 6 6.5 Figure 15. IVA-14228 I CC vs. VCC and Temperature; VGC = 0 V. 2 0 5.5 VCC (VOLTS) Figure 14. IVA-14228 ICC vs. Temperature; VCC = 6 V, VGC = 0 V, Frequency = 1 GHz. 28 5 6.5 VCC (VOLTS) Figure 17. IVA-14228 P1dB vs. VCC and Temperature; VGC = 0 V, Frequency = 1 GHz. 7 7 P1dB(dBm) P1dB (dBm) GAIN (dB) 125C GAIN (dB) 25C 24 5 IVA-14208 Typical Performance Curves 40 30 VGC = 0 V GAIN 20 3.75 V 15 10 5 20 NOISE (dB) P1dB (dBm), GAIN (dB) 25 GAIN (dB) 15 P1dB 0 10 -20 4.0 V -40 0 0.1 1.0 1 0 3.0 2 3 4 5 0.1 5 VGC (VOLTS) FREQUENCY (GHz) Figure 18. IVA-14208 Gain vs. Frequency and VGC ; VCC = 6 V, Tcase = 25C. Figure 19. IVA-14208 Gain and P1dB vs. VGC; VCC = 6 V, Frequency = 1 GHz, Tcase = 25C. 4 1.0 3.0 FREQUENCY (GHz) Figure 20. IVA-14208 Noise Figure vs. Frequency; VCC = 6 V, VGC = 0 V, Tcase = 25C. 4:1 600 550 3 500 DELAY (pSEC) VSWR 2 I GC (mA) 3:1 OUTPUT 2:1 450 400 1 INPUT 0 1 0 2 3 4 350 1:1 0.1 5 1.0 VGC (VOLTS) Figure 21. IVA-14208 I GC vs. VGC; VCC = 6 V, Tcase = 25C. 26 3.0 Figure 23. IVA-14208 Group Delay vs. Frequency; VCC = 6 V, VGC = 0 V, Tcase = 25C. 0 45 42.5 V GC = 0 V 25 < GAIN -1 40 23 -3 35 -4 -5 -6 0.1 37.5 d -2 I (mA) 24 1dB -3 P 3.75 V (dBm) -2 GAIN (dB) P-1dB (dBm) 1.0 FREQUENCY (GHz) Figure 22. IVA-14208 VSWR vs. Frequency; VCC = 6 V, VGC = 0 V, Tcase = 25C. 0 -1 300 0.1 3.0 FREQUENCY (GHz) 1.0 FREQUENCY (GHz) Figure 24. IVA-14208 P1dB vs. Frequency and VGC; VCC = 6 V, Frequency = 1 GHz, Tcase = 25C. 3.0 22 -40 -25 P 1dB > 0 32.5 25 50 -4 85 TEMPERATURE (C) Figure 25. IVA-14208 Gain and P1dB vs. Temperature; VCC = 6 V, VGC = 0 V, Frequency = 1 GHz. 30 -40 -25 0 25 50 TEMPERATURE (C) Figure 26. IVA-14208 ICC vs. Temperature; VCC = 6 V, VGC = 0 V. 85 6 IVA-14208 Typical Performance Curves (cont.) 50 2 27 45 0 P 1dB (dBm) GAIN (dB) I CC (mA) 25 40 35 -2 23 -4 30 25 5.0 6.0 5.5 6.5 7.0 21 5.0 VCC (VOLTS) Figure 27. IVA-14208 I CC vs. VCC; VGC = 0 V, Tcase = 25C. HP-8573C VECTOR NETWORK ANALYZER PORT 1 5.5 6.0 6.5 VCC (VOLTS) Figure 28. IVA-14208 Gain vs. VCC; VGC = 0 V, Frequency = 1 GHz, Tcase = 25C. HP-6038 VOLTAGE SOURCE HP-6038 VOLTAGE SOURCE PORT 2 BIAS TEE PIN V GC IVA-142X8 DUT 50 P OUT VCC Figure 30. Test Equipment Setup for Measuring Performance of the IVA-142X8. 7.0 -6 5.0 5.5 6.0 6.5 VCC (VOLTS) Figure 29. IVA-14208 P1dB vs. VCC ; VGC = 0 V, Frequency = 1 GHz, Tcase = 25C. 7.0 7 IVA-14208, -14228 Part Number Ordering Information Part Number Container Type Qty. per Container IVA-14208-STR Strip 1 IVA-14208-TR1 7" Reel 1000 IVA-14228-STR BIP Strip 1 SO-8 Package Dimensions for IVA-14208 1.27 (.050) 6x 3.80/4.00 (.1497/.1574) 5.84/6.20 (.230/.244) V142 0.38 0.10 (.015 .004) x 45 Pin 1 4.72/5.00 (.186/.197) 1.35/1.75 (.0532/.0688) 0/8 0.10 (.004) 0.33/0.51 (.013/.020) 8X 0.19/0.25 (.0075/.0098) 0.10/0.25 (.004/.0098) 0.41/1.27 (.016/.050) Note: 1. Dimensions are shown in millimeters (inches). 28 Package Dimensions for IVA-14228 10.414 (0.410) 9.906 (0.390) 4.699 (0.182) 4.445 (0.172) 1 V142 2 3 4 1.27 (0.050) TYP 8 7 6 5 0.457 (0.018) 0.305 (0.012) 6.731 (0.265) 6.223 (0.245) Vee AC GROUND 2.794 (0.110) 2.286 (0.090) 0.178 (0.007) 0.076 (0.003) NOTES: 1. DIMENSIONS ARE IN MILLIMETERS (INCHES). 2. CONTROLLING DIMENSIONS ARE IN INCHES. 2.337 (0.092) 1.829 (0.072) www.semiconductor.agilent.com Data subject to change. Copyright (c) 1999 Agilent Technologies Obsoletes 5965-9975E, 5968-5438E 5980-0088E (2/00)