February 2002 1
© 2002 Actel Corporation
v3.0
ProASIC 500K Family
Features and Benefits
High Capacity
100,000 to 475,000 System Gates
14k to 63k Bits of Two-Port SRAM
106 to 440 User I/Os
Performance
33 MHz PCI 32-bit PCI
Internal System Performance up to 250 MHz
External System Performance up to 100 MHz
Low Power
Low Impedance Flash Switches
Segmented Hierarchical Routing Structure
Small, Efficient Logic Cells
High Performance Routing Hierarchy
Ultra Fast Local Network
Efficient Long Line Network
High Speed Very Long Line Network
High Performance Global Network
Nonvolatile and Reprogrammable Flash
Technology
Live at Power Up
No Configuration Device Required
Retains Programmed Design During Power-Down/
Power-Up Cycles
I/O
Mixed 2.5V/3.3V Support with Individually-Selectable
Voltage and Slew Rate
3.3V, PCI Compliance (PCI Revision 2.2)
Secure Programming
The Industrys Most Effective Security Key Prevents Read
Back of Programming Bit Stream
Standard FPGA and ASIC Design Flow
Flexibility with Choice of Industry-Standard Front-End
Tools
Efficient Design Through Front-End Timing and Gate
Optimization
ISP Support
In-System Programming (ISP) with Silicon Sculptor and
Flash Pro
SRAMs and FIFOs
Up to 150 MHz Synchronous and Asynchronous Operation
Netlist Generator Ensures Optimal Usage of Embedded
Memory Blocks
Boundary Scan Test
IEEE Std. 1149.1 (JTAG) Compliant
ProASIC Product Profile
Device A500K050 A500K130 A500K180 A500K270
Maximum System Gates 100,000 290,000 370,000 475,000
Typical Gates 43,000 105,000 150,000 215,000
Maximum Flip-Flops 5,376 12,800 18,432 26,880
Embedded RAM Bits 14k 45k 54k 63k
Embedded RAM Blocks (256 X 9) 6202428
Logic Tiles 5,376 12,800 18,432 26,880
Global Routing Resources 4444
Maximum User I/Os 204 306 362 440
JTAG Yes Yes Yes Yes
PCI Yes Yes Yes Yes
Package (by Pin Count)
PQFP
PBGA
FBGA
208
272
144
208
272, 456
144, 256
208
456
256
208
456
256, 676
ProASIC 500K Family
2v3.0
General Description
The ProASIC 500K familys nonvolatile Flash technology
combines the advantages of ASICs with the benefits of
programmable devices. ProASIC 500K devices shorten
time-to-production by enabling designers to create
high-density systems using existing ASIC or FPGA design
flows and tools. ASIC migration is not necessary for any
volume because the family offers cost effective
reprogrammable solutions, ideal for applications in the
networking, telecom, computer, and consumer markets.
The ProASIC 500K family consists of four devices ranging
from 100k to 475k system gates and with up to 63k bits of
embedded two-port memory. These memory blocks include
hardwired FIFO circuitry as well as circuits to generate or
check parity. This minimizes external logic gate count and
complexity while maximizing flexibility and utility.
Process Technology
The ProASIC 500K family achieves its nonvolatile and
reprogrammability through an advanced 0.25µ, four-level
metal LVCMOS process enhanced with Flash technology.
The use of standard CMOS design techniques to implement
logic and control functions results in highly predictable
performance and gate array compatibility.
Ordering Information
A500K130 PQ
Part Number
Package Type
BG =Plastic Ball Grid Array
PQ =Plastic Quad Flat Pack
FG =Fine Ball Grid Array
208
Package Lead Count
Application (Ambient Temperature Range)
Blank = Commercial (0 to +70˚ C)
I = Industrial (-40 to +85˚ C)
PP = Pre-production
ES = Engineering Silicon (Room Temperature Only)
100,000 Equivalent System Gates
A500K050 =
A500K180
A500K270
370,000 Equivalent System Gates
475,000 Equivalent System Gates
A500K130
290,000 Equivalent System Gates
=
=
=
v3.0 3
ProASIC 500K Family
Product Plan
Plastic Device Resources
Application
CI
A500K050 Device
144-Pin Fine Ball Grid Array (FBGA) ✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
272-Pin Plastic Ball Grid Array (PBGA) ✔✔
A500K130 Device
144-Pin Fine Ball Grid Array (FBGA) ✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
272-Pin Plastic Ball Grid Array (PBGA) ✔✔
256-Pin Plastic Ball Grid Array (PBGA) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
A500K180 Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
256-Pin Plastic Ball Grid Array (PBGA) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
A500K270 Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
256-Pin Plastic Ball Grid Array (PBGA) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
676-Pin Fine Ball Grid Array (FBGA) ✔✔
Contact your Actel sales representative for package availability.
Applications: C = Commercial Availability: = Available – Contact your Actel Sale’s representative for the latest
I = Industrial availability information.
User I/Os
Device PQFP
208-Pin PBGA
272-Pin PBGA
456-Pin FBGA
144-Pin FBGA
256-Pin FBGA
676-Pin
A500K050 164 204 106
A500K130 164 204 306 106 192
A500K180 164 362 192
A500K270 164 362 192 440
Package Definitions
PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Ball Grid Array
ProASIC 500K Family
4v3.0
ProASIC 500K Architecture
The ProASIC 500K familys proprietary architecture
provides granularity comparable to gate arrays. Unlike
SRAM-based FPGAs that utilize look-up tables or
architectural mapping during design, ProASIC device
designs are directly synthesized to gates. That streamlines
the design flow, increases design productivity, and
eliminates dependencies on vendor-specific design tools.
The ProASIC 500K device core consists of a
Sea-of-Tiles(Figure 1), each of which can be configured as
a 3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.)
by programming the appropriate Flash switch
interconnections (See Figure 2 on page 5 and Figure 3 on
page 5). Gates and larger functions are connected with four
levels of routing hierarchy. Flash memory bits are
distributed throughout the device to provide nonvolatile,
reconfigurable interconnect programming. Flash switches
are programmed to connect signal lines to the appropriate
logic cell inputs and outputs. Dedicated high-performance
lines are connected as needed for fast, low-skew global
signal distribution throughout the core. Maximum core
utilization is possible for virtually any design.
The ProASIC 500K devices also contain embedded two-port
SRAM blocks with built-in FIFO/RAM control logic.
Programming options include synchronous or asynchronous
operation, two-port RAM configurations, user defined depth
and width, and parity generation or checking. Table 3 on
page 12 lists the 24 basic memory configurations.
Flash Switch
In the ProASIC Flash switch, two transistors share the
floating gate which stores the programming information.
One is the Flash transistor which stores programming
information and in which erasing is performed. The second
transistor connects/separates routing elements or
configuration signal lines (Figure 2 on page 5).
Logic Tile
The logic tile cell, Figure 3 on page 5, has three inputs (any
or all of which can be inverted) and one output (which can
connect to both ultra fast local and efficient long line
routing resources). Any three-input one-output logic
function, except a three input XOR, can be configured as
one tile. Two multiplexers with feedback paths through the
NAND gates allow the tile to be configured as a latch with
clear or set, or as a flip-flop with clear or set. Thus, the tiles
can flexibly map logic and sequential gates of a design.
Figure 1 The ProASIC Device Architecture
256x9 Two-Port SRAM
or FIFO Block
Logic Tile
v3.0 5
ProASIC 500K Family
Routing Resources
The routing structure of the ProASIC 500K devices is
designed to provide high performance through a flexible
four-level hierarchy of routing resources: ultra fast local
resources, efficient long line resources, high speed very long
line resources, and high performance global networks.
The ultra fast local resources are dedicated lines that allow
the output of each tile to connect directly to every input of
the eight surrounding tiles (Figure 4 on page 6).
The efficient long line resources provide routing for longer
distances and higher fanout connections. These resources
vary in length (spanning 1, 2, or 4 tiles), run both vertically
and horizontally, and cover the entire ProASIC device
(Figure 5 on page 6). Each tile can drive signals onto the
efficient long line resources, while the resources can also
access every input of any tile. The routing software
automatically inserts active buffers to limit loading effects
due to distance and fanout.
The high speed very long line resources, spanning across
the entire device with minimal delay, are used to route very
long or very high fanout nets. These resources run vertically
and horizontally, providing multiple access to each group of
tiles throughout the device (Figure 6 on page 7).
The high performance global networks clock trees are low
skew, high fanout nets that are accessible from four
dedicated pins or from internal logic (Figure 7 on page 8).
These nets are typically used to distribute clocks, resets,
and other high fanout nets requiring a minimum skew. The
global networks are implemented as clock trees, and signals
can be introduced at any junction. These can be employed
hierarchically, with signals accessing every input on all
tiles.
Clock Resources
ProASICs high-drive routing structure provides four global
networks, each accessible from either a dedicated global
pad or a logic tile. Global lines provide optimized worst-case
clock skew of 0.3ns.
Figure 2 Flash Switch
Figure 3 Core Logic Tile
Sel 1 Sel 2
Switch In
Switch Out
Word
Floating Gate
Local Routing
In 1
In 2 (CLK)
In 3 (Reset)
Efficient Long
Line Routing
ProASIC 500K Family
6v3.0
Figure 4 Ultra Fast Local Resources
Figure 5 Efficient Long Line Resources
L
LL
LL
L
Inputs
Output
Ultra Fast
Local Lines
(connect a tile to the
adjacent tile, I/O buffer,
or memory block)
LL L
LLLLLL
LLLLLL
LL LLLL
LL LLLL
LLLLLL
Logic Cell
1 Tile Long
2 Tiles Long
4 Tiles Long
1 Tile Long
2 Tiles Long
4 Tiles Long
Logic Tile
v3.0 7
ProASIC 500K Family
Figure 6 High Speed Very Long Line Resources
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
High Speed Very Long Line Resouces
ProASIC 500K Family
8v3.0
Clock Trees
One of the main architectural benefits of ProASIC is the set
of power and delay friendly global networks. The ProASIC
family offers 4 global trees. Each of these trees is based on a
network of spines and ribs that reach all the tiles in their
regions (Figure 7). This flexible clock tree architecture
allows users to map up to 56 different internal/external
clocks in an A500K270 device (Table 1).
The flexible use of the ProASIC clock spine allows the
designer to cope with several design requirements. Users
implementing clock resource intensive applications can
easily route external or gated internal clocks using global
routing spines. Users can also drastically reduce delay
penalties and save buffering resources by mapping critical
high fanout nets to spines. For design hints on using these
features, refer to the Efficient Use of ProASIC Clock Trees
application note.
Figure 7 A500K130 Global Routing Resources
Table 1 Number of Clock Spines
A500K050 A500K130 A500K180 A500K270
Top Spine Height 24 32 40 56
Tiles in Each Top Spine 768 1,024 1,280 1,792
Bottom Spin e Height 32 40 56 64
Tiles in Each Bottom Spine 1,024 1,280 1,792 2,048
Global Clock Networks (Trees) 4 4 4 4
Clock Spines/Tree 6 10 12 14
Total Spines 24 40 48 56
Total Tiles 5,376 12,800 18,432 26,880
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
Global
Pads
Global
Pads
High Performace
Global Network
Low Skew
Global Networks
Global Spine
Global Ribs
Scope of Spine
v3.0 9
ProASIC 500K Family
Input/Output Blocks
To meet complex system design needs, the ProASIC 500K
family offers devices with a large number of I/O pins, up to
440 user I/O pins on the A500K270. If the I/O pad is powered
at 3.3V, each I/O can be selectively configured at 2.5V and
3.3V threshold levels. Table 2 shows the available supply
voltage configurations. Figure 8 illustrates I/O interfaces
with other devices.
The I/O pads are fully configurable to provide the maximum
flexibility and speed. Each pad can be configured as an
input, an output, a three-state driver, or a bidirectional
buffer (Figure 9). I/O pads configured as inputs have the
following features:
Individually selectable 2.5V or 3.3V threshold levels1
Optional pull-up resistor
I/O pads configured as outputs have the following features:
Individually selectable 2.5V or 3.3V compliant output
signals1
3.3V PCI compliant
Ability to drive LVTTL and LVCMOS levels
Selectable drive strengths
Selectable slew rates
Tristate
I/O pads configured as bidirectional buffers have the
following features:
Individually selectable 2.5V or 3.3V compliant output
signals and threshold levels1
3.3V PCI compliant
Optional pull-up resistor
Selectable drive strengths
Selectable slew rates
Tristate
All I/Os also include an ESD protection circuit. Each I/O is
tested according to the following model:
Boundary Scan
ProASIC devices are compatible with IEEE Standard 1149.1,
which defines a set of hardware architecture and
mechanisms for cost-effective board-level testing. The basic
ProASIC boundary-scan logic circuit is composed of the TAP
(test access port), TAP controller, test data registers, and
instruction register (Figure 10 on page 10). This circuit
supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD and BYPASS), the optional IDCODE
instructions and private instructions used for device
programming and factory testing.
Each test section is accessed through the TAP, which has
five associated pins: TCK (test clock input), TDI and TDO
(test data input and output), TMS (test mode selector) and
TRST (test reset input). TMS, TDI, and TRST are equipped
Table 2 ProASIC Power Supply Voltages
VDDP 2.5V 3.3V
Input Tolerance 2.5V 3.3V, 2.5V
Output Drive 2.5V 3.3V, 2.5V
Note: VDDL is always 2.5V.
1. If pads are configured for 2.5V operation, they are compliant with 2.5V level
signals as defined by JEDEC JESD 8-5. If pads are configured for 3.3V operation,
they are compliant to the standard as defined by JEDEC JESD 8-A (LVTTL and
LVCMOS).
Human Body Model (HBM)
(Per Mil Std 883 Method 3015) 2000V
Figure 8 I/O Interfaces
Figure 9 I/O Block Schematic Representation
ProASIC
VDDL = 2.5V
VDDP = 2.5V
ProASIC
VDDL = 2.5V
VDDP = 3.3V
2.5V
Device
2.5V
Device
2.5V
Device
3.3V
Device
2.5V
Device
3.3V
Device
3.3V/2.5V
Signal Control Pull-up
Control
3.3V/2.5V Signal Control
Drive Strength and Slew
Rate Control
Pad
Y
EN
A
ProASIC 500K Family
10 v3.0
with pull-up resistors to ensure proper operation when no
input data is supplied to them. These pins are dedicated for
boundary-scan test usage.
The TAP controller is a four-bit state machine (16 states)
that operates as shown in Figure 11 on page 11. The 1s and
0s represent the values that must be present at TMS at a
rising edge of TCK for the given state transition to occur. IR
and DR indicate that the instruction register or the data
register is operating in that state.
The TAP controller receives two control inputs (TMS and
TCK) and generates control and clock signals for the rest of
the test logic architecture. On power up, the TAP controller
enters the Test-Logic-Reset state. To guarantee a reset of
the controller from any of the possible states, TMS must
remain high for five TCK cycles. The TRST pin may also be
used to asynchronously place the TAP controller in the
Test-Logic-Reset state.
ProASIC devices support three types of test data registers:
bypass, device identification, and boundary scan. The bypass
register is selected when no other register needs to be
accessed in a device; this speeds up test data transfer to
other devices in a test data path. The 32-bit device
identification register is a shift register with four fields
(LSB, ID number, part number and version). The
boundary-scan register observes and controls the state of
each I/O pin.
Each I/O cell has three boundary-scan register cells, each
with a serial-in, serial-out, parallel-in, and parallel-out pin.
The serial pins are used to serially connect all the
boundary-scan register cells in a device into a boundary
scan register chain which starts at the TDI pin and ends at
the TDO pin. The parallel ports are connected to the
internal core logic tile and the input, output, and control
ports of an I/O buffer to capture and load data into the
register to control or observe the logic state of each I/O.
Details on the implementation of boundary-scan testing on
ProASIC devices can be found in the Actel application note,
Using JTAG Boundary-Scan with ProASIC Devices.
Figure 10 ProASIC JTAG Boundary Scan Test Logic Circuit
Device
Logic
TDI
TCK
TMS
TRST
TDO
I/O I/O I/O I/O I/O
I/O I/O I/O I/O I/O
I/O
I/O
I/O
I/O
Bypass Register
Instruction
Register
TAP
Controller
Test Data
Registers
v3.0 11
ProASIC 500K Family
User Security
The ProASIC 500K devices have read-protect bits that, once
programmed, lock the entire programmed contents from
being read externally. The user can only reprogram the
device using the security key. This protects it from being
read back and duplicated. Since programmed data is stored
in nonvolatile Flash cells (which act like very small
capacitors), rather than in the wiring, physical
deconstruction cannot be used to compromise data. That
approach would be further hampered by the placement of
the flash cells, beneath the four metal layers (whose
removal could not be accomplished without disturbing the
charge on the floating gate). This is the highest security
provided in the industry. For more information, refer to the
Design Security for Nonvolatile Flash and Antifuse FPGAs
white paper for more information.
Embedded Memory Floorplan
The embedded memory is located across the top of the
device (see Figure 1 on page 4) in 256x9 blocks. Depending
upon the device, 6 to 28 blocks are available to support a
variety of memory configurations. Each block can be
programmed as an independent memory or combined
(using dedicated memory routing resources) to form larger,
more complex memories.
Embedded Memory Configurations
The embedded memory in the ProASIC 500K family provides
great configuration flexibility. While other programmable
vendors typically use single port memories that can only be
transformed into two-port memories by sacrificing half the
memory, each ProASIC block is designed and optimized as a
two-port memory (1 read, 1 write). This provides 63k bits of
total memory for two-port and single port usage in the
A500K270 device.
Each memory can be configured as FIFO or SRAM, with
independent selection of synchronous or asynchronous read
and write ports (Table 3 on page 12). Multiple write ports
are not supported. Additional characteristics include
programmable flags as well as parity check and generation.
Figure 12 and Figure 13 on page 13 show the block diagrams
of the basic SRAM and FIFO blocks. These memories are
designed to operate up to 133 MHz when operated
individually. Each block contains a 256 word deep by 9-bit
wide (1 read, 1 write) memory. The memory blocks may be
combined in parallel to form wider memories or stacked to
form deeper memories (Figure 14 on page 14). This
provides optimal bit widths of 9 (1 block), 18, 36, and 72,
and optimal depths of 256, 512, 768, and 1024. Refer to the
Macro Library Guide for more information.
Figure 11 TAP Controller State Diagram
Test-Logic
Reset
Run-Test/
Idle
Select-DR-
Scan
Capture-DR
Shift-DR
Exit-DR
Pause-DR
Exit2-DR
Update-DR
Select-IR-
Scan
Capture-IR
Shift-IR
Exit-IR
Pause-IR
Exit2-IR
Update-IR
1
11
0
1
0
00
11
00
00
11
00
1
1
11
11
110
0
00
00
ProASIC 500K Family
12 v3.0
Figure 15 on page 14 gives an example of optimal memory
usage. Ten blocks with 23,040 bits have been used to
generate three memories of various widths and depths.
Figure 16 on page 14 shows how memory can be doubled up
to create extra read ports. In this example, 10 out of 28
blocks of the A500K270 yield an effective 6,912 bits of
multiple port memories. The ACTgen software facilitates
building wider and deeper memories for optimal memory
usage.
Table 3 Basic Memory Configurations
Type Write Access Read Access Parity Library Cell Name
RAM Asynchronous Asynchronous Checked RAM256x9AA
RAM Asynchronous Asynchronous Generated RAM256x9AAP
RAM Asynch rono us Synchro nous Transpare nt Checked RAM 256xAS T
RAM Asynch rono us Sy nchro nous Tra nsp are nt Generate d RAM256xAS TP
RAM Asynch rono us Synchronous Pipe lined Checke d RAM256x9 ASR
RAM Asynch rono us Sy nchro nous Pipe lined Gene rate d RAM256x9 ASRP
RAM Synchronous Asynchronous Checked RAM256x9SA
RAM Synchronous Asynchronous Generated RAM256xSAP
RAM Synchrono us Synchronous Transpare nt Checked RAM256x9 SST
RAM Synchr ono us Synchronous T ra nsp are nt Generate d RAM256x9 SSTP
RAM Synchronous Synchronous Pipeli ned Checke d RAM256x9 SSR
RAM Synchr ono us Synchronous Pipeli ned Generate d RAM256x9 SS RP
FIFO Asynchronous Asynchronous Checked FIFO256xAA
FIFO Asynchronous Asynchronous Generated FIFO256x9AAP
FIFO Asynch rono us Sy nchro nous Tra nsp are nt Checked FIF O256xAS T
FIFO Asynch rono us S ynchro nous Tra nsp are nt Generated FIFO256x9 AST P
FIFO Asynch rono us Sy nchro nous Pipe lined Checke d FIFO256x9ASR
FIFO Asynch rono us S ynchro nous Pipe lined Gene rate d FIFO256x9 ASRP
FIFO Synchronous Asynchronous Checked FIFO256x9SA
FIFO Synchronous Asynchronous Generated FIFO256xSAP
FIFO Synchr ono us Synchronous T ra nsp arent Checked FIF O256x9 SST
FIFO Synchr ono us Synchronous Tra nsp are nt Generated FIFO256x9 SST P
FIFO Synchr ono us Synchronous Pipel ined Checke d FIFO256x9SSR
FIFO Synchr ono us Synchronous Pipe lined Gene rate d FIFO256x9 SSR P
v3.0 13
ProASIC 500K Family
Note: For memory block interface signal definitions, see Table 4 on page 28.
Figure 12 Example SRAM Block Diagrams
Note: For memory block FIFO signal definitions, see Table 5 on page 34.
Figure 13 Basic FIFO Block Diagrams
SRAM
(256 X 9)
Sync Write &
Sync Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS RCLKS
RPE
PARODD
SRAM
(256 X 9)
Async Write
&
Async Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7>
WADDR <0:7>
WRB
WBLKB
RDB
RBLKB
PARODD
WPE
RPE
WPE
SRAM
(256 X 9)
Sync Write
&
Async Read
Ports
DI <0:8> DO <0:8>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS
RPE
PARODD
WPE
RADDR <0:7>
PARODD
SRAM
(256 X 9)
Async Write
&
Sync Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
RCLKS
RPE
WPE
FIFO
(256 X 9)
Sync Write &
Sync Read
Ports
LEVEL<0:7> D0 <0:8>
D1<0:8>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLKS
RCLKS
RESET
FIFO
(256 X 9)
Sync Write &
Async Read
Ports
D1 <0:8> D0 <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLKS
FIFO
(256 X 9)
Async Write &
Async.Read
Ports
D1 <0:8> D0 <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
FIFO
(256 X 9)
Async Write &
Sync Read
Ports
D1 <0:8> D0 <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
RCLKS
ProASIC 500K Family
14 v3.0
Figure 14 A500K270 Memory Block Architecture
Figure 15 Example Showing Memories with Different Width and Depth
Figure 16 Multiport Memory Usage
Word
Depth
Word Width
88 blocks
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
Word
Depth
Word Width
1,024 words x 9bits, 1 read, 1 write
512 words x 18bits, 1 read, 1 write
256 words x 18bits, 1 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 23,040
256
256
256
256
9
256
256
99
256
99
256
9
256
9
Total Memory Blocks Used = 10
Total Memory Bits = 6,912
Word
Depth
Word Width
Write Port Write Port
Read Ports
99
Read Ports
512 words x 9bits, 4 read, 1 write
256 words x 9bits, 2 read, 1 write
v3.0 15
ProASIC 500K Family
Design Environment
ProASIC devices are supported by Actels Designer Series
software, as well as all of the industry standard third party
CAE tools. Unlike other FPGA vendors, no special HDL
instantiation or device related attributes are needed when
using the standard VHDL or Verilog HDL design flow with
ProASIC. As a result, designers can utilize the technology
independent of HDL code for ProASIC devices. This feature
and the ASIC-like design flow ensure a seamless transition
to an ASIC implementation, if production volumes warrant a
migration to a gate array or a standard cell product
(Figure 17).
ACTgen automatically generates memories and FIFOs with
all the various options (width, depth, access mode, parity
checking or generation, flags, etc.). For a synchronous read
port, the user can choose whether the output is pipelined or
transparent. ACTgen allows any bit width up to 252 (for the
A500K270 device). ACTgen also enables optimal memory
stacking in 256-word increments. However, any word depth
may be combined for up to 7,168 words. ACTgen allows the
user to generate distributed memory.
Place and route is performed by Actels Designer software.
Available for UNIX workstations and PC platforms, Designer
software accepts standard netlists in Verilog, VHDL, and in
EDIF format, performs timing driven place and route of the
design into the selected device/package, and provides
postlayout timing information for backannotated simulation
or static timing analysis. The Designer software also
contains very powerful layout capabilities for the
experienced user. A very comprehensive set of floor
planning, timing, and routing constraints gives users
optimal control over the tools capabilities, enabling them
to meet their tight design requirements. Users have access
to constraints that allow them full control of the resources
management. See the Designer Users Guide for various
constraints and their uses.
The ProASIC devices are also fully supported by Actels
Libero design tool suite. Libero is a design management
environment that integrates the needed design tools,
streamlines the design flow, manages all design and log
files, and passes the necessary design data between tools.
Libero includes Synplify, ViewDraw, Actels Designer Series,
ModelSim HDL Simulator, and WaveFormer Lite.
Once the design is finalized, the programming bitstream is
downloaded into the device programmer for ProASIC part
programming. ProASIC 500K devices can be programmed
with the Silicon Sculptor II and Flash Pro programmers.
On-board programming is also available. Refer to the
In-System Programming ProASIC 500K with Silicon
Sculptor application note for more information.
Figure 17 ProASIC Design Flow
Design Creation/Verification
Design Implementation
Synthesis Tool
High-Level
Design
(Verilog or VHDL)
Designer
(P&R Tool)
P&R User
Constraints
Synthesis
Library
Programming
Silicon
Sculptor II
Flash
Pro
Timing
Libraries
Simulation
Library
SDF
Timing
File
Forward
Constraints
Programming
Data
Timing
Analyzer
Timing and Simulation
Backannotation
Simulation
Library
Structural
Netlist
ACTgen
Verilog or VHDL Simulator
Verilog or VHDL Simulator
ProASIC 500K Family
16 v3.0
Package Thermal Characteristics
The ProASIC 500K family is available in a number of
package types. Actel has selected packages based on high
pin count, reliability factors, and superior thermal
characteristics.
Thermal resistance indicates the ability of a package to
conduct heat away from the silicon, through the package, to
the surrounding air. Junction-to-ambient thermal resistance
is measured in degrees Celsius/Watt and is represented as
Theta ja (Θja). The lower the thermal resistance, the more
efficiently a package will dissipate heat.
A packages maximum allowed power (P) is a function of
maximum junction temperature (TJ), maximum ambient
operating temperature (TA), and junction-to-ambient
thermal resistance Θja. Maximum junction temperature is
the maximum allowable temperature on the active surface
of the IC and is 110° C. P is defined as:
Θja is a function of the rate (in linear feet per minute
lfpm) of airflow in contact with the package. When the
estimated power consumption exceeds the maximum
allowed power, other means of cooling, such as increasing
the airflow rate, must be used.
PTJTA
Θja
-----------------
=
Package Type Pin Count Θjc Θja Still Air Θja 300 ft/min Units
Plastic Quad Flat Pack (PQFP) 208 8 30 23 °C/W
PQFP with Heatspreader 208 3.8 20 17 °C/W
Plastic Ball Grid Array (PBGA) 272 3 20 16.5 °C/W
Plastic Ball Grid Array (PBGA) 456 3 18 14.5 °C/W
Fine Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W
Fine Ball Grid Array (FBGA) 256 3.0 30 25 °C/W
v3.0 17
ProASIC 500K Family
Calculating Power Dissipation
ProASIC device power is calculated with both a static and
an active component. The active component is a function of
both the number of tiles utilized and the system speed.
Power dissipation can be calculated using the following
formula:
Ptotal = Pdc + Pac
where:
where:
Pstorage = P5 * ms * Fs
where:
Plogic = P3 * mc * Fs
where:
Pios = (P4 + Cload * Vddp^2) * p * Fp
where:
Pmemory = P6 * Nmem * Fmem
where:
The following is an example using a shift register design
with 13,440 storage tiles and 0 logic tile. This design has one
clock at 10 MHz, and 24 outputs toggling at 5 MHz for a
A500K270.
=> Pclock = (P1 + P2 * s) * Fs = 159.4 mW
=> Pstorage = P5 * ms * Fs = 134.4 mW
=> Plogic = 0 mW
Fp = 5 MHz
=> Pios = (P4 + Cload * Vddp^2) * p * Fp = 54.1 mW
=> Pmemory = 0 mW
Pac = Pclock + Pstorage + Plogic + Pios + Pmemory = 347.9 mW
Pdc = 10 mW
Ptotal = Pdc + Pac = 357.9 mW
Pdc = 10 mW
Pac =P
clock + Pstorage + Plogic + Pios + Pmemory
Pclock = (P1 + P2 * s) * Fs
P1 = 2500 uW/MHz
the basic power consumption of the clock-tree
normalized per MHz of the clock
P2 = 1.0 uW/MHz
the extra power consumption of the clock-tree
per storage-tile normalized per MHz of the clock
s = the number of storage tiles clocked by this clock
Fs = the clock frequency
P5 = 1.0 uW/MHz
the average power consumption of a storage-tile
normalized per MHz of its output
ms = the number of storage tiles switching at each Fs
cycle
Fs = the clock frequency
P3 = 3.0 uW/MHz
the average power consumption of a logic-tile
normalized per MHz of its output
mc = the number of logic tiles switching at each Fs
cycle
Fs = the clock frequency
P4 = 15.0 uW/MHz
the average power consumption of an output-pad
normalized per MHz of its output (internal power-
load is not included)
Cload = the output load
p = the number of outputs
Fp = the average output frequency
P6 = 100.0 uW/MHz
is the average power consumption of a memory
block normalized per MHz of the clock
Nmem = the number of RAM/FIFO blocks (1 block = 256
words * 9 bits)
Fmem = the clock frequency of the memory
Fs = 10 MHz
s = 13,440
ms = 13,440 (in a shift register 100% of storage-tiles are
toggling at each clock cycle and Fs = 10 MHz
mc = 0 (no logic tile in this shift-register)
Cload =40 pF
VDDP =3.3 V
and p = 24
Nmem = 0 (no RAM/FIFO in this shift-register)
Power Consumption of a 500K Device
0
100
200
300
400
500
600
700
800
900
1000
Frequency (MHz)
Power Consumption (mW)
20 30 40 50 60 70 80 90 100 120
SRAM
ProASIC
110 instances of 16-bit binary counters
ProASIC 500K Family
18 v3.0
Operating Conditions
Absolute Maximum Ratings
Parameter Condition Minimum Maximum Units
Supply Voltage Core (VDDL)0.3 3.0 V
Supply Voltage I/O Ring (VDDP)0.3 4.0 V
DC Input V ol t ag e 0.3 VDDP + 0.3 V
PCI DC Input Voltage 0.5 VDDP + 0.5 V
DC Input Clamp Curre nt VIN < 0 or VIN> VDDP 10 +10 mA
Note: Stresses beyond those listed in the Absolute Maximum Ratings table can cause permanent damage to the device. Exposure to maximum
rated conditions for extended periods can adversely affect device reliability. Operation of the device at these conditions or any others
beyond those listed in the Recommended Operating Conditions is not implied.
Programming and Storage Temperature LImits
Product Grade Programming
Cycles Program
Retention
S tora ge Temperatu re
Min. Max.
Commercial 50 20 years 55°C110°C
Industrial 50 20 years 55°C110°C
Supply Voltages
Mode VDDL VDDP VPP VPN
Single Voltage 2.5V 2.5V 2.5V Vpp 16.5V 12V VPN 0V
Mixed Voltage 2.5V 3.3V 3.3V Vpp 16.5V 12V VPN 0V
Recommended Operating Conditions
Parameter Symbol Limits
Commercial
DC Supply Voltage (2.5V I/Os) VDDL & VDDP 2.3V to 2.7V
DC Supply Voltage (Mixed 2.5V and 3.3V I/Os) VDDP
VDDL
3.0V to 3.6V
2.3V to 2.7V
Operating Ambient Temperature Range TA0°C to 70°C
Maximum Operating Junction Temperature TJ 110°C
Maximum Clock Frequency fCLOCK 250 MHz
Maximum RAM Frequency fRAM 150 MHz
Industrial
DC Supply Voltage (2.5V I/Os) VDDL & VDDP 2.3V to 2.7V
DC Supply Voltage (Mixed 2.5V and 3.3V I/Os) VDDP
VDDL
3.0V to 3.6V
2.3V to 2.7V
Operating Ambient Temperature Range TA40°C to 85°C
Maximum Operating Junction Temperature TJ110°C
Maximum Clock Frequency fCLOCK 250 MHz
Maximum RAM Frequency fRAM 150 MHz
v3.0 19
ProASIC 500K Family
DC Electrical Specifications (VDDP = 2.5V)
Symbol Parameter Conditions Min. Typ. Max. Units
VDDP, VDDL Supply Voltage 2.3 2.7 V
VOH
Output High Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
IOH = 2.0 mA
IOH = 4.0 mA
IOH = 8.0 mA
IOH = 1.0 mA
IOH = 2.0 mA
IOH = 4.0 mA
2.1
2.0
1.7
2.1
2.0
1.7
V
VOL
Output Low Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
IOL = 5.0 mA
IOL = 10.0 mA
IOL = 15.0 mA
IOL = 2.0 mA
IOL = 3.5 mA
IOL = 5.0 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH Input High Voltage 1.7 VDDP + 0.3 V
VIL Input Low Voltage 0.3 0.7 V
IIN2Input Current with pull-up
without pull-up 25 250
10 µA
µA
IDDQ Quiescent Supply Current VIN = V SS3 or VDDL 4.0 10 mA
IOZ 3-State Output Leakage Current VOH = VSS or VDDL 10 µA
IOSH2Output Short Circuit Current High
High Drive (OB25LPH)
Low Drive (OB25LPL) VIN = VSS
VIN = VSS
120
100 mA
IOSL
Output Short Circuit Current Low
High Drive (OB25LPH)
Low Drive (OB25LPL) VIN = VDDP
VIN = VDDP
100
30 mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
Notes:
1. All process conditions. Junction Temperature: 40 to +110°C.
2. Current is negative.
3. No pull-up resistor.
ProASIC 500K Family
20 v3.0
DC Electrical Specifications (VDDP = 3.3V)
Symbol Parameter Conditions Min. Typ. Max. Units
VDDP Supply Voltage 3.0 3.6 V
VDDL Supply Voltage, Logic Array 2.3 2.7 V
VOH
Output High Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Drive (OB33L)
IOH = 5.0 mA
IOH = 10.0 mA
IOH = 2.5 mA
IOH = 5.0 mA
0.9VDDP
2.4
0.9VDDP
2.4
V
Output High Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Drive (OB25L)
IOH = 200µA
IOH = 10.0 mA
IOH = 2.0 mA
IOH = 100µA
IOH = 1.0 mA
IOH = 2.0 mA
2.1
2.0
1.7
2.1
2.0
1.7
V
VOL
Output High Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Drive (OB33L)
IOL = 7.5 mA
IOL = 12.0 mA
IOL = 4.0 mA
IOL = 5.0 mA
0.1VDDP
0.4
0.1VDDP
0.4
V
Output High Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Drive (OB25L)
IOL = 5.0 mA
IOL = 12.0 mA
IOL = 16.0 mA
IOL = 2.5 mA
IOL = 5.0 mA
IOL = 8.0 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH
Input High Voltage
3.3V LVTTL/LVCMOS
2.5V Mode 2
1.7 VDDP + 0.3
VDDP + 0.3 V
VIL
Input Low Voltage
3.3V LVTTL/LVCMOS
2.5V Mode 0.3
0.3 0.8
0.7 V
IIN2Input Current
LVTTL/LVCMOS
LVTTL/LVCMOS with pull-up
without pull-up 30 300
10 µA
µA
IDDQ Quiescent Supply Current VIN = VSS3 or VDDL 4.0 10 mA
IDDQI4Incre mental Quiescen t Supply
Current 70 400 µA
IOZ 3-State Output Leakage Current VOH = VSS or VDDL 10 µA
Notes:
1. All process conditions. Junction Temperature: 40 to +110°C.
2. Current is negative.
3. No pull-up resistor.
4. IDDQ is augmented by IDDQI for each 2.5V I/O when operating in a mixed voltage environment.
v3.0 21
ProASIC 500K Family
IOSH2
Output Short Circuit Current High
3.3V High Drive
3.3 Low Drive
2.5V High Drive
2.5 Low Drive
200
140
120
100
mA
IOSL
Output Short Circuit Current Low
3.3V High Drive
3.3 Low Drive
2.5V High Drive
2.5 Low Drive
160
150
160
50
mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
DC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VDDL Supply Voltage for Core 2.3 2.7 V
VDDP Supply Voltage for I/O Ring 3.0 3.6 V
VIH Input High Voltage 0.5VDPP VDPP + 0.5 V
VIL Input Low Voltage 0.5 0.3VDDP V
IIPU Input Pull-up Voltage10.7VDDP V
IIL Input Leakage Current20 < VIN < VCCI 10 +10 µA
VOH Output High Voltage IOUT = 500 µA 0.9VDPP V
VOL Output Low Voltage IOUT = 1500 µA 0.1VDPP V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Capacit ance 5 12 pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this
input voltage.
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
DC Electrical Specifications (VDDP = 3.3V) (Continued)
Symbol Parameter Conditions Min. Typ. Max. Units
Notes:
1. All process conditions. Junction Temperature: 40 to +110°C.
2. Current is negative.
3. No pull-up resistor.
4. IDDQ is augmented by IDDQI for each 2.5V I/O when operating in a mixed voltage environment.
ProASIC 500K Family
22 v3.0
AC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC)
Switching Current High
0 < VOUT 0.3VCCI 112VCCI mA
0.3VCCI VOUT < 0.9VCCI 1(17.1 + (VDDP VOUT)) mA
0.7VCCI < VOUT < VCCI 1, 2 Equatio n A
on page 23
(Test Point) VOUT = 0.7VCC 232VCCI mA
IOL(AC)
Switching Current Low
VCCI > VOUT 0.6VCCI 116VDDP mA
0.6VCCI > VOUT > 0.1VCCI 1(26.7VOUT)mA
0.18VCCI > VOUT > 0 1, 2 Equatio n B
on page 23
(Test Point) VOUT = 0.18VCC 2 38VCCI mA
ICL Low Clamp Current 3 < VIN 125 + (VIN + 1)/0.015 mA
ICH High Clamp Current VCCI + 4 > VIN VCCI + 1 25 + (VIN VDDP 1)/0.015 mA
slewROutput Rise Slew Rate 0.2VCCI to 0.6VCCI load 314V/ns
slewFOutput Fall Slew Rate 0.6VCCI to 0.2VCCI load 314V/ns
Notes:
1. Refer to the V/I curves in Figure 18 on page 23. Switching current characteristics for REQ# and GNT# are permitted to be one half of that
specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are
system outputs. Switching Current High specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain
outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)
are provided with the respective diagrams in Figure 18 on page 23. The equation defined maxima should be met by design. In order to
facilitate component testing, a maximum current test point is defined for each side of the output driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.
output
buffer
1/2 in. max.
10 pF
1k
pin
1k
pin
buffer
output
10 pF
v3.0 23
ProASIC 500K Family
Figure 18 shows the 3.3V PCI V/I curve and the minimum
and maximum PCI drive characteristics of the ProASIC
family.
Equation A
IOH = (98.0/VCCI) * (VOUT VCCI) * (VOUT + 0.4VCCI)
for 0.7 VCCI < VOUT < VCCI
Equation B
IOL = (256/VCCI) * VOUT * (VCCI VOUT)
for 0V < VOUT < 0.18 VCCI
Timing Characteristics
Timing characteristics for ProASIC 500K devices fall into
three categories: family dependent, device dependent, and
design-dependent. The input and output buffer
characteristics are common to all ProASIC 500K family
members. Internal routing delays are device-dependent.
Design dependency means that actual delays are not
determined until after placement and routing of the users
design are completed. Design timing attributes may then be
determined by using Timer, the Static Analysis tool
embedded into Designer software, or performing
simulation with post-layout delays using ModelSim
Simulator integrated into Libero design environment.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most critical
timing paths. Critical nets are determined by net property
assignment prior to placement and routing. Up to 6 percent
of the nets in a design may be designated as critical, while
more than 90% of the nets in a design are typical. Users can
control priorities between critical nets and use routing
constraints, such as set_critical to focus the routing
optimization on the most critical ones. Please see the
Designer Users Guide for more information on using
constraints.
Very Long Lines
Some nets in the design are very long lines marked using
VLLs, which are special routing resources that span
multiple rows, columns, or modules. This increases
capacitance and resistance, resulting in longer net delays
for macros connected to long tracks. Typically, up to 6
percent of nets in a fully utilized device require long tracks.
Very long lines contribute between 4 and 8.4ns routing delay
depending on the fanout. This additional delay is
represented statistically in higher fanout routing delays.
Timing Derating
Since ProASIC 500K devices are manufactured with a CMOS
process, device performance will vary with temperature,
voltage, and process. Minimum timing parameters reflect
maximum operating voltage, minimum operating
temperature, and optimal process variations. Maximum
timing parameters reflect minimum operating voltage,
maximum operating temperature, and worst-case process
variations (within process specifications).
Figure 18 3.3V PCI V/I Curve for ProASIC Family
150.0
100.0
50.0
0.0
50.0
100.0
150.0
0 0.5 1 1.5 2 2.5 3 3.5 4
Voltage Out (V)
Current (mA)
IOH
IOL
IOH MIN Spec
IOH MAX Spec
IOL MIN Spec
IOL MAX Spec
ProASIC 500K Family
24 v3.0
Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.3V)
VCCA
Junction Temperature (TJ)
–55°C –40°C0°C25°C70°C85°C110°C125°C
2.3V 0.84 0.86 0.91 0.94 1.00 1.02 1.05 1.07
2.5V 0.81 0.83 0.87 0.90 0.96 0.98 1.01 1.02
2.7V 0.77 0.79 0.84 0.86 0.92 0.93 0.96 0.98
Slew Rates Measured at Cout = 10pF (Total Output Load), Nominal Power Supplies and 25°C
Type Trig. Lev. Rising Edge Slew Rate Falling Edge Slew Rate
pS V/nS pS V/nS
OB33PH 20%-60% 397 3.33 390 -3.38
OB33PN 20%-60% 463 2.85 450 -2.93
OB33PL 20%-60% 567 2.33 527 -2.51
OB33LH 20%-60% 467 2.83 700 -1.89
OB33LN 20%-60% 620 2.13 767 -1.72
OB33LL 20%-60% 813 1.62 1100 -1.20
OB25HH 20%-60% 750 1.33 310 -3.23
OB25HN 20%-60% 850 1.18 390 -2.56
OB25HL 20%-60% 1310 0.76 510 -1.96
OB25LH 20%-60% 793 1.26 430 -2.33
OB25LN 20%-60% 870 1.15 730 -1.37
OB25LL 20%-60% 1287 0.78 1037 -0.96
OB25LPHH 20%-60% 470 2.13 433 -2.31
OB25LPHN 20%-60% 533 1.81 527 -1.90
OB25LPHL 20%-60% 770 1.30 753 -1.33
OB25LPLH 20%-60% 597 1.68 707 -1.42
OB25LPLN 20%-60% 873 1.15 760 -1.32
OB25LPLL 20%-60% 1153 0.87 1563 -0.54
Tristate Buffer Delays
PAD
A
OTBx
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
EN 50%
PAD VOL
50%
tENZL
50%
10%
EN 50%
PAD
GND
VOH
50%
tENZH
50%
90%
VCC
EN
v3.0 25
ProASIC 500K Family
Tristate Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Macro Type Description Max
tDLH Max
tDHL Max
tENZH Max
tENZL Units
OTB33PH 3.3V, PCI Output Current, High Slew Rate 4.2 4.1 4.2 3.67 ns
OTB33PN 3.3V, PCI Output Current, Nominal Slew Rate 4.7 5.9 4.8 5.3 ns
OTB33PL 3.3V, PCI Output Current, Low Slew Rate 5.3 7.0 5.3 6.6 ns
OTB33LH 3.3V, Low Output Current, High Slew Rate 6.0 6.6 6.0 5.9 ns
OTB33LN 3.3V, Low Output Current, Nomina l Slew Rate 6.7 9.2 6.7 8.9 ns
OTB33LL 3.3V, Low Output Current, Low Slew Rate 7.5 12.0 7.5 11.8 ns
OTB25HH 2.5V, High Output Current, High Slew Rate 6.9 3.6 6.9 3.4 ns
OTB25HN 2.5V, High Output Current, Nominal Slew Rate 7.2 5.2 7.2 4.9 ns
OTB25HL 2.5V, High Output Current, Low Slew Rate 8.2 6.4 8.2 6.1 ns
OTB25LH 2.5V, Low Output Current, High Slew Rate 10.4 5.5 10.4 5.2 ns
OTB25LN 2.5V, Low Output Current, Nomina l Slew Rate 11.0 8.3 11.0 8.1 ns
OTB25LL 2.5V, Low Output Current, Low Slew Rate 11.9 10.9 11.9 11.7 ns
OTB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 5.1 5.1 5.1 4.4 ns
OTB25LPHN 2.5V, Low Po wer, High Output Current, Nominal Slew Ra te 6 .0 7.7 6.0 7.4 ns
OTB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 6.9 9.8 6.8 9.3 ns
OTB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate 7.4 8.6 7.4 7.8 ns
OTB25LPL N 2.5V, Low Power, Low Outpu t Current, Nominal Slew Rate 8.6 12.6 8.5 12.3 ns
OTB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate 9.8 17.0 9.8 16.7 ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
3. tENZH = Enable-to-Pad, Z to HIGH
4. tENZL = Enable-to-Pad, Z to LOW
Output Buffer Delays
PAD
A
OBx
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
ProASIC 500K Family
26 v3.0
Output Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Macro Type Description Max. tDLH Max. tDHL Units
OB33PH 3.3V, PCI Output Current, High Slew Rate 4.2 4.1 ns
OB33PN 3.3V, PCI Output Current, Nominal Slew Rate 4.7 5.9 ns
OB33PL 3.3V, PCI Output Current, Low Slew Rate 5.3 7.1 ns
OB33LH 3.3V, Low Output Current, High Slew Rate 6.0 6.6 ns
OB33LN 3.3V, Low Output Current, Nominal Slew Rate 6.7 9.2 ns
OB33LL 3.3V, Low Output Current, Low Slew Rate 7.5 12.1 ns
OB25HH 2.5V, High Output Current, High Slew Rate 6.9 3.6 ns
OB25HN 2.5V, High Output Current, Nominal Slew Rate 7.2 5.2 ns
OB25HL 2.5V, High Output Current, Low Slew Rate 8.2 6.4 ns
OB25LH 2.5V, Low Output Current, High Slew Rate 10.4 5.5 ns
OB25LN 2.5V, Low Output Current, Nominal Slew Rate 11.0 8.3 ns
OB25LL 2.5V, Low Output Current, Low Slew Rate 11.9 10.9 ns
OB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 5.1 5.1 ns
OB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate 6.0 7.7 ns
OB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 6.9 9.8 ns
OB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate 7.4 8.6 ns
OB25LPLN 2.5V, Low Power, Low Output Current, Nominal Slew Rate 8.6 12.6 ns
OB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate 9.8 17.0 ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
Input Buffer Delays
Input Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Macro Type Description Max.
tINYH Max.
tINYL Units
IB25 2.5V, CMOS Input Levels, No Pull-up Resistor 2.2 0.7 ns
IB25LP 2.5V, CMOS Input Levels, Low Power 2.2 1.4 ns
IB33 3.3V, CMOS Input Levels, No Pull-up Resistor 1.9 1.0 ns
Notes:
1. tINYH = Input Pad-to-Y HIGH
2. tINYL = Input Pad-to-Y LOW
PAD YPAD VCC 0V
50%
Y
GND
VCC
50%
tINYH
50%
50%
tINYL
IBx
v3.0 27
ProASIC 500K Family
Global Input Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Macro Type Description Max.
tINYH Max.
tINYL Units
GL25 2.5V, CMOS Input Levels 2.1 1.6 ns
GL25LP 2.5V, CMOS Input Levels 2.3 2.3 ns
GL33 3.3V, CMOS Input Levels 3.8 1.2 ns
GL25U 2.5V, CMOS Input Levels, with Pull-up Resistor 2.1 1.6 ns
GL25LPU 2.5V, CMOS Input Levels, Low Power, with Pull-up Resistor 2.3 2.3 ns
GL33U 3.3V, CMOS Input Levels, with Pull-up Resistor 3.8 1.2 ns
Predicted Global Routing Delay*
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Parameter Description Max. Units
tRCKH Input Low to High (fully loaded row32 inputs) 1.2 ns
tRCKL Input High to Low (fully loaded row32 inputs) 1.1 ns
tRCKH Input Low to High (minimally loaded row1 input) 0.9 ns
tRCKL Input High to Low (minimally loaded row1 input) 0.9 ns
* The timing delay difference between tile locations is less than 15ps.
Global Routing Skew
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)
Parameter Description Max. Units
tRCKSWH Maximum Skew Low to High 0.3 ns
tRCKSHH Maximum Skew High to Low 0.3 ns
Module Delays
A
B
CY
A
B
50%
Y
50%
50% 50%
50% 50%
tDALH
C50% 50%
50%
50%50%
tDBLH
tDAHL tDBHL
tDCHL
tDCLH
50%
ProASIC 500K Family
28 v3.0
Embedded Memory Specifications
This section focuses on the embedded memory of the
ProASIC 500K family. It describes the SRAM and FIFO
interface signals and includes timing diagrams that show
the relationships of signals as they pertain to single
embedded memory blocks (Table 4 and Table 5 on page 34).
Refer to Table 3 on page 12 for basic RAM configurations.
Simultaneous Read and Write to the same location must be
done with care. On such accesses the DI bus is output to the
DO bus.
Enclosed Timing Diagrams—SRAM Mode:
Synchronous RAM Read, Access Timed Output Strobe
(Synchronous Transparent)
Synchronous RAM Read, Pipeline Mode Outputs
(Synchronous Pipelined)
Asynchronous RAM Write
Asynchronous RAM Read, Address Controlled, RDB=0
Asynchronous RAM Read, RDB Controlled
Synchronous RAM Write
Note: The difference between synchronous transparent
and pipeline modes is the timing of all the output
signals from the memory. In transparent mode
the outputs will change within the same clock
cycle to reflect the data requested by the currently
valid access to the memory. However, if clock
cycles are short (high clock speed), the data
requires most of the clock cycle to change to valid
values (stable signals). This makes processing of
this data in the same clock cycle nearly
impossible. Most designers solve this problem by
adding registers at all outputs of the memory to
push the data processing into the next clock cycle.
In this setup, the whole cycle time can be used to
process the data. To simplify the use of this kind of
memory setup these registers have been
implemented as part of the memory primitive
and are available to the user in the synchronous
pipeline mode. In this mode, the output signals
will change shortly after the second rising edge,
following the initiation of the read access.
Sample Macrocell Library Listing
(Worst-Case Commercial Conditions, VDDL = 2.3V, TJ = 70º C)
Cell Name Description Maximum
Intrinsic Delay Minimum
Setup/Hold Units
NAND2 2-Input NAND 0.4 ns
AND2 2-Input AND 0.4 ns
NOR3 3-Input NOR 0.4 ns
MUX2L 2-1 M ux with Active L ow Select 0.4 ns
OA21 2-Input OR into a 2-Input AND 0.4 ns
XOR2 2-Input Exclusive OR 0.3 ns
LDL Active Low Latch (LH/HL) D: 0.3/0.2 tsetup 0.5
thold 0.2 ns
DFFL Negative Edge-Triggered D-type Flip-Flop (LH/HL) CLK-Q:
0.4/0.4 tsetup 0.4
thold 0.2 ns
Note: Assumes fanout of two.
Table 4 Memory Block SRAM Interface Signals
SRAM Signal Bits In/Out Description
WCLKS 1 IN Write clock used on synchronization on write side
RCLKS 1 IN Read clock used on synchronization on read side
RADDR<0:7> 8 IN Read address
RBLKB 1 IN Negative true read block select
RDB 1 IN Negative true read pulse
WADDR<0:7> 8 IN Write address
WBLKB 1 IN Negative true write block select
DI<0:8> 9 IN Input data bits <0:8>, <8> can be used for parity in
WRB 1 IN Negative true write pulse
DO<0:8> 9 OUT Output data bits <0:8>, <8> can be used for parity out
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
PARODD 1 IN S elects odd parity generation/detect when high, even when low
Note: Not all signals shown are used in all modes.
v3.0 29
ProASIC 500K Family
Synchronous RAM Read, Access Timed Output Strobe (Synchronous Transparent)
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Cl ock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
RADDR
RPE
DO
RCLKS
RB=(RBD+RBLKB)
New Valid Data Out
Cycle Start
Old Data Out
New Valid
Address
tRACS
tRDCS
tRDCH
tRACH
tOCH
tRPCH
tCMH
tOCA
tRPCA
tCCYC
tCML
ProASIC 500K Family
30 v3.0
Synchronous RAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Cl ock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS .75 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 4.0 ns
RPCH Old RPE valid from RCLKS 1.0 ns
RCLKS
RPE
DO New Valid Data Out
Cycle Start
New RPE Out
RADDR New Valid
Address
RB=(RDB+RBLKB)
tRACS tOCA
tRPCH
tOCH
tRPCA
tCML
tCMH
tCCYC
tRACH
tRDCH
tRDCS
Old Data Out
Old RPE Out
v3.0 31
ProASIC 500K Family
Asynchronous RAM Write
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
A WRH WADDR hold from WB 1.0 ns
AW RS W A DDR setup to WB 0.5 ns
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0.5 ns PARGEN is inac tive
DWRS DI setup to WB 2.5 ns PARGEN is active
WPDA WPE access from DI 3.0 ns WPE is invalid while
WPDH WPE hold from DI 1.0 ns PARGEN is active
WRCYC Cycle time 7.5 ns
WRMH WB high phase 3.0 ns Inactive
WRML WB low phase 3.0 ns Active
WB=(WRB+WBLKB)
WADDR
WPE
DI
tAWRS
tWPDA
tAWRH
tDWRS
tWRML tWRMH
tWRCYC
tWPDH
tDWRH
ProASIC 500K Family
32 v3.0
Asynchronous RAM Read, Address Controlled, RDB=0
Asynchronous RAM Read, RDB Controlled
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ACYC Read cycle time 7.5 ns
OAA New DO access from RADDR stable 7.5 ns
OAH Old DO hold from RADDR stable 3.0 ns
RPAA New RPE access from RADDR stable 10.0 ns
RPAH Old RPE hold from RADDR stable 3.0 ns
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Sym bol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDMH RB high phase 3.0 ns Inactive setup to new cycle
RDML RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 3.0 ns
RPE
DO
RADDR
tOAH
tRPAH
tOAA
tRPAA
tACYC
RB=(RDB+RBLKB)
RPE
DO
tORDH
tORDA
tRPRDA
tRDML
tRDCYC
tRDMH
tRPRDH
v3.0 33
ProASIC 500K Family
Synchronous RAM Write
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Cl ock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
WACH WADDR hold from WCLKS 0.5 ns
WDCS WADDR setup to WCLKS 1.0 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE valid from WCLKS 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS,
WBCS WRB & WBLKB setup to WCLKS 1.0 ns
Note: On simultaneous read and write accesses to the same location DI is output to DO.
WCLKS
WPE
WADDR, DI
WRB, WBLKB
Cycle Start
tWRCH, tWBCH
tWRCS, tWBCS
tDCS, tWDCS
tWPCH
tDCH, tWACH
tWPCA
tCMH tCML
tCCYC
ProASIC 500K Family
34 v3.0
Asynchronous FIFO Full and Empty Transitions
The asynchronous FIFO accepts writes and reads while not
full or not empty. When the FIFO is full, all writes are
inhibited. Conversely, when the FIFO is empty, all reads are
inhibited. A problem is created if the FIFO is written during
the transition out of full to not full or read during the
transition out of empty to not empty. The exact time at
which the write (read) operation changes from inhibited to
accepted after the read (write) signal which causes the
transition from full (empty) to not full (empty) is
indeterminate. This indeterminate period starts 1ns after
the RB (WB) transition which deactivates full (not empty).
For slow cycles, the indeterminate period ends 3ns after the
RB (WB) transition. For fast cycles, this period ends either
3ns or (7.5ns - tRDL (tWRL)) after the RB (WB) transition,
whichever is later.
The timing diagram for write is shown in Figure 19 on
page 35. The timing diagram for read is shown in Figure 20
on page 35. For basic RAM configurations, see Table 3 on
page 12. For memory block interface signals, see Table 4 on
page 28, and for memory block FIFO signals, see Table 5.
Enclosed Timing DiagramsFIFO Mode:
Asynchronous FIFO Read
Asynchronous FIFO Write
Synchronous FIFO Read, Access Timed Output
Strobe (Synchronous Transparent)
Synchronous FIFO Read, Pipeline Mode Outputs
(Synchronous Pipelined)
Synchronous FIFO Write
FIFO Reset
Table 5 Memory Block FIFO Interface Signals
FIFO Signal Bits In/Out Description
WCLKS 1 IN Write clock used to synchronize write side
RCLKS 1 IN Read clock used to synchronize read side
LEVEL <0:7> 8 IN Direct configuration implements static flag logic
RBLKB 1 IN Active low read block select
RDB 1 IN Active low read pulse
RESET 1 IN Active low reset for FIFO pointers
WBLKB 1 IN Active low write block select
DI<0:8> 9 IN Input data bits <0:8>, <8> can be used for parity in.
WRB 1 IN Active low write pulse
FULL, EMPTY 2 OUT FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH 2 OUT EQTH is true when the FIFO holds (LEVEL) words. GEQTH is true when the
FIFO holds (LEVEL) words or more
DO<0:8> 9 OUT Output data bits <0:8>, <8> can be used for parity out.
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
LGDEP <0:2> 3 IN Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD 1 IN S elects odd parity generation/detect when high, even when low
v3.0 35
ProASIC 500K Family
Figure 19 Write Timing Diagram
Figure 20 Read Timing Diagram
Write acceptedWrite inhibited
FULL
RB
Write
cycle
1ns
3ns
WB
Read acceptedRead inhibited
EMPTY
WB
Read
cycle
1ns
3ns
RB
ProASIC 500K Family
36 v3.0
Asynchronous FIFO Read
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ERDH,
FRDH,
THRDH
Old EMP TY, FULL, EQT H, & GETH valid
hold time from RB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
ERDA Ne w EMPTY access from RB 3.01ns
FRDA FULL access from RB 3.01ns
ORDA Ne w DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDWRS WB , clearing EMPTY, setup to
RB
3.02ns Enabling the read operation
1.0 ns Inhibiting the read operation
RDH RB high phase 3.0 ns Inactive
RDL RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 4.0 ns
THRDA EQTH or GETH access from RB4.5 ns
Notes:
1. At fast cycles, ERDA & FRDA = MAX ((7.5ns RDL), 3.0ns)
2. At fast cycles, RDWRS (for enabling read) = MAX ((7.5ns WRL), 3.0ns)
RB=(RDB+RBLKB)
RPE
DO
EMPTY
EQTH, GETH
FULL
(Empty inhibits read)
Cycle Start
WB
tRDWRS tERDH, tFRDH
tERDA, tFRDA
tTHRDH
tORDH
tRPRDH
tORDA
tRPRDA
tRDL
tRDCYC
tRDH
tTHRDA
v3.0 37
ProASIC 500K Family
Asynchronous FIFO Write
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0.5 ns PARGEN is inac tive
DWRS DI setup to WB 2.5 ns PARGEN is active
EWRH,
FWRH,
THWRH
Old EMP TY, FULL, EQT H, & GETH valid
hold time after WB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
EWRA EMPTY access from WB 3.01ns
FWRA New FULL access from WB 3.01ns
THWRA EQTH or GETH access from WB 4.5 ns
WPDA WPE access from DI 3.0 ns WPE is invalid while
PARGEN is active
WPDH WPE hold from DI 1.0 ns
WRCYC Cycle time 7.5 ns
WRRDS RB , clearing FULL, setup to
WB
3.02ns Enabling the write operation
1.0 Inhibiting the write operation
WRH WB high phase 3.0 ns Inactive
WRL WB low phase 3.0 ns Active
Notes:
1. At fast cycles, EWRA, FWRA = MAX ((7.5ns WRL), 3.0ns)
2. At fast cycles, WRRDS (for enabling write) = MAX ((7.5ns RDL), 3.0ns)
WPE
DI (Full inhibits write)
WB=(WRB+WBLKB)
EMPTY
EQTH, GETH
FULL
Cycle Start
RB
tWRRDS tDWRH
tWPDH
tWPDA
tDWRS
tEWRH, tFWRH
tEWRA, tFWRA
tTHWRH
tTHWRA
tWRH
tWRL
tWRCYC
ProASIC 500K Family
38 v3.0
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Cl ock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLKS 3.01ns
FCBA FULL access from RCLKS 3.01ns
ECBH,
FCBH,
THCBH
Old EMP TY, FULL, EQT H, & GETH valid
hold time from RCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA Ne w RPE access from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX ((7.5ns CMH), 3.0ns)
RCLKS
RPE
DO
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out (Empty Inhibits Read)
RDB
Cycle Start
tRDCH
tOCH
tRPCH
tRDCS
tECBH, tFCBH
tECBA, tFCBA
tOCA
tRPCA
tCMH tCML
tCCYC
tTHCBH
tHCBA
v3.0 39
ProASIC 500K Family
Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Cl ock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLKS 3.01ns
FCBA FULL access from RCLKS 3.01ns
ECBH,
FCBH,
THCBH
Old EMP TY, FULL, EQT H, & GETH valid
hold time from RCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS 0.75 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA Ne w RPE access from RCLKS 4.0 ns
RPCH Old RPE valid from RCLKS 1.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX ((7.5ns CMS), 3.0ns)
RCLKS
RPE
DO
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out
RDB
Cycle Start
Old RPE Out New RPE Out
tECBH, tFCBH
tRDCH
tRDCS
tOCA
tECBA, tFCBA
tTHCBH
tHCBA
tCMH tCML
tCCYC
tRPCH
tOCH
tRPCA
ProASIC 500K Family
40 v3.0
Synchronous FIFO Write
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Cl ock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
FCBA New FULL access from WCLKS 3.01ns
ECBA EMPTY access from WCLKS 3.01ns
ECBH,
FCBH,
HCBH
Old EMP TY, FULL, EQT H, & GETH valid
hold time from WCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
HCBA EQTH or GETH access from WCLKS 4.5 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE valid from WCLKS 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS,
WBCS WRB & WBLKB setup to WCLKS 1.0 ns
Note:
1. At fast cycles, ECBA & FCBA = MAX ((7.5ns CMH), 3.0ns)
WCLKS
WPE
DI
EMPTY
EQTH, GETH
FULL
(Full Inhibits Write)
WRB, WBLKB
Cycle Start
tWRCH, tWBCH tECBH, tFCBH
tECBA, tFCBA
tHCBA
tWRCS, tWBCS
tDCS
tWPCA
tCMH tCML
tCCYC
tWPCH
tDCH
tHCBH
v3.0 41
ProASIC 500K Family
FIFO Reset
TJ = 0°C to 110°C; VDDL = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CBRSH WCLKS or RCLKS hold from RESETB 1.5 ns Synchronous mode only
CBRSS WCLKS or RCLKS setup to RESET B 1.5 ns Synchronous mode only
ERSA Ne w EMPTY access from RESETB 3.0 ns
FRSA FULL access from RESETB 3.0 ns
RSL RESETB low phase 7.5 ns
THRSA EQTH or GETH access from RE SETB 4.5 ns
WBRSH WB hold from RESETB 1.5 ns Asynchronous mode only
WBRSS WB setup to RESETB 1.5 ns Asynchronous mode only
RESETB
EMPTY
EQTH, GETH
FULL
Cycle Start
Cycle Start
WCLKS, RCLKS
tERSA, tFRSA
tTHRSA
tCBRSS
tWBRSS
tCBRSH
tWBRSH
tRSL
WRB, WBLKB
ProASIC 500K Family
42 v3.0
Pin Description
I/O User Input/Output
The I/O pin functions as an input, output, three-state, or
bidirectional buffer. Input and output signal levels are
compatible with standard LVTTL and LVCMOS
specifications. Unused I/O pins are configured as inputs
with pull-up resistors.
N/C No Connect
To maintain compatibility with future Actel ProASIC
products it is recommended that this pin not be connected
to the circuitry on the board.
GL Global Input Pin
Low skew input pin for clock or other global signals. Input
only. This pin can be configured with a pull-up resistor.
GND Ground
Common ground supply voltage.
VDDL Logic Array Power Supply Pin
2.5V supply voltage.
VDDP I/O Pad Power Supply Pin
2.5V or 3.3V supply voltage.
VPP Programming Supply Pin
This pin must be connected to VDDP during normal
operation, or it can remain at 16.5V in an ISP application.
This pin must not float.
VPN Programming Supply Pin
This pin must be connected to GND during normal
operation, or it can remain at 12V in an ISP application.
This pin must not float.
TMS Test Mode Select
The TMS pin controls the use of Boundary Scan circuitry.
TCK Test Clock
Clock input pin for Boundary Scan.
TDI Test Data In
Serial input for Boundary Scan.
TDO Test Data Out
Serial output for Boundary Scan.
TRST Test Reset Input
Asynchronous, active low input pin for resetting Boundary
Scan circuitry.
RCK Running Clock
A free running clock is needed during programming if the
programmer cannot guarantee that TCK will be
uninterrupted.
v3.0 43
ProASIC 500K Family
Package Pin Assignments
208-Pin PQFP
208-Pin PQFP
1
208
ProASIC 500K Family
44 v3.0
208-Pin PQFP
Pin
Number A500K05 0
Function A500K130
Function A500K180
Function A500K270
Function Pin
Number A500K050
Function A500K130
Function A500K180
Function A500K270
Function
1 GND GND GND GND 53 VDDP VDDP VDDP VDDP
2 I/O I/O I/O I/O 54 I/O I/O I/O I/O
3 I/O I/O I/O I/O 55 I/O I/O I/O I/O
4 I/O I/O I/O I/O 56 I/O I/O I/O I/O
5 I/O I/O I/O I/O 57 I/O I/O I/O I/O
6 I/O I/O I/O I/O 58 I/O I/O I/O I/O
7 I/O I/O I/O I/O 59 I/O I/O I/O I/O
8 I/O I/O I/O I/O 60 I/O I/O I/O I/O
9 I/O I/O I/O I/O 61 I/O I/O I/O I/O
10 I/O I/O I/O I/O 62 I/O I/O I/O I/O
11 I/O I/O I/O I/O 63 I/O I/O I/O I/O
12 I/O I/O I/O I/O 64 I/O I/O I/O I/O
13 I/O I/O I/O I/O 65 GND GND GND GND
14 I/O I/O I/O I/O 66 I/O I/O I/O I/O
15 I/O I/O I/O I/O 67 I/O I/O I/O I/O
16 VDDL VDDL VDDL VDDL 68 I/O I/O I/O I/O
17 GND GND GND GND 69 I/O I/O I/O I/O
18 I/O I/O I/O I/O 70 I/O I/O I/O I/O
19 I/O I/O I/O I/O 71 VDDL VDDL VDDL VDDL
20 I/O I/O I/O I/O 72 VDDP VDDP VDDP VDDP
21 I/O I/O I/O I/O 73 I/O I/O I/O I/O
22 VDDP VDDP VDDP VDDP 74 I/O I/O I/O I/O
23 I/O I/O I/O I/O 75 I/O I/O I/O I/O
24 I/O I/O I/O I/O 76 I/O I/O I/O I/O
25 GL GL GL GL 77 I/O I/O I/O I/O
26 GL GL GL GL 78 I/O I/O I/O I/O
27 I/O I/O I/O I/O 79 I/O I/O I/O I/O
28 I/O I/O I/O I/O 80 I/O I/O I/O I/O
29 GND GND GND GND 81 GND GND GND GND
30 I/O I/O I/O I/O 82 I/O I/O I/O I/O
31 I/O I/O I/O I/O 83 I/O I/O I/O I/O
32 I/O I/O I/O I/O 84 I/O I/O I/O I/O
33 I/O I/O I/O I/O 85 I/O I/O I/O I/O
34 I/O I/O I/O I/O 86 I/O I/O I/O I/O
35 I/O I/O I/O I/O 87 I/O I/O I/O I/O
36 VDDL VDDL VDDL VDDL 88 VDDL VDDL VDDL VDDL
37 I/O I/O I/O I/O 89 VDDP VDDP VDDP VDDP
38 I/O I/O I/O I/O 90 I/O I/O I/O I/O
39 I/O I/O I/O I/O 91 I/O I/O I/O I/O
40 VDDP VDDP VDDP VDDP 92 I/O I/O I/O I/O
41 GND GND GND GND 93 I/O I/O I/O I/O
42 I/O I/O I/O I/O 94 I/O I/O I/O I/O
43 I/O I/O I/O I/O 95 I/O I/O I/O I/O
44 I/O I/O I/O I/O 96 I/O I/O I/O I/O
45 I/O I/O I/O I/O 97 GND GND GND GND
46 I/O I/O I/O I/O 98 I/O I/O I/O I/O
47 I/O I/O I/O I/O 99 I/O I/O I/O I/O
48 I/O I/O I/O I/O 100 I/O I/O I/O I/O
49 I/O I/O I/O I/O 101 TCK TCK TCK TCKO
50 I/O I/O I/O I/O 102 TDI TDI TDI TDI
51 I/O I/O I/O I/O 103 TMS TMS TMS TMS
52 GND GND GND GND 104 VDDP VDDP VDDP VDDP
v3.0 45
ProASIC 500K Family
105 GND GND GND GND 157 VDDP VDDP VDDP VDDP
106 VPP VPP VPP VPP 158 I/O I/O I/O I/O
107 VPN VPN VPN VPN 159 I/O I/O I/O I/O
108 TDO TDO TDO TDO 160 I/O I/O I/O I/O
109 TRST TRST TRST TRST 161 I/O I/O I/O I/O
110 RCK RCK RCK RCK 162 GND GND GND GND
111 I/O I/O I/O I/O 163 I/O I/O I/O I/O
112 I/O I/O I/O I/O 164 I/O I/O I/O I/O
113 I/O I/O I/O I/O 165 I/O I/O I/O I/O
114 I/O I/O I/O I/O 166 I/O I/O I/O I/O
115 I/O I/O I/O I/O 167 I/O I/O I/O I/O
116 I/O I/O I/O I/O 168 I/O I/O I/O I/O
117 I/O I/O I/O I/O 169 I/O I/O I/O I/O
118 I/O I/O I/O I/O 170 VDDP VDDP VDDP VDDP
119 I/O I/O I/O I/O 171 VDDL VDDL VDDL VDDL
120 I/O I/O I/O I/O 172 I/O I/O I/O I/O
121 I/O I/O I/O I/O 173 I/O I/O I/O I/O
122 GND GND GND GND 174 I/O I/O I/O I/O
123 VDDP VDDP VDDP VDDP 175 I/O I/O I/O I/O
124 I/O I/O I/O I/O 176 I/O I/O I/O I/O
125 I/O I/O I/O I/O 177 I/O I/O I/O I/O
126 VDDL VDDL VDDL VDDL 178 GND GND GND GND
127 I/O I/O I/O I/O 179 I/O I/O I/O I/O
128 I/O I/O I/O I/O 180 I/O I/O I/O I/O
129 I/O I/O I/O I/O 181 I/O I/O I/O I/O
130 GND GND GND GND 182 I/O I/O I/O I/O
131 I/O I/O I/O I/O 183 I/O I/O I/O I/O
132 I/O I/O I/O I/O 184 I/O I/O I/O I/O
133 GL GL GL GL 185 I/O I/O I/O I/O
134GLGLGLGL 186V
DDP VDDP VDDP VDDP
135 I/O I/O I/O I/O 187 VDDL VDDL VDDL VDDL
136 I/O I/O I/O I/O 188 I/O I/O I/O I/O
137 I/O I/O I/O I/O 189 I/O I/O I/O I/O
138 VDDP VDDP VDDP VDDP 190 I/O I/O I/O I/O
139 I/O I/O I/O I/O 191 I/O I/O I/O I/O
140 I/O I/O I/O I/O 192 I/O I/O I/O I/O
141 GND GND GND GND 193 I/O I/O I/O I/O
142 VDDL VDDL VDDL VDDL 194 I/O I/O I/O I/O
143 I/O I/O I/O I/O 195 GND GND GND GND
144 I/O I/O I/O I/O 196 I/O I/O I/O I/O
145 I/O I/O I/O I/O 197 I/O I/O I/O I/O
146 I/O I/O I/O I/O 198 I/O I/O I/O I/O
147 I/O I/O I/O I/O 199 I/O I/O I/O I/O
148 I/O I/O I/O I/O 200 I/O I/O I/O I/O
149 I/O I/O I/O I/O 201 I/O I/O I/O I/O
150 I/O I/O I/O I/O 202 I/O I/O I/O I/O
151 I/O I/O I/O I/O 203 I/O I/O I/O I/O
152 I/O I/O I/O I/O 204 I/O I/O I/O I/O
153 I/O I/O I/O I/O 205 I/O I/O I/O I/O
154 I/O I/O I/O I/O 206 I/O I/O I/O I/O
155 I/O I/O I/O I/O 207 I/O I/O I/O I/O
156 GND GND GND GND 208 VDDP VDDP VDDP VDDP
208-Pin PQFP (Continued)
Pin
Number A500K05 0
Function A500K130
Function A500K180
Function A500K270
Function Pin
Number A500K050
Function A500K130
Function A500K180
Function A500K270
Function
ProASIC 500K Family
46 v3.0
Package Pin Assignments (Continued)
272-Pin PBGA (Bottom View)
1234567891011121314151617181920
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
v3.0 47
ProASIC 500K Family
272-Pin PBGA
Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function
A1 I/O I/O C7 I/O I/O F17 VDDP VDDP
A2 I/O I/O C8 I/O I/O F18 I/O I/O
A3 I/O I/O C9 I/O I/O F19 I/O I/O
A4 I/O I/O C10 I/O I/O F20 I/O I/O
A5 I/O I/O C11 I/O I/O G1 I/O I/O
A6 I/O I/O C12 I/O I/O G2 I/O I/O
A7 I/O I/O C13 I/O I/O G3 I/O I/O
A8 I/O I/O C14 I/O I/O G4 I/O I/O
A9 I/O I/O C15 I/O I/O G17 I/O I/O
A10 I/O I/O C16 I/O I/O G18 I/O I/O
A11 I/O I/O C17 I/O I/O G19 I/O I/O
A12 I/O I/O C18 I/O I/O G20 I/O I/O
A13 I/O I/O C19 I/O I/O H1 I/O I/O
A14 I/O I/O C20 I/O I/O H2 I/O I/O
A15 I/O I/O D1 I/O I/O H3 I/O I/O
A16 I/O I/O D2 I/O I/O H4 I/O I/O
A17 I/O I/O D3 I/O I/O H17 I/O I/O
A18 I/O I/O D4 VDDP VDDP H18 I/O I/O
A19 I/O I/O D5 VDDP VDDP H19 I/O I/O
A20 I/O I/O D6 VDDP VDDP H20 GL GL
B1 I/O I/O D7 I/O I/O J1 I/O I/O
B2 I/O I/O D8 VDDL VDDL J2 GL GL
B3 I/O I/O D9 VDDL VDDL J3 GL GL
B4 I/O I/O D10 VDDL VDDL J4 VDDL VDDL
B5 I/O I/O D11 VDDL VDDL J9 GND GND
B6 I/O I/O D12 VDDL VDDL J10 GND GND
B7 I/O I/O D13 VDDL VDDL J11 GND GND
B8 I/O I/O D14 I/O I/O J12 GND GND
B9 I/O I/O D15 VDDP VDDP J17 VDDL VDDL
B10 I/O I/O D16 VDDP VDDP J18 GL GL
B11 I/O I/O D17 VDDP VDDP J19 I/O I/O
B12 I/O I/O D18 I/O I/O J20 I/O I/O
B13 I/O I/O D19 I/O I/O K1 I/O I/O
B14 I/O I/O D20 I/O I/O K2 I/O I/O
B15 I/O I/O E1 I/O I/O K3 I/O I/O
B16 I/O I/O E2 I/O I/O K4 VDDL VDDL
B17 I/O I/O E3 I/O I/O K9 GND GND
B18 I/O I/O E4 VDDP VDDP K10 GND GND
B19 I/O I/O E17 VDDP VDDP K11 GND GND
B20 I/O I/O E18 I/O I/O K12 GND GND
C1 I/O I/O E19 I/O I/O K17 VDDL VDDL
C2 I/O I/O E20 I/O I/O K18 I/O I/O
C3 I/O I/O F1 I/O I/O K19 I/O I/O
C4 I/O I/O F2 I/O I/O K20 I/O I/O
C5 I/O I/O F3 I/O I/O L1 I/O I/O
C6 I/O I/O F4 VDDP VDDP L2 I/O I/O
ProASIC 500K Family
48 v3.0
L3 I/O I/O T1 I/O I/O V19 I/O I/O
L4 VDDL VDDL T2 I/O I/O V20 I/O I/O
L9 GND GND T3 I/O I/O W1 I/O I/O
L10 GND GND T4 VDDP VDDP W2 I/O I/O
L11 GND GND T17 VDDP VDDP W3 I/O I/O
L12 GND GND T18 I/O I/O W4 I/O I/O
L17 VDDL VDDL T19 I/O I/O W5 I/O I/O
L18 I/O I/O T20 I/O I/O W6 I/O I/O
L19 I/O I/O U1 I/O I/O W7 I/O I/O
L20 I/O I/O U2 I/O I/O W8 I/O I/O
M1 I/O I/O U3 I/O I/O W9 I/O I/O
M2 I/O I/O U4 VDDP VDDP W10 I/O I/O
M3 I/O I/O U5 VDDP VDDP W11 I/O I/O
M4 VDDL VDDL U6 VDDP VDDP W12 I/O I/O
M9 GND GND U7 I/O I/O W13 I/O I/O
M10 GND GND U8 VDDL VDDL W14 I/O I/O
M11 GND GND U9 VDDL VDDL W15 I/O I/O
M12 GND GND U10 VDDL VDDL W16 I/O I/O
M17 VDDL VDDL U11 VDDL VDDL W17 TCK TCK
M18 I/O I/O U12 VDDL VDDL W18 VPP VPP
M19 I/O I/O U13 VDDL VDDL W19 TRST TRST
M20 I/O I/O U14 I/O I/O W20 I/O I/O
N1 I/O I/O U15 VDDP VDDP Y1 I/O I/O
N2 I/O I/O U16 VDDP VDDP Y2 I/O I/O
N3 I/O I/O U17 VDDP VDDP Y3 I/O I/O
N4 VDDL VDDL U18 RCK RCK Y4 I/O I/O
N17 VDDL VDDL U19 I/O I/O Y5 I/O I/O
N18 I/O I/O U20 I/O I/O Y6 I/O I/O
N19 I/O I/O V1 I/O I/O Y7 I/O I/O
N20 I/O I/O V2 I/O I/O Y8 I/O I/O
P1 I/O I/O V3 I/O I/O Y9 I/O I/O
P2 I/O I/O V4 I/O I/O Y10 I/O I/O
P3 I/O I/O V5 I/O I/O Y11 I/O I/O
P4 VDDP VDDP V6 I/O I/O Y12 I/O I/O
P17 VDDP VDDP V7 I/O I/O Y13 I/O I/O
P18 I/O I/O V8 I/O I/O Y14 I/O I/O
P19 I/O I/O V9 I/O I/O Y15 I/O I/O
P20 I/O I/O V10 I/O I/O Y16 I/O I/O
R1 I/O I/O V11 I/O I/O Y17 I/O I/O
R2 I/O I/O V12 I/O I/O Y18 TDI TDI
R3 I/O I/O V13 I/O I/O Y19 VPN VPN
R4 VDDP VDDP V14 I/O I/O Y20 I/O I/O
R17 VDDP VDDP V15 I/O I/O
R18 I/O I/O V16 I/O I/O
R19 I/O I/O V17 TMS TMS
R20 I/O I/O V18 TDO TDO
272-Pin PBGA (Continued)
Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function
v3.0 49
ProASIC 500K Family
Package Pin Assignments (Continued)
456-Pin PBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
ProASIC 500K Family
50 v3.0
456-Pin PBGA
Pin Number A500K130
Function A500K180
Function A500K270
Function Pin Number A500K130
Function A500K180
Function A500K270
Function
A1 VDDP VDDP VDDP AB11 I/O I/O I/O
A2 VDDP VDDP VDDP AB12 I/O I/O I/O
A3 NC I/O I/O AB13 I/O I/O I/O
A4 I/O I/O I/O AB14 I/O I/O I/O
A5 I/O I/O I/O AB15 I/O I/O I/O
A6 NC I/O I/O AB16 I/O I/O I/O
A7 I/O I/O I/O AB17 I/O I/O I/O
A8 NC I/O I/O AB18 I/O I/O I/O
A9 NC I/O I/O AB19 I/O I/O I/O
A10 I/O I/O I/O AB20 VDDL VDDL VDDL
A11 NC I/O I/O AB21 VDDL VDDL VDDL
A12 NC I/O I/O AB22 VDDL VDDL VDDL
A13 I/O I/O I/O AB23 I/O I/O I/O
A14 NC I/O I/O AB24 I/O I/O I/O
A15 NC I/O I/O AB25 I/O I/O I/O
A16 I/O I/O I/O AB26 I/O I/O I/O
A17 NC I/O I/O AC1 I/O I/O I/O
A18 NC I/O I/O AC2 I/O I/O I/O
A19 I/O I/O I/O AC3 I/O I/O I/O
A20 NC I/O I/O AC4 VDDP VDDP VDDP
A21 NC I/O I/O AC5 I/O I/O I/O
A22 I/O I/O I/O AC6 I/O I/O I/O
A23 NC I/O I/O AC7 I/O I/O I/O
A24 NC I/O I/O AC8 I/O I/O I/O
A25 VDDP VDDP VDDP AC9 I/O I/O I/O
A26 VDDP VDDP VDDP AC10 I/O I/O I/O
AA1 I/O I/O I/O AC11 I/O I/O I/O
AA2 I/O I/O I/O AC12 I/O I/O I/O
AA3 I/O I/O I/O AC13 I/O I/O I/O
AA4 I/O I/O I/O AC14 I/O I/O I/O
AA5 VDDL VDDL VDDL AC15 I/O I/O I/O
AA22 VDDL VDDL VDDL AC16 I/O I/O I/O
AA23 I/O I/O I/O AC17 I/O I/O I/O
AA24 I/O I/O I/O AC18 I/O I/O I/O
AA25 I/O I/O I/O AC19 I/O I/O I/O
AA26 NC I/O I/O AC20 I/O I/O I/O
AB1 NC I/O I/O AC21 TMS TMS TMS
AB2 I/O I/O I/O AC22 TDO TDO TDO
AB3 I/O I/O I/O AC23 VDDP VDDP VDDP
AB4 I/O I/O I/O AC24 RCK RCK RCK
AB5 VDDL VDDL VDDL AC25 I/O I/O I/O
AB6 VDDL VDDL VDDL AC26 NC I/O I/O
AB7 VDDL VDDL VDDL AD1 NC I/O I/O
AB8 I/O I/O I/O AD2 I/O I/O I/O
AB9 I/O I/O I/O AD3 VDDP VDDP VDDP
AB10 I/O I/O I/O AD4 I/O I/O I/O
v3.0 51
ProASIC 500K Family
AD5 I/O I/O I/O AE25 VDDP VDDP VDDP
AD6 I/O I/O I/O AE26 VDDP VDDP VDDP
AD7 I/O I/O I/O AF1 VDDP VDDP VDDP
AD8 I/O I/O I/O AF2 VDDP VDDP VDDP
AD9 I/O I/O I/O AF3 NC I/O I/O
AD10 I/O I/O I/O AF4 NC I/O I/O
AD11 I/O I/O I/O AF5 I/O I/O I/O
AD12 I/O I/O I/O AF6 NC I/O I/O
AD13 I/O I/O I/O AF7 NC I/O I/O
AD14 I/O I/O I/O AF8 I/O I/O I/O
AD15 I/O I/O I/O AF9 NC I/O I/O
AD16 I/O I/O I/O AF10 NC I/O I/O
AD17 I/O I/O I/O AF11 I/O I/O I/O
AD18 I/O I/O I/O AF12 NC I/O I/O
AD19 I/O I/O I/O AF13 NC I/O I/O
AD20 I/O I/O I/O AF14 I/O I/O I/O
AD21 TCK TCK TCK AF15 NC I/O I/O
AD22 VPP VPP VPP AF16 NC I/O I/O
AD23 I/O I/O I/O AF17 I/O I/O I/O
AD24 VDDP VDDP VDDP AF18 NC I/O I/O
AD25 I/O I/O I/O AF19 NC I/O I/O
AD26 NC I/O I/O AF20 I/O I/O I/O
AE1 VDDP VDDP VDDP AF21 NC I/O I/O
AE2 VDDP VDDP VDDP AF22 I/O I/O I/O
AE3 I/O I/O I/O AF23 TDI TDI TDI
AE4 I/O I/O I/O AF24 NC I/O I/O
AE5 I/O I/O I/O AF25 VDDP VDDP VDDP
AE6 I/O I/O I/O AF26 VDDP VDDP VDDP
AE7 I/O I/O I/O B1 VDDP VDDP VDDP
AE8 I/O I/O I/O B2 VDDP VDDP VDDP
AE9 I/O I/O I/O B3 I/O I/O I/O
AE10 I/O I/O I/O B4 I/O I/O I/O
AE11 I/O I/O I/O B5 I/O I/O I/O
AE12 I/O I/O I/O B6 I/O I/O I/O
AE13 I/O I/O I/O B7 I/O I/O I/O
AE14 I/O I/O I/O B8 I/O I/O I/O
AE15 I/O I/O I/O B9 I/O I/O I/O
AE16 I/O I/O I/O B10 I/O I/O I/O
AE17 I/O I/O I/O B11 I/O I/O I/O
AE18 I/O I/O I/O B12 I/O I/O I/O
AE19 I/O I/O I/O B13 I/O I/O I/O
AE20 I/O I/O I/O B14 I/O I/O I/O
AE21 I/O I/O I/O B15 I/O I/O I/O
AE22 I/O I/O I/O B16 I/O I/O I/O
AE23 VPN VPN VPN B17 I/O I/O I/O
AE24 TRST TRST TRST B18 I/O I/O I/O
456-Pin PBGA (Continued)
Pin Number A500K130
Function A500K180
Function A500K270
Function Pin Number A500K130
Function A500K180
Function A500K270
Function
ProASIC 500K Family
52 v3.0
B19 I/O I/O I/O D13 I/O I/O I/O
B20 I/O I/O I/O D14 I/O I/O I/O
B21 I/O I/O I/O D15 I/O I/O I/O
B22 I/O I/O I/O D16 I/O I/O I/O
B23 I/O I/O I/O D17 I/O I/O I/O
B24 I/O I/O I/O D18 I/O I/O I/O
B25 VDDP VDDP VDDP D19 I/O I/O I/O
B26 VDDP VDDP VDDP D20 I/O I/O I/O
C1 VDDP VDDP VDDP D21 I/O I/O I/O
C2 I/O I/O I/O D22 I/O I/O I/O
C3 VDDP VDDP VDDP D23 VDDP VDDP VDDP
C4 I/O I/O I/O D24 I/O I/O I/O
C5 I/O I/O I/O D25 I/O I/O I/O
C6 I/O I/O I/O D26 I/O I/O I/O
C7 I/O I/O I/O E1 NC I/O I/O
C8 I/O I/O I/O E2 I/O I/O I/O
C9 I/O I/O I/O E3 I/O I/O I/O
C10 I/O I/O I/O E4 I/O I/O I/O
C11 I/O I/O I/O E5 VDDL VDDL VDDL
C12 I/O I/O I/O E6 VDDL VDDL VDDL
C13 I/O I/O I/O E7 VDDL VDDL VDDL
C14 I/O I/O I/O E8 VDDL VDDL VDDL
C15 I/O I/O I/O E9 I/O I/O I/O
C16 I/O I/O I/O E10 I/O I/O I/O
C17 I/O I/O I/O E11 I/O I/O I/O
C18 I/O I/O I/O E12 I/O I/O I/O
C19 I/O I/O I/O E13 I/O I/O I/O
C20 I/O I/O I/O E14 I/O I/O I/O
C21 I/O I/O I/O E15 I/O I/O I/O
C22 I/O I/O I/O E16 I/O I/O I/O
C23 I/O I/O I/O E17 I/O I/O I/O
C24 VDDP VDDP VDDP E18 I/O I/O I/O
C25 I/O I/O I/O E19 I/O I/O I/O
C26 NC I/O I/O E20 VDDL VDDL VDDL
D1 NC I/O I/O E21 VDDL VDDL VDDL
D2 I/O I/O I/O E22 VDDL VDDL VDDL
D3 I/O I/O I/O E23 I/O I/O I/O
D4 VDDP VDDP VDDP E24 I/O I/O I/O
D5 I/O I/O I/O E25 I/O I/O I/O
D6 I/O I/O I/O E26 I/O I/O I/O
D7 I/O I/O I/O F1 I/O I/O I/O
D8 I/O I/O I/O F2 I/O I/O I/O
D9 I/O I/O I/O F3 I/O I/O I/O
D10 I/O I/O I/O F4 I/O I/O I/O
D11 I/O I/O I/O F5 VDDL VDDL VDDL
D12 I/O I/O I/O F22 VDDL VDDL VDDL
456-Pin PBGA (Continued)
Pin Number A500K130
Function A500K180
Function A500K270
Function Pin Number A500K130
Function A500K180
Function A500K270
Function
v3.0 53
ProASIC 500K Family
F23 I/O I/O I/O L3 I/O I/O I/O
F24 I/O I/O I/O L4 I/O I/O I/O
F25 I/O I/O I/O L5 I/O I/O I/O
F26 NC I/O I/O L11 GND GND GND
G1 NC I/O I/O L12 GND GND GND
G2 I/O I/O I/O L13 GND GND GND
G3 I/O I/O I/O L14 GND GND GND
G4 I/O I/O I/O L15 GND GND GND
G5 VDDL VDDL VDDL L16 GND GND GND
G22 VDDL VDDL VDDL L22 I/O I/O I/O
G23 I/O I/O I/O L23 I/O I/O I/O
G24 I/O I/O I/O L24 I/O I/O I/O
G25 I/O I/O I/O L25 I/O I/O I/O
G26 I/O I/O I/O L26 NC I/O I/O
H1 NC I/O I/O M1 GL GL GL
H2 I/O I/O I/O M2 GL GL GL
H3 I/O I/O I/O M3 I/O I/O I/O
H4 I/O I/O I/O M4 I/O I/O I/O
H5 VDDL VDDL VDDL M5 I/O I/O I/O
H22 VDDL VDDL VDDL M11 GND GND GND
H23 I/O I/O I/O M12 GND GND GND
H24 I/O I/O I/O M13 GND GND GND
H25 I/O I/O I/O M14 GND GND GND
H26 NC I/O I/O M15 GND GND GND
J1 I/O I/O I/O M16 GND GND GND
J2 I/O I/O I/O M22 GL GL GL
J3 I/O I/O I/O M23 I/O I/O I/O
J4 I/O I/O I/O M24 I/O I/O I/O
J5 I/O I/O I/O M25 I/O I/O I/O
J22 I/O I/O I/O M26 NC I/O I/O
J23 I/O I/O I/O N1 NC I/O I/O
J24 I/O I/O I/O N2 I/O I/O I/O
J25 I/O I/O I/O N3 I/O I/O I/O
J26 NC I/O I/O N4 I/O I/O I/O
K1 NC I/O I/O N5 I/O I/O I/O
K2 I/O I/O I/O N11 GND GND GND
K3 I/O I/O I/O N12 GND GND GND
K4 I/O I/O I/O N13 GND GND GND
K5 I/O I/O I/O N14 GND GND GND
K22 I/O I/O I/O N15 GND GND GND
K23 I/O I/O I/O N16 GND GND GND
K24 I/O I/O I/O N22 I/O I/O I/O
K25 I/O I/O I/O N23 GL GL GL
K26 I/O I/O I/O N24 I/O I/O I/O
L1 NC I/O I/O N25 I/O I/O I/O
L2 I/O I/O I/O N26 I/O I/O I/O
456-Pin PBGA (Continued)
Pin Number A500K130
Function A500K180
Function A500K270
Function Pin Number A500K130
Function A500K180
Function A500K270
Function
ProASIC 500K Family
54 v3.0
P1 NC I/O I/O T23 I/O I/O I/O
P2 I/O I/O I/O T24 I/O I/O I/O
P3 I/O I/O I/O T25 I/O I/O I/O
P4 I/O I/O I/O T26 I/O I/O I/O
P5 I/O I/O I/O U1 NC I/O I/O
P11 GND GND GND U2 I/O I/O I/O
P12 GND GND GND U3 I/O I/O I/O
P13 GND GND GND U4 I/O I/O I/O
P14 GND GND GND U5 I/O I/O I/O
P15 GND GND GND U22 I/O I/O I/O
P16 GND GND GND U23 I/O I/O I/O
P22 I/O I/O I/O U24 I/O I/O I/O
P23 I/O I/O I/O U25 I/O I/O I/O
P24 I/O I/O I/O U26 NC I/O I/O
P25 I/O I/O I/O V1 I/O I/O I/O
P26 NC I/O I/O V2 I/O I/O I/O
R1 I/O I/O I/O V3 I/O I/O I/O
R2 I/O I/O I/O V4 I/O I/O I/O
R3 I/O I/O I/O V5 I/O I/O I/O
R4 I/O I/O I/O V22 I/O I/O I/O
R5 I/O I/O I/O V23 I/O I/O I/O
R11 GND GND GND V24 I/O I/O I/O
R12 GND GND GND V25 I/O I/O I/O
R13 GND GND GND V26 NC I/O I/O
R14 GND GND GND W1 NC I/O I/O
R15 GND GND GND W2 I/O I/O I/O
R16 GND GND GND W3 I/O I/O I/O
R22 I/O I/O I/O W4 I/O I/O I/O
R23 I/O I/O I/O W5 VDDL VDDL VDDL
R24 I/O I/O I/O W22 VDDL VDDL VDDL
R25 I/O I/O I/O W23 I/O I/O I/O
R26 NC I/O I/O W24 I/O I/O I/O
T1 NC I/O I/O W25 I/O I/O I/O
T2 I/O I/O I/O W26 I/O I/O I/O
T3 I/O I/O I/O Y1 NC I/O I/O
T4 I/O I/O I/O Y2 I/O I/O I/O
T5 I/O I/O I/O Y3 I/O I/O I/O
T11 GND GND GND Y4 I/O I/O I/O
T12 GND GND GND Y5 VDDL VDDL VDDL
T13 GND GND GND Y22 VDDL VDDL VDDL
T14 GND GND GND Y23 I/O I/O I/O
T15 GND GND GND Y24 I/O I/O I/O
T16 GND GND GND Y25 I/O I/O I/O
T22 I/O I/O I/O Y26 NC I/O I/O
456-Pin PBGA (Continued)
Pin Number A500K130
Function A500K180
Function A500K270
Function Pin Number A500K130
Function A500K180
Function A500K270
Function
v3.0 55
ProASIC 500K Family
Package Assignments (Continued)
144-FBGA (Bottom View)
1
2
34567
89
101112
A
B
C
D
E
F
G
H
J
K
L
M
ProASIC 500K Family
56 v3.0
144-pin FBGA
Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function
A1 I/O I/O D1 I/O I/O G1 I/O I/O
A2 I/O I/O D2 I/O I/O G2 GND GND
A3 I/O I/O D3 I/O I/O G3 I/O I/O
A4 I/O I/O D4 I/O I/O G4 I/O I/O
A5 I/O I/O D5 I/O I/O G5 GND GND
A6 GND GND D6 I/O I/O G6 GND GND
A7 I/O I/O D7 I/O I/O G7 GND GND
A8 VDDL VDDL D8 I/O I/O G8 I/O I/O
A9 I/O I/O D9 I/O I/O G9 I/O I/O
A10 I/O I/O D10 I/O I/O G10 I/O I/O
A11 I/O I/O D11 I/O I/O G11 I/O I/O
A12 I/O I/O D12 I/O I/O G12 I/O I/O
B1 I/O I/O E1 VDDL VDDL H1 VDDL VDDL
B2 GND GND E2 I/O I/O H2 I/O I/O
B3 I/O I/O E3 I/O I/O H3 I/O I/O
B4 I/O I/O E4 VDDP VDDP H4 I/O I/O
B5 I/O I/O E5 I/O I/O H5 VDDL VDDL
B6 I/O I/O E6 VDDP VDDP H6 I/O I/O
B7 I/O I/O E7 VDDP VDDP H7 I/O I/O
B8 I/O I/O E8 I/O I/O H8 I/O I/O
B9 I/O I/O E9 VDDP VDDP H9 I/O I/O
B10 I/O I/O E10 VDDL VDDL H10 VDDP VDDP
B11 GND GND E11 I/O I/O H11 I/O I/O
B12 I/O I/O E12 I/O I/O H12 VDDL VDDL
C1 I/O I/O F1 GL GL J1 I/O I/O
C2 GL GL F2 I/O I/O J2 I/O I/O
C3 I/O I/O F3 I/O I/O J3 VDDP VDDP
C4 VDDL VDDL F4 I/O I/O J4 I/O I/O
C5 I/O I/O F5 GND GND J5 I/O I/O
C6 I/O I/O F6 GND GND J6 I/O I/O
C7 I/O I/O F7 GND GND J7 VDDL VDDL
C8 I/O I/O F8 I/O I/O J8 TCK TCK
C9 I/O I/O F9 GL GL J9 I/O I/O
C10 I/O I/O F10 GND GND J10 TDO TDO
C11 I/O I/O F11 I/O I/O J11 I/O I/O
C12 I/O I/O F12 GL GL J12 I/O I/O
v3.0 57
ProASIC 500K Family
K1 I/O I/O L1 GND GND M1 I/O I/O
K2 I/O I/O L2 I/O I/O M2 I/O I/O
K3 I/O I/O L3 I/O I/O M3 I/O I/O
K4 I/O I/O L4 I/O I/O M4 I/O I/O
K5 I/O I/O L5 VDDP VDDP M5 I/O I/O
K6 I/O I/O L6 I/O I/O M6 I/O I/O
K7 GND GND L7 I/O I/O M7 I/O I/O
K8 I/O I/O L8 I/O I/O M8 I/O I/O
K9 I/O I/O L9 TMS TMS M9 TDI TDI
K10 GND GND L 10 RCK RCK M10 VDDP VDDP
K11 I/O I/O L11 I/O I/O M11 VPP VPP
K12 I/O I/O L12 TRST TRST M12 VPN VPN
144-pin FBGA (Continued)
Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function Pin
Number A500K050
Function A500K130
Function
ProASIC 500K Family
58 v3.0
Package Assignments (Continued)
256-FBGA (Bottom View)
1
3
5
791113
15 246
8
101214
16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
Pin one corner
v3.0 59
ProASIC 500K Family
256-pin FBGA
Pin
Number A500K130
Function A500K180
Function A500K270
Function Pin
Number A500K130
Function A500K180
Function A500K270
Function
A1 GND GND GND C8 I/O I/O I/O
A2 I/O I/O I/O C9 I/O I/O I/O
A3 I/O I/O I/O C10 I/O I/O I/O
A4 I/O I/O I/O C11 I/O I/O I/O
A5 I/O I/O I/O C12 I/O I/O I/O
A6 I/O I/O I/O C13 I/O I/O I/O
A7 I/O I/O I/O C14 I/O I/O I/O
A8 I/O I/O I/O C15 I/O I/O I/O
A9 I/O I/O I/O C16 I/O I/O I/O
A10 I/O I/O I/O D1 I/O I/O I/O
A11 I/O I/O I/O D2 I/O I/O I/O
A12 I/O I/O I/O D3 I/O I/O I/O
A13 I/O I/O I/O D4 I/O I/O I/O
A14 I/O I/O I/O D5 I/O I/O I/O
A15 I/O I/O I/O D6 I/O I/O I/O
A16 GND GND GND D7 I/O I/O I/O
B1 I/O I/O I/O D8 I/O I/O I/O
B2 I/O I/O I/O D9 I/O I/O I/O
B3 I/O I/O I/O D10 I/O I/O I/O
B4 I/O I/O I/O D11 I/O I/O I/O
B5 I/O I/O I/O D12 I/O I/O I/O
B6 I/O I/O I/O D13 I/O I/O I/O
B7 I/O I/O I/O D14 I/O I/O I/O
B8 I/O I/O I/O D15 I/O I/O I/O
B9 I/O I/O I/O D16 I/O I/O I/O
B10 I/O I/O I/O E1 I/O I/O I/O
B11 I/O I/O I/O E2 I/O I/O I/O
B12 I/O I/O I/O E3 I/O I/O I/O
B13 I/O I/O I/O E4 I/O I/O I/O
B14 I/O I/O I/O E5 I/O I/O I/O
B15 I/O I/O I/O E6 VDDP VDDP VDDP
B16 I/O I/O I/O E7 VDDP VDDP VDDP
C1 I/O I/O I/O E8 I/O I/O I/O
C2 I/O I/O I/O E9 I/O I/O I/O
C3 I/O I/O I/O E10 VDDP VDDP VDDP
C4 I/O I/O I/O E11 VDDP VDDP VDDP
C5 I/O I/O I/O E12 I/O I/O I/O
C6 I/O I/O I/O E13 I/O I/O I/O
C7 I/O I/O I/O E14 I/O I/O I/O
ProASIC 500K Family
60 v3.0
E15 I/O I/O I/O H6 VDDL VDDL VDDL
E16 I/O I/O I/O H7 GND GND GND
F1 I/O I/O I/O H8 GND GND GND
F2 I/O I/O I/O H9 GND GND GND
F3 I/O I/O I/O H10 GND GND GND
F4 I/O I/O I/O H11 VDDL VDDL VDDL
F5 VDDP VDDP VDDP H12 I/O I/O I/O
F6 GND GND GND H13 I/O I/O I/O
F7 VDDL VDDL VDDL H14 I/O I/O I/O
F8 VDDL VDDL VDDL H15 I/O I/O I/O
F9 VDDL VDDL VDDL H16 GL GL GL
F10 VDDL VDDL VDDL J1 GL GL GL
F11 GND GND GND J2 I/O I/O I/O
F12 VDDP VDDP VDDP J3 I/O I/O I/O
F13 I/O I/O I/O J4 I/O I/O I/O
F14 I/O I/O I/O J5 I/O I/O I/O
F15 I/O I/O I/O J6 VDDL VDDL VDDL
F16 I/O I/O I/O J7 GND GND GND
G1 I/O I/O I/O J8 GND GND GND
G2 I/O I/O I/O J9 GND GND GND
G3 I/O I/O I/O J10 GND GND GND
G4 I/O I/O I/O J11 VDDL VDDL VDDL
G5 VDDP VDDP VDDP J12 I/O I/O I/O
G6 VDDL VDDL VDDL J13 I/O I/O I/O
G7 GND GND GND J14 I/O I/O I/O
G8 GND GND GND J15 I/O I/O I/O
G9 GND GND GND J16 GL GL GL
G10 GND GND GND K1 I/O I/O I/O
G11 VDDL VDDL VDDL K2 I/O I/O I/O
G12 VDDP VDDP VDDP K3 I/O I/O I/O
G13 I/O I/O I/O K4 I/O I/O I/O
G14 I/O I/O I/O K5 VDDP VDDP VDDP
G15 I/O I/O I/O K6 VDDL VDDL VDDL
G16 I/O I/O I/O K7 GND GND GND
H1 GL GL GL K8 GND GND GND
H2 I/O I/O I/O K9 GND GND GND
H3 I/O I/O I/O K10 GND GND GND
H4 I/O I/O I/O K11 VDDL VDDL VDDL
H5 I/O I/O I/O K12 VDDP VDDP VDDP
256-pin FBGA (Continued)
Pin
Number A500K130
Function A500K180
Function A500K270
Function Pin
Number A500K130
Function A500K180
Function A500K270
Function
v3.0 61
ProASIC 500K Family
K13 I/O I/O I/O N4 I/O I/O I/O
K14 I/O I/O I/O N5 I/O I/O I/O
K15 I/O I/O I/O N6 I/O I/O I/O
K16 I/O I/O I/O N7 I/O I/O I/O
L1 I/O I/O I/O N8 I/O I/O I/O
L2 I/O I/O I/O N9 I/O I/O I/O
L3 I/O I/O I/O N10 I/O I/O I/O
L4 I/O I/O I/O N11 I/O I/O I/O
L5 VDDP VDDP VDDP N12 I/O I/O I/O
L6 GND GND GND N13 I/O I/O I/O
L7 VDDL VDDL VDDL N14 RCK RCK RCK
L8 VDDL VDDL VDDL N15 I/O I/O I/O
L9 VDDL VDDL VDDL N16 I/O I/O I/O
L10 VDDL VDDL VDDL P1 I/O I/O I/O
L11 GND GND GND P2 I/O I/O I/O
L12 VDDP VDDP VDDP P3 I/O I/O I/O
L13 I/O I/O I/O P4 I/O I/O I/O
L14 I/O I/O I/O P5 I/O I/O I/O
L15 I/O I/O I/O P6 I/O I/O I/O
L16 I/O I/O I/O P7 I/O I/O I/O
M1 I/O I/O I/O P8 I/O I/O I/O
M2 I/O I/O I/O P9 I/O I/O I/O
M3 I/O I/O I/O P10 I/O I/O I/O
M4 I/O I/O I/O P11 I/O I/O I/O
M5 I/O I/O I/O P12 I/O I/O I/O
M6 VDDP VDDP VDDP P13 TCK TCK TCK
M7 VDDP VDDP VDDP P14 VPP VPP VPP
M8 I/O I/O I/O P15 TRST TRST TRST
M9 I/O I/O I/O P16 I/O I/O I/O
M10 VDDP VDDP VDDP R1 I/O I/O I/O
M11 VDDP VDDP VDDP R2 I/O I/O I/O
M12 I/O I/O I/O R3 I/O I/O I/O
M13 I/O I/O I/O R4 I/O I/O I/O
M14 I/O I/O I/O R5 I/O I/O I/O
M15 I/O I/O I/O R6 I/O I/O I/O
M16 I/O I/O I/O R7 I/O I/O I/O
N1 I/O I/O I/O R8 I/O I/O I/O
N2 I/O I/O I/O R9 I/O I/O I/O
N3 I/O I/O I/O R10 I/O I/O I/O
256-pin FBGA (Continued)
Pin
Number A500K130
Function A500K180
Function A500K270
Function Pin
Number A500K130
Function A500K180
Function A500K270
Function
ProASIC 500K Family
62 v3.0
R11 I/O I/O I/O T6 I/O I/O I/O
R12 I/O I/O I/O T7 I/O I/O I/O
R13 I/O I/O I/O T8 I/O I/O I/O
R14 TDI TDI TDI T9 I/O I/O I/O
R15 VPN VPN VPN T10 I/O I/O I/O
R16 TDO TDO TDO T11 I/O I/O I/O
T1 GND GND GND T12 I/O I/O I/O
T2 I/O I/O I/O T13 I/O I/O I/O
T3 I/O I/O I/O T14 I/O I/O I/O
T4 I/O I/O I/O T15 TMS TMS TMS
T5 I/O I/O I/O T16 GND GND GND
256-pin FBGA (Continued)
Pin
Number A500K130
Function A500K180
Function A500K270
Function Pin
Number A500K130
Function A500K180
Function A500K270
Function
v3.0 63
ProASIC 500K Family
Package Assignments (Continued)
676-pin FBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
ProASIC 500K Family
64 v3.0
676-Pin FBGA
Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function
A1 GND AA13 I/O AB25 I/O AD11 I/O AE23 I/O
A2 GND AA14 I/O AB26 I/O AD12 I/O AE24 I/O
A3 I/O AA15 I/O AC1 I/O AD13 I/O AE25 GND
A4 I/O AA16 I/O AC2 I/O AD14 I/O AE26 GND
A5 I/O AA17 I/O AC3 I/O AD15 I/O AF1 GND
A6 I/O AA18 I/O AC4 I/O AD16 I/O AF2 GND
A7 I/O AA19 I/O AC5 GND AD17 I/O AF3 GND
A8 I/O AA20 I/O AC6 I/O AD18 I/O AF4 GND
A9 I/O AA21 TDO AC7 I/O AD19 I/O AF5 I/O
A10 I/O AA22 GND AC8 I/O AD20 I/O AF6 I/O
A11 I/O AA23 GND AC9 GND AD21 I/O AF7 I/O
A12 I/O AA24 I/O AC10 I/O AD22 I/O AF8 I/O
A13 I/O AA25 I/O AC11 I/O AD23 TDI AF9 I/O
A14 I/O AA26 I/O AC12 I/O AD24 VPN AF10 I/O
A15 I/O AB1 I/O AC13 I/O AD25 I/O AF11 I/O
A16 I/O AB2 I/O AC14 I/O AD26 I/O AF12 I/O
A17 I/O AB3 I/O AC15 I/O AE1 GND AF13 I/O
A18 I/O AB4 I/O AC16 I/O AE2 GND AF14 I/O
A19 I/O AB5 I/O AC17 I/O AE3 GND AF15 I/O
A20 I/O AB6 GND AC18 I/O AE4 I/O AF16 I/O
A21 I/O AB7 GND AC19 I/O AE5 I/O AF17 I/O
A22 I/O AB8 I/O AC20 I/O AE6 I/O AF18 I/O
A23 I/O AB9 I/O AC21 I/O AE7 I/O AF19 I/O
A24 I/O AB10 I/O AC22 TMS AE8 I/O AF20 I/O
A25 GND AB11 I/O AC23 RCK AE9 I/O AF21 I/O
A26 GND AB12 I/O AC24 I/O AE10 I/O AF22 I/O
AA1 I/O AB13 I/O AC25 I/O AE11 I/O AF23 I/O
AA2 I/O AB14 I/O AC26 I/O AE12 I/O AF24 I/O
AA3 I/O AB15 I/O AD1 I/O AE13 I/O AF25 GND
AA4 I/O AB16 I/O AD2 I/O AE14 I/O AF26 GND
AA5 I/O AB17 I/O AD3 I/O AE15 I/O B1 GND
AA6 GND AB18 I/O AD4 I/O AE16 I/O B2 GND
AA7 I/O AB19 I/O AD5 I/O AE17 I/O B3 GND
AA8 I/O AB20 I/O AD6 I/O AE18 I/O B4 GND
AA9 I/O AB21 TCK AD7 I/O AE19 I/O B5 I/O
AA10 I/O AB22 TRST AD8 I/O AE20 I/O B6 I/O
AA11 I/O AB23 I/O AD9 I/O AE21 I/O B7 I/O
AA12 I/O AB24 I/O AD10 I/O AE22 I/O B8 I/O
v3.0 65
ProASIC 500K Family
B9 I/O C21 I/O E7 I/O F19 I/O H5 I/O
B10 I/O C22 I/O E8 I/O F20 I/O H6 I/O
B11 I/O C23 I/O E9 I/O F21 I/O H7 VDDP
B12 I/O C24 I/O E10 I/O F22 I/O H8 VDDL
B13 I/O C25 I/O E11 I/O F23 I/O H9 VDDP
B14 I/O C26 I/O E12 I/O F24 I/O H10 VDDP
B15 I/O D1 I/O E13 I/O F25 I/O H11 VDDP
B16 I/O D2 I/O E14 I/O F26 I/O H12 VDDP
B17 I/O D3 GND E15 I/O G1 I/O H13 VDDP
B18 I/O D4 I/O E16 I/O G2 I/O H14 VDDP
B19 I/O D5 I/O E17 I/O G3 I/O H15 VDDP
B20 I/O D6 I/O E18 I/O G4 I/O H16 VDDP
B21 I/O D7 I/O E19 I/O G5 I/O H17 VDDP
B22 I/O D8 I/O E20 I/O G6 I/O H18 VDDP
B23 I/O D9 I/O E21 I/O G7 I/O H19 VDDL
B24 I/O D10 I/O E22 I/O G8 VDDL H20 VDDL
B25 GND D11 I/O E23 I/O G9 NC H21 I/O
B26 GND D12 I/O E24 I/O G10 NC H22 I/O
C1 GND D13 I/O E25 I/O G11 NC H23 I/O
C2 GND D14 I/O E26 I/O G12 NC H24 I/O
C3 GND D15 I/O F1 I/O G13 NC H25 I/O
C4 GND D16 I/O F2 I/O G14 NC H26 I/O
C5 I/O D17 I/O F3 I/O G15 NC J1 I/O
C6 I/O D18 I/O F4 I/O G16 NC J2 I/O
C7 I/O D19 I/O F5 GND G17 NC J3 I/O
C8 I/O D20 I/O F6 I/O G18 NC J4 I/O
C9 I/O D21 I/O F7 NC G20 NC J5 I/O
C10 I/O D22 I/O F8 I/O G19 VDDP J6 I/O
C11 I/O D23 I/O F9 I/O G21 I/O J7 NC
C12 I/O D24 I/O F10 I/O G22 I/O J8 VDDP
C13 I/O D25 I/O F11 I/O G23 I/O J9 VDDL
C14 I/O D26 I/O F12 I/O G24 I/O J10 VDDL
C15 I/O E1 I/O F13 I/O G25 I/O J11 VDDL
C16 I/O E2 I/O F14 I/O G26 I/O J12 VDDL
C17 I/O E3 I/O F15 I/O H1 I/O J13 VDDL
C18 I/O E4 I/O F16 I/O H2 I/O J14 VDDL
C19 I/O E5 I/O F17 I/O H3 I/O J15 VDDL
C20 I/O E6 I/O F18 I/O H4 I/O J16 VDDL
676-Pin FBGA (Continued)
Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function
ProASIC 500K Family
66 v3.0
J17 VDDL L3 I/O M15 GND P1 GL R13 GND
J18 VDDL L4 I/O M16 GND P2 I/O R14 GND
J19 VDDP L5 I/O M17 GND P3 I/O R15 GND
J20 NC L6 I/O M18 VDDL P4 I/O R16 GND
J21 I/O L7 NC M19 VDDP P5 I/O R17 GND
J22 I/O L8 VDDP M20 NC P6 I/O R18 VDDL
J23 I/O L9 VDDL M21 I/O P7 NC R19 VDDP
J24 I/O L10 GND M22 I/O P8 VDDP R20 NC
J25 I/O L11 GND M23 I/O P9 VDDL R21 I/O
J26 I/O L12 GND M24 I/O P10 GND R22 I/O
K1 I/O L13 GND M25 I/O P11 GND R23 I/O
K2 I/O L14 GND M26 I/O P12 GND R24 I/O
K3 I/O L15 GND N1 GL P13 GND R25 I/O
K4 I/O L16 GND N2 I/O P14 GND R26 I/O
K5 I/O L17 GND N3 I/O P15 GND T1 I/O
K6 I/O L18 VDDL N4 I/O P16 GND T2 I/O
K7 NC L19 VDDP N5 I/O P17 GND T3 I/O
K8 VDDP L20 NC N6 I/O P18 VDDL T4 I/O
K9 VDDL L21 I/O N7 NC P19 VDDP T5 I/O
K10 GND L22 I/O N8 VDDP P20 NC T6 I/O
K11 GND L23 I/O N9 VDDL P21 I/O T7 NC
K12 GND L24 I/O N10 GND P22 I/O T8 VDDP
K13 GND L25 I/O N11 GND P23 I/O T9 VDDL
K14 GND L26 I/O N12 GND P24 I/O T10 GND
K15 GND M1 I/O N13 GND P25 I/O T11 GND
K16 GND M2 I/O N14 GND P26 I/O T12 GND
K17 GND M3 I/O N15 GND R1 I/O T13 GND
K18 VDDL M4 I/O N16 GND R2 I/O T14 GND
K19 VDDP M5 I/O N17 GND R3 I/O T15 GND
K20 NC M6 I/O N18 VDDL R4 I/O T16 GND
K21 I/O M7 NC N19 VDDP R5 I/O T17 GND
K22 I/O M8 VDDP N20 NC R6 I/O T18 VDDL
K23 I/O M9 VDDL N21 I/O R7 NC T19 VDDP
K24 I/O M10 GND N22 GL R8 VDDP T20 NC
K25 I/O M11 GND N23 I/O R9 VDDL T21 I/O
K26 I/O M12 GND N24 I/O R10 GND T22 I/O
L1 I/O M13 GND N25 GL R11 GND T23 I/O
L2 I/O M14 GND N26 I/O R12 GND T24 I/O
676-Pin FBGA (Continued)
Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function
v3.0 67
ProASIC 500K Family
T25 I/O U20 NC V15 VDDL W10 VDDP Y5 I/O
T26 I/O U21 I/O V16 VDDL W11 VDDP Y6 I/O
U1 I/O U22 I/O V17 VDDL W12 VDDP Y7 I/O
U2 I/O U23 I/O V18 VDDL W13 VDDP Y8 VDDP
U3 I/O U24 I/O V19 VDDP W14 VDDP Y9 NC
U4 I/O U25 I/O V20 NC W15 VDDP Y10 NC
U5 I/O U26 I/O V21 I/O W16 VDDP Y11 NC
U6 I/O V1 I/O V22 I/O W17 VDDP Y12 NC
U7 NC V2 I/O V23 I/O W18 VDDP Y13 NC
U8 VDDP V3 I/O V24 I/O W19 VDDL Y14 NC
U9 VDDL V4 I/O V25 I/O W20 VDDP Y15 NC
U10 GND V5 I/O V26 I/O W21 I/O Y16 NC
U11 GND V6 I/O W1 I/O W22 I/O Y17 NC
U12 GND V7 NC W2 I/O W23 I/O Y18 NC
U13 GND V8 VDDP W3 I/O W24 I/O Y19 VDDL
U14 GND V9 VDDL W4 I/O W25 I/O Y20 VPP
U15 GND V10 VDDL W5 I/O W26 I/O Y21 I/O
U16 GND V11 VDDL W6 I/O Y1 I/O Y22 I/O
U17 GND V12 VDDL W7 VDDL Y2 I/O Y23 I/O
U18 VDDL V13 VDDL W8 VDDL Y3 I/O Y24 I/O
U19 VDDP V14 VDDL W9 VDDP Y4 I/O Y25 I/O
Y26 I/O
676-Pin FBGA (Continued)
Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function Pin
Number A500K270
Function
ProASIC 500K Family
68 v3.0
List of Changes
The following table lists critical changes that were made in
the current version of the document.
Previous version Changes in current version (v3.0) Page
v2.0 WDATA has been changed to DI, and RDATA has been changed to DO to make
them consistent with the signal names found in the Macro Library Guide.
Preliminary v1.1
The Product Plan on page 3 has been updated to include the 256-FBGA package. page 3
The Plastic Device Resources on page 3 has been updated to include the
256-FBGA package. page 3
Figure 12 and Figure 13 on page 13 have been updated. page 13
The Design Environment on page 15 and Figure 17 on page 15 have been
updated. page 15
Package Thermal Characteristics tabl e on page 16 has been updated to include the
256-FBGA package. page 16
The Calculating Power Dissipation on page 17 has been changed. page 17
The Programming and Storage Temperature LImits on page 18 is new. page 18
The DC Electrical Specifications (VDDP = 2.5V) on page 19 has been updated. page 19
The DC Electrical Specifications (VDDP = 3.3V) on page 20 has been updated. page 20
The Table 4 on page 28 has been updated. page 28
The Table 5 on page 34 has been updated. page 34
The 256-FBGA (Bottom View) on page 58 is new. page 58
Preliminary v1.0 In the 676-pin FBGA (Bottom View) on page 63, the functions for pins N1, N22,
N25, and P1 have changed from I/O to GL page 59
Advanced v.4
The section, Clock Trees on page 8 is new. page 8
The table, DC Electrical Specifications (VDDP = 3.3V) on page 20 is new. page 18
The table, AC Specifications (3.3V PCI Operation) on page 22 is new. page 20
The table, the Slew Rates Measured at Cout = 10pF (Total Output Load), Nominal
Power Supplies and 25°C on page 24 is n ew. page 22
The numbers found in the Tristate Buffer Delays (Worst-Case Commercial
Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz) on page 25
have changed. page 23
The numbers found in the Output Buffer Delays (Worst-Case Commercial
Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz) on page 26
have changed. page 24
The num ber s found in the Inp ut Buf fer D ela ys (W orst- Case Com mer cial Co ndition s,
VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz) on page 26 have
changed. page 24
The numbers found in the Global Input Buffer Delays (Worst-Case Commercial
Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz) on page 27
have changed. page 25
The 144-FBGA (Bottom View) on page 55 for A5 00K050 is new. pages 53-55
The 676-pin FBGA (Bottom View) on page 63 for A500K130 and A500K270 are
new. pages 56-60
v3.0 69
ProASIC 500K Family
Data Sheet Categories
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. These data sheets are marked as Advanced or Preliminary data sheets. The definition of these categories
are as follows:
Advanced
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
Preliminary
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unmarked (production)
The data sheet contains information that is considered to be final.
Web-only Versions
Web-only versions have three numbers in the version number (example: v2.0.1). A web-only version means Actel is posting
the data sheet so customers have the latest information, but we are not printing the version because some information is
going to change shortly after posting.
Actel and the Actel logo ar e regi stered trademarks of Actel Corpora ti on.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490
Actel Corporation
955 East Arques A venue
Sunnyvale , California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7 671
Fax: +81 03-3445-7668
5172140-7/2.02