14-Bit, 105/125 MSPS, IF Sampling ADC
AD9445
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
FEATURES
125 MSPS guaranteed sampling rate (AD9445BSV-125)
78.3 dBFS SNR/92 dBFS SFDR with 30 MHz input (3.2 V p-p)
74.8 dBFS SNR/95 dBFS SFDR with 30 MHz input (2.0 V p-p)
77.0 dBFS SNR/87 dBFS SFDR with 170 MHz input (3.2 V p-p)
74.6 dBFS SNR/95 dBFS SFDR with 170 MHz input (2.0 V p-p)
73.0 dBFS SNR/88 dBFS SFDR with 300 MHz input (2.0 V p-p)
102 dBFS 2-tone SFDR with 30 MHz and 31 MHz
92 dBFS 2-tone SFDR with 170 MHz and 171 MHz
60 fsec rms jitter
Excellent linearity
DNL = ±0.25 LSB typical
INL = ±0.8 LSB typical
2.0 V p-p to 4.0 V p-p differential full-scale input
Buffered analog inputs
LVDS outputs (ANSI-644 compatible) or CMOS outputs
Data format select (offset binary or twos complement)
Output clock available
3.3 V and 5 V supply operation
APPLICATIONS
Multicarrier, multimode cellular receivers
Antenna array positioning
Power amplifier linearization
Broadband wireless
Radar
Infrared imaging
Medical imaging
Communications instrumentation
GENERAL DESCRIPTION
The AD9445 is a 14-bit, monolithic, sampling analog-to-digital
converter (ADC) with an on-chip IF sampling track-and-hold
circuit. It is optimized for performance, small size, and ease of
use. The product operates at up to a 125 MSPS conversion rate
and is designed for multicarrier, multimode receivers, such as
those found in cellular infrastructure equipment.
The ADC requires 3.3 V and 5.0 V power supplies and a low
voltage differential input clock for full performance operation.
No external reference or driver components are required for
many applications. Data outputs are CMOS or LVDS
compatible (ANSI-644 compatible) and include the means to
reduce the overall current needed for short trace distances.
FUNCTIONAL BLOCK DIAGRAM
CMOS
OR
LVDS
OUTPUT
STAGING
CLOCK
AND TIMING
MANAGEMENT
AGND DRGND DRVDD
VREF
CLK+
VIN+
AD9445
VIN–
CLK– DCO
05489-001
AVDD1 AVDD2
DCS MODE
DFS
RF ENABLE
OUTPUT MODE
T/H
BUFFER 14
PIPELINE
ADC 2
28
2
OR
D13 TO D0
REF
REFBSENSE REFT
Figure 1.
Optional features allow users to implement various selectable
operating conditions, including input range, data format select,
high IF sampling mode, and output data mode.
The AD9445 is available in a Pb-free, 100-lead, surface-mount,
plastic package (100-lead TQFP/EP) specified over the
industrial temperature range −40°C to +85°C.
PRODUCT HIGHLIGHTS
1. High performance: outstanding SFDR performance for IF
sampling applications such as multicarrier, multimode 3G,
and 4G cellular base station receivers.
2. Ease of use: on-chip reference and high input impedance
track-and-hold with adjustable analog input range and an
output clock simplifies data capture.
3. Packaged in a Pb-free, 100-lead TQFP/EP package.
4. Clock duty cycle stabilizer (DCS) maintains overall ADC
performance over a wide range of clock pulse widths.
5. OR (out-of-range) outputs indicate when the signal is
beyond the selected input range.
6. RF enable pin allows users to configure the device for
optimum SFDR when sampling frequencies above 210 MHz
(AD9445-125) or 240 MHz (AD9445-105).
AD9445
Rev. 0 | Page 2 of 40
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagram .............................................................. 1
Product Highlights ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
DC Specifications ......................................................................... 3
AC Specifications.......................................................................... 4
Digital Specifications ................................................................... 6
Switching Specifications .............................................................. 6
Timing Diagrams.......................................................................... 7
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Terminology .......................................................................................9
Pin Configurations and Function Descriptions......................... 10
Equivalent Circuits......................................................................... 15
Typical Performance Characteristics ........................................... 16
Theory of Operation ...................................................................... 24
Analog Input and Reference Overview ................................... 24
Clock Input Considerations...................................................... 26
Power Considerations................................................................ 27
Digital Outputs ........................................................................... 27
Timing ......................................................................................... 27
Operational Mode Selection..................................................... 28
Evaluation Board ............................................................................ 29
Outline Dimensions ....................................................................... 37
Ordering Guide .......................................................................... 37
REVISION HISTORY
10/05—Revision 0: Initial Version
AD9445
Rev. 0 | Page 3 of 40
SPECIFICATIONS
DC SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sampling rate, 2.0 V p-p differential input, internal
trimmed reference (1.0 V mode), AIN = −1.0 dBFS, DCS on, unless otherwise noted. RF ENABLE = AGND.
Table 1.
AD9445BSVZ-105 AD9445BSVZ-125
Parameter Temp Min Typ Max Min Typ Max Unit
RESOLUTION Full 14 14 Bits
ACCURACY
No Missing Codes Full Guaranteed Guaranteed
Offset Error Full −7 +7 −7 +7 mV
25°C ±3 ±3 mV
Gain Error Full −3 +3 −3 +3 % FSR
25°C −2 +2 −2 +2 % FSR
Differential Nonlinearity (DNL)1Full −0.6 ±0.25 +0.65 −0.6 ±0.25 +0.65 LSB
5 5
Integral Nonlinearity (INL)1 25°C ±0.65 ±0.8 LSB
Full −1.6 +1.6 −2 +2 LSB
VOLTAGE REFERENCE
Output Voltage VREF = 1.0 V Full 0.9 1.0 1.1 0.9 1.0 1.1 V
Load Regulation @ 1.0 mA Full ±2 ±2 mV
Reference Input Current (External VREF = 1.6 V) Full µA
INPUT REFERRED NOISE 25°C 1.0 1.0 LSB rms
ANALOG INPUT
Input Span
VREF = 1.6 V Full 3.2 3.2 V p-p
VREF = 1.0 V Full 2.0 2.0 V p-p
Internal Input Common-Mode Voltage Full 3.5 3.5 V
External Input Common-Mode Voltage Full 3.1 3.9 3.1 3.9 V
Input Resistance2Full 1 1 kΩ
Input Capacitance2Full 6 6 pF
POWER SUPPLIES
Supply Voltage
AVDD1 Full 3.14 3.3 3.46 3.14 3.3 3.46 V
AVDD2 Full 4.75 5.0 5.25 4.75 5.0 5.25 V
DRVDD—LVDS Outputs Full 3.0 3.6 3.0 3.6 V
DRVDD—CMOS Outputs Full 3.0 3.3 3.6 3.0 3.3 3.6 V
Supply Current1
AVDD1 Full 335 364 384 424 mA
AVDD21, 3Full 169 196 172 199 mA
IDRVDD1—LVDS Outputs Full 63 78 63 78 mA
IDRVDD1—CMOS Outputs Full 14 14 mA
PSRR
Offset Full 1 1 mV/V
Gain Full 0.2 0.2 %/V
POWER CONSUMPTION
LVDS Outputs Full 2.2 2.4 2.3 2.6 W
CMOS Outputs (DC Input) Full 2.0 2.1 W
1 Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and
approximately 5 pF loading on each output bit for CMOS output mode.
2 Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure.
3 For RF ENABLE = AVDD1, IAVDD2 increases by ~30 mA, which increases power dissipation.
AD9445
Rev. 0 | Page 4 of 40
AC SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sample rate, 2.0 V p-p differential input, internal
trimmed reference (1.0 V mode), AIN = −1.0 dBFS, DCS on, RF ENABLE = ground, unless otherwise noted.
Table 2.
AD9445BSVZ-105 AD9445BSVZ-125
Parameter Temp
Min Typ Max Min Typ Max Unit
SIGNAL-TO-NOISE RATIO (SNR)
fIN = 10 MHz 25°C 74.3 74.1 dB
fIN = 30 MHz 25°C 73.3 74.3 72.9 73.8 dB
Full 73 72.5 dB
fIN = 170 MHz 25°C 72.9 73.6 72.3 73.2 dB
fIN = 225 MHz125°C 72.2 73 72 72.9 dB
Full 72.2 71.4 dB
fIN = 300 MHz225°C 71.4 72.1 71.3 72 dB
fIN = 400 MHz225°C 71 71 dB
fIN = 450 MHz225°C 70.5 70.5 dB
fIN = 10 MHz (3.2 V p-p Input) 25°C 77.6 77.3 dB
fIN = 30 MHz (3.2 V p-p Input) 25°C 77.5 77.3 dB
fIN = 170 MHz (3.2 V p-p Input) 25°C 76 76 dB
fIN = 225 MHz (3.2 V p-p Input)125°C 75.3 75.4 dB
fIN = 300 MHz (3.2 V p-p Input)225°C 73.7 73.5 dB
SIGNAL-TO-NOISE AND DISTORTION (SINAD)
fIN = 10 MHz 25°C 74.2 73.9 dB
fIN = 30 MHz 25°C 73.2 74.2 72.8 73.7 dB
Full 72.8 72.3 dB
fIN = 170 MHz 25°C 72.3 73.3 72.4 73.0 dB
fIN = 225 MHz125°C 71.4 72.5 71.9 72.5 dB
Full 71.3 70.7 dB
fIN = 300 MHz225°C 70.2 71.7 69.3 71.5 dB
fIN = 400 MHz225°C 67.2 66.3 dB
fIN = 450 MHz225°C 65.2 64.3 dB
fIN = 10 MHz (3.2 V p-p Input) 25°C 77.4 76.9 dB
fIN = 30 MHz (3.2 V p-p Input) 25°C 77.3 76.8 dB
fIN = 170 MHz (3.2 V p-p Input) 25°C 75.7 75.4 dB
fIN = 225 MHz (3.2 V p-p Input)125°C 75.1 75.2 dB
fIN = 300 MHz (3.2 V p-p Input)225°C 72.5 71.8 dB
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 10 MHz 25°C 12.2 12.2 Bits
fIN = 30 MHz 25°C 12.2 12.1 Bits
fIN = 170 MHz 25°C 12.1 12.0 Bits
fIN = 225 MHz125°C 12.0 12.0 Bits
fIN = 300 MHz225°C 11.8 11.8 Bits
fIN = 400 MHz225°C 11.7 11.7 Bits
fIN = 450 MHz225°C 11.6 11.6 Bits
AD9445
Rev. 0 | Page 5 of 40
AD9445BSVZ-105 AD9445BSVZ-125
Parameter Temp
Min Typ Max Min Typ Max Unit
SPURIOUS-FREE DYNAMIC RANGE
(SFDR, Second or Third Harmonic)
fIN = 10 MHz 25°C 95 95 dBc
fIN = 30 MHz 25°C 84 92 85 94 dBc
Full 83 82 dBc
fIN = 170 MHz 25°C 82 94 80 91 dBc
fIN = 225 MHz125°C 76 87 83 88 dBc
Full 75 75 dBc
fIN = 300 MHz225°C 76 87 75 87 dBc
fIN = 400 MHz225°C 75 73 dBc
fIN = 450 MHz225°C 70 69 dBc
fIN = 10 MHz (3.2 V p-p Input) 25°C 92 92 dBc
fIN = 30 MHz (3.2 V p-p Input) 25°C 88 91 dBc
fIN = 170 MHz (3.2 V p-p Input) 25°C 86 86 dBc
fIN = 225 MHz (3.2 V p-p Input)125°C 81 80 dBc
fIN = 300 MHz (3.2 V p-p Input)225°C 77 76 dBc
WORST SPUR EXCLUDING SECOND OR
THIRD HARMONICS
fIN = 10 MHz 25°C −97 −97 dBc
fIN = 30 MHz 25°C −99 −90 −98 −89 dBc
Full −90 −88 dBc
fIN = 170 MHz 25°C −99 −92 −93 −85 dBc
fIN = 225 MHz125°C −94 −88 −94 −84 dBc
Full −86 −80 dBc
fIN = 300 MHz225°C −97 −90 −92 −82 dBc
fIN = 400 MHz225°C −93 −93 dBc
fIN = 450 MHz225°C −82 −87 dBc
fIN = 10 MHz (3.2 V p-p Input) 25°C −97 −95 dBc
fIN = 30 MHz (3.2 V p-p Input) 25°C −97 −95 dBc
fIN = 170 MHz (3.2 V p-p Input) 25°C −97 −95 dBc
fIN = 225 MHz (3.2 V p-p Input)125°C −95 −94 dBc
fIN = 300 MHz (3.2 V p-p Input)225°C −93 −91 dBc
TWO-TONE SFDR
fIN = 30.3 MHz @ −7 dBFS,
31.3 MHz @ −7 dBFS
25°C 102 102 dBFS
fIN = 170.3 MHz @ −7 dBFS,
171.3 MHz @ −7 dBFS
25°C 92 91 dBFS
ANALOG BANDWIDTH Full 615 615 MHz
1 RF ENABLE = low (AGND ) for AD9445-105; RF ENABLE = high (AVDD1) for AD9445-125.
2 RF ENABLE = high (AVDD1).
AD9445
Rev. 0 | Page 6 of 40
DIGITAL SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDS _BIAS = 3.74 kΩ, unless otherwise noted.
Table 3.
AD9445BSVZ-105 AD9445BSVZ-125
Parameter Temp Min Typ Max Min Typ Max Unit
CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE)
High Level Input Voltage Full 2.0 2.0 V
Low Level Input Voltage Full 0.8 0.8 V
High Level Input Current Full
200 200 µA
Low Level Input Current Full −10 +10 −10 +10 µA
Input Capacitance Full 2 2 pF
DIGITAL OUTPUT BITS—CMOS MODE (D0 to D13, OTR)1
DRVDD = 3.3 V
High Level Output Voltage Full 3.25 3.25 V
Low Level Output Voltage Full
0.2 0.2 V
DIGITAL OUTPUT BITS—LVDS MODE (D0 to D13, OTR)
VOD Differential Output Voltage2Full 247 545 247 545 mV
VOS Output Offset Voltage Full 1.125 1.375 1.125 1.375 V
CLOCK INPUTS (CLK+, CLK−)
Differential Input Voltage Full 0.2 0.2 V
Common-Mode Voltage Full 1.3 1.5 1.6 1.3 1.5 1.6 V
Differential Input Resistance Full 1.1 1.4 1.7 1.1 1.4 1.7 kΩ
Differential Input Capacitance Full 2 2 pF
1 Output voltage levels measured with 5 pF load on each output.
2 LVDS RTERM = 100 Ω.
SWITCHING SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted.
Table 4.
AD9445BSVZ-105 AD9445BSVZ-125
Parameter Temp Min Typ Max Min Typ Max Unit
CLOCK INPUT PARAMETERS
Maximum Conversion Rate Full 105 125 MSPS
Minimum Conversion Rate Full 10 10 MSPS
CLK Period Full 9.5 8.0 ns
CLK Pulse Width High1 (tCLKH) Full 3.8 3.2 ns
CLK Pulse Width Low1 (tCLKL) Full 3.8
3.2 ns
DATA OUTPUT PARAMETERS
Output Propagation Delay—CMOS (tPD)2 (Dx, DCO+) Full 3.35 3.35 ns
Output Propagation Delay—LVDS (tPD)3 (Dx+), (tCPD)3 (DCO+) Full 2.1 3.6 4.8 2.3 3.6 4.8 ns
Pipeline Delay (Latency) Full 13 13 Cycles
Aperture Delay (tA) Full
ns
Aperture Uncertainty (Jitter, tJ) Full 60 60 fsec
rms
1 With duty cycle stabilizer (DCS) enabled.
2 Output propagation delay is measured from clock 50% transition to data 50% transition with 5 pF load.
3 LVDS RTERM = 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.
AD9445
Rev. 0 | Page 7 of 40
TIMING DIAGRAMS
N – 13 N–12 NN + 1
AIN
CLK+
CLK–
DATA OUT
DCO+
DCO–
N
N + 1
N–1
t
CLKH
t
CLKL
1/
f
S
t
PD
13 CLOCK CYCLES
t
CPD
05489-002
Figure 2. LVDS Mode Timing Diagram
N + 1
N + 2
N–1
t
CLKL
13 CLOCK CYCLES
05489-003
N
t
CLKH
t
PD
VIN
CLK+
CLK–
DX
DCO+
DCO–
N – 13 N – 12 N – 1 N
Figure 3. CMOS Timing Diagram
AD9445
Rev. 0 | Page 8 of 40
ABSOLUTE MAXIMUM RATINGS
Table 5. Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
With
Respect
To
Parameter Rating
ELECTRICAL
AVDD1 AGND −0.3 V to +4 V
AVDD2 AGND −0.3 V to +6 V
DRVDD DGND −0.3 V to +4 V
AGND DGND −0.3 V to +0.3 V THERMAL RESISTANCE
AVDD1 DRVDD −4 V to +4 V
The heat sink of the AD9445 package must be soldered to ground.
AVDD2 DRVDD −4 V to +6 V
AVDD2 AVDD1 −4 V to +6 V Table 6.
D0± to D13± DGND 0.3 V to DRVDD + 0.3 V Package Type θJA θ
JB θ
JC Unit
CLK+/CLK− AGND –0.3 V to AVDD1 + 0.3 V 100-lead TQFP/EP 19.8 8.3 2 °C/W
AGND –0.3 V to AVDD1 + 0.3 V
OUTPUT MODE, DCS
MODE, DFS, SFDR,
RF ENABLE
Typical θJA = 19.8°C/W (heat sink soldered) for multilayer
board in still air.
VIN+, VIN− AGND –0.3 V to AVDD2 + 0.3 V
VREF AGND –0.3 V to AVDD1 + 0.3 V Typical θJB = 8.3°C/W (heat sink soldered) for multilayer board
in still air.
SENSE AGND –0.3 V to AVDD1 + 0.3 V
REFT, REFB AGND –0.3 V to AVDD1 + 0.3 V
Typical θJC = 2°C/W (junction to exposed heat sink) represents
the thermal resistance through heat sink path.
ENVIRONMENTAL
–65°C to +125°C
Storage Temperature
Range Airflow increases heat dissipation, effectively reducing θJA. Also,
more metal directly in contact with the package leads from
metal traces through holes, ground, and power planes reduces
the θJA. It is required that the exposed heat sink be soldered to
the ground plane.
–40°C to +85°C
Operating Temperature
Range
300°C
Lead Temperature
(Soldering 10 sec)
Junction Temperature 150°C
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
AD9445
Rev. 0 | Page 9 of 40
TERMINOLOGY
Analog Bandwidth (Full Power Bandwidth) Minimum Conversion Rate
The clock rate at which the SNR of the lowest analog signal
frequency drops by no more than 3 dB below the guaranteed
limit.
The analog input frequency at which the spectral power of the
fundamental frequency (as determined by the FFT analysis) is
reduced by 3 dB.
Aperture Delay (tA) Offset Error
The major carry transition should occur for an analog value of
½ LSB below VIN+ = VIN−. Offset error is defined as the
deviation of the actual transition from that point.
The delay between the 50% point of the rising edge of the clock
and the instant at which the analog input is sampled.
Aperture Uncertainty (Jitter, tJ)
Out-of-Range Recovery Time
The sample-to-sample variation in aperture delay.
The time it takes for the ADC to reacquire the analog input
after a transition from 10% above positive full scale to 10%
above negative full scale, or from 10% below negative full scale
to 10% below positive full scale.
Clock Pulse Width and Duty Cycle
Pulse width high is the minimum amount of time that the
clock pulse should be left in the Logic 1 state to achieve rated
performance. Pulse width low is the minimum time the clock
pulse should be left in the low state. At a given clock rate, these
specifications define an acceptable clock duty cycle.
Output Propagation Delay (tPD)
The delay between the clock rising edge and the time when all
bits are within valid logic levels.
Differential Nonlinearity (DNL, No Missing Codes)
Power-Supply Rejection Ratio
An ideal ADC exhibits code transitions that are exactly 1 LSB
apart. DNL is the deviation from this ideal value. Guaranteed
no missing codes to 14-bit resolution indicates that all 16,384
codes must be present over all operating ranges.
The change in full scale from the value with the supply at the
minimum limit to the value with the supply at the maximum
limit.
Signal-to-Noise and Distortion (SINAD)
Effective Number of Bits (ENOB)
The ratio of the rms input signal amplitude to the rms value of
the sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc.
The effective number of bits for a sine wave input at a given
input frequency can be calculated directly from its measured
SINAD using the following formula:
()
6.02
1.76
=SINAD
ENOB Signal-to-Noise Ratio (SNR)
The ratio of the rms input signal amplitude to the rms value of
the sum of all other spectral components below the Nyquist
frequency, excluding the first six harmonics and dc.
Gain Error
The first code transition should occur at an analog value of
½ LSB above negative full scale. The last transition should occur
at an analog value of 1½ LSB below the positive full scale. Gain
error is the deviation of the actual difference between first and
last code transitions and the ideal difference between first and
last code transitions.
Spurious-Free Dynamic Range (SFDR)
The ratio of the rms signal amplitude to the rms value of the
peak spurious spectral component. The peak spurious component
may be a harmonic. SFDR can be reported in dBc (that is, degrades
as signal level is lowered) or dBFS (always related back to converter
full scale).
Integral Nonlinearity (INL)
The deviation of each individual code from a line drawn from
negative full scale through positive full scale. The point used as
negative full scale occurs ½ LSB before the first code transition.
Positive full scale is defined as a level 1½ LSB beyond the last
code transition. The deviation is measured from the middle of
each particular code to the true straight line.
Tempe ratur e D rift
The temperature drift for offset error and gain error specifies
the maximum change from the initial (25°C) value to the value
at TMIN or TMAX.
Total Harmonic Distortion (THD)
The ratio of the rms input signal amplitude to the rms value of
the sum of the first six harmonic components.
Maximum Conversion Rate
The clock rate at which parametric testing is performed.
Two-Tone SFDR
The ratio of the rms value of either input tone to the rms value
of the peak spurious component. The peak spurious component
may or may not be an IMD product.
AD9445
Rev. 0 | Page 10 of 40
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
74
D8+
73
D8–
72
D7+
69
D6–
70
D6+
71
D7–
75
DRGND
68
DCO+
67
DCO–
66
D5+
64
DRVDD
63
DRGND
62
D4+
61
D4–
60
D3+
59
D3–
58
D2+
57
D2–
56
D1+
55
D1–
54
D0+
53
D0– (LSB)
52
DNC
51
DNC
65
D5–
PIN 1
DNC = DO NOT CONNECT
100
RF ENABLE
99
AGND
98
AGND
97
AVDD1
96
AVDD1
95
AVDD1
94
AVDD1
93
AVDD1
92
AVDD1
91
AGND
90
OR+
89
OR–
88
DRVDD
87
DRGND
86
D13+ (MSB)
85
D13–
84
D12+
83
D12–
82
D11+
81
D11–
80
D10+
79
D10–
78
D9+
77
D9–
76
DRVDD
26
AVDD2
27
AVDD2
28
AVDD2
29
AVDD2
30
AVDD2
31
AVDD2
32
AVDD1
33
AVDD1
34
AVDD1
35
AVDD2
36
AVDD1
37
AVDD2
38
AVDD1
39
AGND
40
CLK+
41
CLK–
42
AGND
43
AVDD1
44
AVDD1
45
AVDD1
46
AGND
47
DRGND
48
DRVDD
49
DNC
50
DNC
2
DNC
3
OUTPUT MODE
4
DFS
7
SENSE
6
AVDD1
5
LVDS_BIAS
1
DCS MODE
8
VREF
9
AGND
10
REFT
12
AVDD2
13
AVDD2
14
AVDD2
15
AVDD2
16
AVDD2
17
AVDD2
18
AVDD1
19
AVDD1
20
AVDD1
21
AGND
22
VIN+
23
VIN–
24
AGND
25
AVDD2
11
REFB
AD9445
LVDS MODE
TOP VIEW
(Not to Scale)
05489-004
Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode
AD9445
Rev. 0 | Page 11 of 40
Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode
Pin No. Mnemonic Description
1 DCS MODE
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to
enable DCS (recommended); DCS = high (AVDD1) to disable DCS.
2, 49 to 52 DNC Do Not Connect. These pins should float.
3 OUTPUT MODE
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode;
OUTPUT MODE = 1 (AVDD1) for LVDS outputs.
4 DFS
Data Format Select Pin. CMOS control pin that determines the format of the output data.
DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.
5 LVDS_BIAS Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND.
6, 18 to 20, 32 to 34, 36, 38,
43 to 45, 92 to 97
AVDD1 3.3 V (±5%) Analog Supply.
7 SENSE
Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to
AVDD1 for external reference.
8 VREF
1.0 V Reference I/O. Function dependent on SENSE and external programming resistors.
Decouple to ground with 0.1 µF and 10 µF capacitors.
9, 21, 24, 39, 42, 46, 91, 98, 99,
Exposed Heat Sink
AGND Analog Ground. The exposed heat sink on the bottom of the package must be
connected to AGND.
10 REFT
Differential Reference Output. Decoupled to ground with 0.1 µF capacitor and to REFB
(Pin 14) with 0.1 µF and 10 µF capacitors.
11 REFB
Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT
(Pin 13) with 0.1 µF and 10 µF capacitors.
12 to 17, 25 to 31, 35, 37 AVDD2 5.0 V Analog Supply (±5%).
22 VIN+ Analog Input—True.
23 VIN− Analog Input—Complement.
40 CLK+ Clock Input—True.
41 CLK− Clock Input—Complement.
47, 63, 75, 87 DRGND Digital Output Ground.
48, 64, 76, 88 DRVDD 3.3 V Digital Output Supply (3.0 V to 3.6 V).
53 D0− (LSB) D0 Complement Output Bit (LVDS Levels).
54 D0+ D0 True Output Bit.
55 D1− D1 Complement Output Bit.
56 D1+ D1 True Output Bit.
57 D2− D2 Complement Output Bit.
58 D2+ D2 True Output Bit.
59 D3− D3 Complement Output Bit.
60 D3+ D3 True Output Bit.
61 D4− D4 Complement Output Bit.
62 D4+ D4 True Output Bit.
65 D5− D5 Complement Output Bit.
66 D5+ D5 True Output Bit.
67 DCO− Data Clock Output—Complement.
68 DCO+ Data Clock Output—True.
69 D6− D6 Complement Output Bit.
70 D6+ D6 True Output Bit.
71 D7− D7 Complement Output Bit.
72 D7+ D7 True Output Bit.
73 D8− D8 Complement Output Bit.
74 D8+ D8 True Output Bit.
77 D9− D9 Complement Output Bit.
78 D9+ D9 True Output Bit.
79 D10− D10 Complement Output Bit.
80 D10+ D10 True Output Bit.
81 D11− D11 Complement Output Bit.
82 D11+ D11 True Output Bit.
AD9445
Rev. 0 | Page 12 of 40
Pin No. Mnemonic Description
83 D12− D12 Complement Output Bit.
84 D12+ D12 True Output Bit.
85 D13− D13 Complement Output Bit.
86 D13+ (MSB) D13 True Output Bit.
89 OR− Out-of-Range Complement Output Bit.
90 OR+ Out-of-Range True Output Bit.
100 RF ENABLE
RF ENABLE Control Pin. CMOS-compatible control pin to optimize the configuration of
the AD9445 analog front end. Connecting RF ENABLE to AGND optimizes SFDR
performance for applications with analog input frequencies <210 MHz for 125 MSPS
speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog
inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed
grade, this pin should be connected to AVDD1 for optimum SFDR performance. Power
dissipation from AVDD2 increases by 150 mW to 200 mW.
AD9445
Rev. 0 | Page 13 of 40
74
D2
73
D1
72
D0 (LSB)
69
DNC
70
DNC
71
DNC
75
DRGND
68
DCO+
67
DCO–
66
DNC
64
DRVDD
63
DRGND
62
DNC
61
DNC
60
DNC
59
DNC
58
DNC
57
DNC
56
DNC
55
DNC
54
DNC
53
DNC
52
DNC
51
DNC
65
DNC
PIN 1
DNC = DO NOT CONNECT
100
RF ENABLE
99
AGND
98
AGND
97
AVDD1
96
AVDD1
95
AVDD1
94
AVDD1
93
AVDD1
92
AVDD1
91
AGND
90
OR
89
D13 (MSB)
88
DRVDD
87
DRGND
86
D12
85
D11
84
D10
83
D9
82
D8
81
D7
80
D6
79
D5
78
D4
77
D3
76
DRVDD
26
AVDD2
27
AVDD2
28
AVDD2
29
AVDD2
30
AVDD2
31
AVDD2
32
AVDD1
33
AVDD1
34
AVDD1
35
AVDD2
36
AVDD1
37
AVDD2
38
AVDD1
39
AGND
40
CLK+
41
CLK–
42
AGND
43
AVDD1
44
AVDD1
45
AVDD1
46
AGND
47
DRGND
48
DRVDD
49
DNC
50
DNC
2
DNC
3
OUTPUT MODE
4
DFS
7
SENSE
6
AVDD1
5
LVDS_BIAS
1
DCS MODE
8
VREF
9
AGND
10
REFT
12
AVDD2
13
AVDD2
14
AVDD2
15
AVDD2
16
AVDD2
17
AVDD2
18
AVDD1
19
AVDD1
20
AVDD1
21
AGND
22
VIN+
23
VIN–
24
AGND
25
AVDD2
11
REFB
AD9445
CMOS MODE
TOP VIEW
(Not to Scale)
05489-005
Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode
AD9445
Rev. 0 | Page 14 of 40
Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode
Pin No. Mnemonic Description
1 DCS MODE
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable
DCS (recommended); DCS = high (AVDD1) to disable DCS.
2, 49 to 62, 65 to 66, 69 to 71 DNC Do Not Connect. These pins should float.
3 OUTPUT
MODE
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode;
OUTPUT MODE = 1 (AVDD1) for LVDS outputs.
4 DFS
Data Format Select Pin. CMOS control pin that determines the format of the output data.
DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.
5 LVDS_BIAS Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND.
6, 18 to 20, 32 to 34, 36, 38,
43 to 45, 92 to 97
AVDD1 3.3 V (±5%) Analog Supply.
7 SENSE
Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for
external reference.
8 VREF
1.0 V Reference I/O. Function dependent on SENSE and external programming resistors.
Decouple to ground with 0.1 µF and 10 µF capacitors.
9, 21, 24, 39, 42, 46, 91, 98,
99, Exposed Heat Sink
AGND Analog Ground. The exposed heat sink on the bottom of the package must be connected to
AGND.
10 REFT
Differential Reference Output. Decoupled to ground with 0.1 µF capacitor and to REFB
(Pin 14) with 0.1 µF and 10 µF capacitors.
11 REFB
Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT
(Pin 13) with 0.1 µF and 10 µF capacitors.
12 to 17, 25 to 31, 35, 37 AVDD2 5.0 V Analog Supply (±5%).
22 VIN+ Analog Input—True.
23 VIN− Analog Input—Complement.
40 CLK+ Clock Input—True.
41 CLK− Clock Input—Complement.
47, 63, 75, 87 DRGND Digital Output Ground.
48, 64, 76, 88 DRVDD 3.3 V Digital Output Supply (3.0 V to 3.6 V).
67 DCO− Data Clock Output—Complement.
68 DCO+ Data Clock Output—True.
72 D0 (LSB) D0 True Output Bit (CMOS levels).
73 D1 D1 True Output Bit.
74 D2 D2 True Output Bit.
77 D3 D3 True Output Bit.
78 D4 D4 True Output Bit.
79 D5 D5 True Output Bit.
80 D6 D6 True Output Bit.
81 D7 D7 True Output Bit.
82 D8 D8 True Output Bit.
83 D9 D9 True Output Bit.
84 D10 D10 True Output Bit.
85 D11 D11 True Output Bit.
86 D12 D12 True Output Bit.
89 D13 (MSB) D13 True Output Bit.
90 OR Out-of-Range True Output Bit.
100 RF ENABLE
RF ENABLE CMOS-compatible Control Pin. Optimizes the configuration of the analog front end.
Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input
frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade.
For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz
for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR.
Power dissipation from AVDD2 increases by 150 mW to 200 mW.
AD9445
Rev. 0 | Page 15 of 40
EQUIVALENT CIRCUITS
X1
3.5V
1k
Ω
1k
Ω
AVDD2
VIN+
VIN–
T/H
AVDD2
05489-006
6pF
6pF
DX
DRVDD
05489-009
Figure 6. Equivalent Analog Input Circuit Figure 9. Equivalent CMOS Digital Output Circuit
RF ENABLE, DCS
MODE, OUTPUT
MODE, DFS
VDD
30kΩ
05489-010
05489-007
1.2V
DRVDD DRVDD
K
3.74k
Ω
I
LVDSOUT
LVDS_BIAS
Figure 10. Equivalent Digital Input Circuit,
DFS, DCS MODE, OUTPUT MODE
Figure 7. Equivalent LVDS_BIAS Circuit
CLK+
3k
Ω
2.5k
Ω
3k
Ω
2.5k
Ω
AVDD2
CLK–
05489-011
DRVDD
DX– DX+
V
V
V
V
05489-008
Figure 11. Equivalent Sample Clock Input Circuit
Figure 8. Equivalent LVDS Digital Output Circuit
AD9445
Rev. 0 | Page 16 of 40
TYPICAL PERFORMANCE CHARACTERISTICS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, rated sample rate, LVDS mode, DCS enabled, TA = 25°C, 2.0 V p-p differential
input, AIN = −1.0 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted.
0
–1300 62.500
05489-012
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
30.3MHz @ –1.0dBFS
SNR = 73.4dB
ENOB = 12.1BITS
SFDR = 94dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
15.625 31.250 46.875
0
–1300 62.500
05489-015
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
225.3MHz @ –1.0dBFS
SNR = 72.9dB
ENOB = 12.1BITS
SFDR = 88dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
15.625 31.250 46.875
Figure 12. AD9445-125 64k Point Single-Tone FFT/125 MSPS/30.3 MHz Figure 15. AD9445-125 64k Point Single-Tone FFT/125 MSPS/225.3 MHz
0
–1300 62.500
05489-013
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
100.3MHz @ –1.0dBFS
SNR = 0dB
ENOB = 12.1BITS
SFDR = 96dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
15.625 31.250 46.875
0
–1300 62.500
05489-016
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
300.3MHz @ –1.0dBFS
SNR = 72.0dB
ENOB = 11.8BITS
SFDR = 87dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
15.625 31.250 46.875
Figure 13. AD9445-125 64k Point Single-Tone FFT/125 MSPS/100.3 MHz Figure 16. AD9445-125 64k Point Single-Tone FFT/125 MSPS/300.3 MHz
0
–1300 62.500
05489-014
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
170.3MHz @ –1.0dBFS
SNR = 73.2dB
ENOB = 12.0BITS
SFDR = 91dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
15.625 31.250 46.875
0
–1300 62.500
05489-017
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
450.3MHz @ –1.0dBFS
SNR = 70.5dB
ENOB = 11.6BITS
SFDR = 69dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
15.625 31.250 46.875
Figure 14. AD9445-125 64k Point Single-Tone FFT/125 MSPS/170.3 MHz Figure 17. AD9445-125 64k Point Single-Tone FFT/125 MSPS/450.3 MHz
AD9445
Rev. 0 | Page 17 of 40
100
95
90
85
80
75
70
65
60
550 50 100 150 200 250 300 350 400 450
05489-018
ANALOG INPUT FREQUENCY (MHz)
(dB)
SFDR +25°C
SNR +25°C
SFDR +85°C
SFDR –40°C
SNR +85°C
SNR –40°C
100
95
90
85
80
75
70
65
60
550 50 100 150 200 250 300 350 400 450
05489-021
ANALOG INPUT FREQUENCY (MHz)
(dB)
SFDR +25°C
SNR +25°C
SFDR +85°C
SFDR –40°C
SNR +85°C
SNR –40°C
Figure 18. AD9445-125 SNR/SFDR vs. Analog Input Frequency,
125 MSPS, 2.0 V p-p Input Range
Figure 21. AD9445-125 SNR/SFDR vs. Analog Input Frequency,
125 MSPS, 3.2 V p-p Input Range
100
550 100
05489-019
ANALOG INPUT FREQUENCY (MHz)
(dB)
SFDR +25°C
SNR +25°C
SFDR +85°C
SFDR –40°C
SNR +85°C
SNR –40°C
20 30 40 50 60 70 80 90
95
90
85
80
75
70
65
60
10
105
700
05489-022
SAMPLE RATE (MSPS)
(dB)
100
95
90
85
80
75
20 40 60 80 100 120 140
105M SFDR dBc
125M SFDR dBc
105M SNR dB
125M SNR dB
Figure 19. AD9445-125 SNR/SFDR vs. Analog Input Frequency,
3.2 V p-p Input Range, 125 MSPS, CMOS Output Mode
Figure 22. AD9445 Single-Tone SNR/SFDR vs. Sample Rate 2.3 MHz
120
0
–100 0
05489-020
ANALOG INPUT AMPLITUDE (dB)
(dB)
100
80
60
40
20
–90 –80 –70 –60 –50 –40 –30 –20 –10
SNR dB
SNR dBFS
SFDR dBc
SFDR dBFS 120
0
–100 0
05489-023
ANALOG INPUT AMPLITUDE (dB)
(dB)
100
80
60
40
20
–90 –80 –70 –60 –50 –40 –30 –20 –10
SNR dB
SNR dBFS
SFDR dBc
SFDR dBFS
Figure 20. AD9445-125 SNR/SFDR vs. Analog Input Level,
125 MSPS/225.3 MHz
Figure 23. AD9445-125 SNR/SFDR vs. Analog Input Level,
125 MSPS/225.3 MHz, CMOS Output Mode
AD9445
Rev. 0 | Page 18 of 40
0
–1300 52.500
05489-024
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
30.3MHz @ –1.0dBFS
SNR = 74.3dB
ENOB = 12.2BITS
SFDR = 92dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.125 26.250 39.375
0
–1300 52.500
05489-027
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
225.3MHz @ –1.0dBFS
SNR = 73.0dB
ENOB = 12.0BITS
SFDR = 87dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.125 26.250 39.375
Figure 24. AD9445-105 64k Point Single-Tone FFT/105 MSPS/30.3 MHz Figure 27. AD9445-105 64k Point Single-Tone FFT/105 MSPS/225.3 MHz
0
–1300 52.500
05489-025
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
100.3MHz @ –1.0dBFS
SNR = 73.5dB
ENOB = 11.8BITS
SFDR = 93dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.125 26.250 39.375
0
–1300 52.500
05489-028
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
300.3MHz @ –1.0dBFS
SNR = 72.1dB
ENOB = 11.8BITS
SFDR = 87dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.125 26.250 39.375
Figure 25. AD9445-105 64k Point Single-Tone FFT/105 MSPS/100.3 MHz Figure 28. AD9445-105 64k Point Single-Tone FFT/105 MSPS/300.3 MHz
0
–1300 52.500
05489-026
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
170.3MHz @ –1.0dBFS
SNR = 73.6dB
ENOB = 12.1BITS
SFDR = 94dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.125 26.250 39.375
0
–1300 52.500
05489-029
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
450.3MHz @ –1.0dBFS
SNR = 70.5dB
ENOB = 11.6BITS
SFDR = 70dBc
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.125 26.250 39.375
Figure 26. AD9445-105 64k Point Single-Tone FFT/105 MSPS/170.3 MHz Figure 29. AD9445-105 64k Point Single-Tone FFT/105 MSPS/450.3 MHz
AD9445
Rev. 0 | Page 19 of 40
100
95
90
85
80
75
70
65
60
550 50 100 150 200 250 300 350 400 450
05489-030
ANALOG INPUT FREQUENCY (MHz)
(dB)
SFDR +25°C
SNR +25°C
SFDR +85°C
SFDR –40°C
SNR +85°C
SNR –40°C
100
95
90
85
80
75
70
65
60
550 50 100 150 200 250 300 350 400 450
05489-033
ANALOG INPUT FREQUENCY (MHz)
(dB)
SFDR +25°C
SNR +25°C
SFDR +85°C SFDR –40°C
SNR +85°C
SNR –40°C
Figure 30. AD9445-105 SNR/SFDR vs. Analog Input Frequency,
105 MSPS, 2.0 V p-p
Figure 33. AD9445-105 SNR/SFDR vs. Analog Input Frequency,
105 MSPS, 3.2 V p-p
100
60
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3
05489-034
ANALOG INPUT COMMON-MODE VOLTAGE
(dB)
SNR dB
SFDR dBc
95
90
85
80
75
70
65
100
95
90
85
80
75
70
65
60
550 180
05489-031
ANALOG INPUT FREQUENCY (MHz)
(dB)
SFDR +25°C
SNR +25°C
SFDR +85°C
SFDR –40°C
SNR +85°C
SNR –40°C
20 40 60 80 100 120 140 160
Figure 31. AD9445-105 SNR/SFDR vs. Analog Input Frequency,
3.2 V p-p Input Range, 105 MSPS, CMOS Output Mode
Figure 34. AD9445-105 SNR/SFDR vs. Analog Input Common Mode,
105 MSPS/10.3 MHz
120
0
–100 0
05489-032
ANALOG INPUT AMPLITUDE (dB)
(dB)
100
80
60
40
20
–90 –80 –70 –60 –50 –40 –30 –20 –10
SNR dB
SNR dBFS
SFDR dBc
SFDR dBFS
120
0
–100 0
05489-035
ANALOG INPUT AMPLITUDE (dB)
(dB)
100
80
60
40
20
–90 –80 –70 –60 –50 –40 –30 –20 –10
SNR dB
SNR dBFS
SFDR dBc
SFDR dBFS
Figure 32. AD9445-105 SNR/SFDR vs. Analog Input Level,
105 MSPS/225.3 MHz
Figure 35. AD9445-105 SNR/SFDR vs. Analog Input Level,
105 MSPS/225.3 MHz, CMOS Output Mode
AD9445
Rev. 0 | Page 20 of 40
0
–140
–130
0 54.500
05489-037
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
30.3MHz @ –7.0dBFS
31.3MHz @ –7.0dBFS
SFDR = 102dBFS
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.625 27.250 40.875
0
–120
–100 0
05489-041
FUNDAMENTAL LEVEL (dB)
SPUR AND IMD3 (dB)
–20
–40
–60
–80
–100
–10
–30
–50
–70
–90
–110
–90 –80 –70 –60 –50 –40 –30 –20 –10
SFDR dBFS
SFDR dBc
WORST IMD3 dBc
WORST IMD3 dBFS
Figure 36. AD9445-125 64k Point Two-Tone FFT/
125 MSPS/30.3 MHz, 31.3 MHz
Figure 39. AD9445-125 Two-Tone SFDR vs. Analog Input Level
125 MSPS/170.3 MHz, 171.3 MHz
0
–120
–100 0
05489-038
FUNDAMENTAL LEVEL (dB)
SPUR AND IMD3 (dB)
–20
–40
–60
–80
–100
–10
–30
–50
–70
–90
–110
–90 –80 –70 –60 –50 –40 –30 –20 –10
SFDR dBFS
SFDR dBc
WORST IMD3 dBc
WORST IMD3 dBFS
0
–140
–130
0
05489-042
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
30.3MHz @ –7.0dBFS
31.3MHz @ –7.0dBFS
SFDR = 102dBFS
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
0 52.50013.125 26.250 39.375
Figure 37. AD9445-125 Two-Tone SFDR vs. Analog Input Level
125 MSPS/30.3 MHz, 31.3 MHz
Figure 40. AD9445-105 64k Point Two-Tone FFT/105 MSPS/30.3 MHz, 31.3 MHz
0
–140
–130
0 54.500
05489-040
FREQUENCY (MHz)
AMPLITUDE (dBFS)
125MSPS
170.3MHz @ –7.0dBFS
171.3MHz @ –7.0dBFS
SFDR = 91dBFS
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
13.625 27.250 40.875
0
–120
–100 0
05489-043
FUNDAMENTAL LEVEL (dB)
SPUR AND IMD3 (dB)
–20
–40
–60
–80
–100
–10
–30
–50
–70
–90
–110
–90 –80 –70 –60 –50 –40 –30 –20 –10
SFDR dBFS
SFDR dBc
WORST IMD3 dBc
WORST IMD3 dBFS
Figure 38. AD9445-125 64k Point Two-Tone FFT/
125 MSPS/170.3 MHz, 171.3 MHz
Figure 41. AD9445-105 Two-Tone SFDR vs. Analog Input Level
105 MSPS/30.3 MHz, 31.3 MHz
AD9445
Rev. 0 | Page 21 of 40
25000
0
05489-044
OUTPUT CODE
FREQUENCY
N + 4
62 1127
7968
22190 23754
1355 75 2
20000
15000
10000
5000
N – 4 N – 3 N – 2 N – 1 N N + 1 N + 2 N + 3
9003
30000
0
05489-047
OUTPUT CODE
FREQUENCY
N + 4
3307
3350
15743
26294
3493
227 2
N – 4 N – 3 N – 2 N – 1 N N + 1 N + 2 N + 3
16117
25000
20000
15000
10000
5000
SAMPLE SIZE = 65538
Figure 42. AD9445-125 Grounded Input Histogram Figure 45. AD9445-105 Grounded Input Histogram
0
–140
–130
0
05489-045
FREQUENCY (MHz)
AMPLITUDE (dBFS)
105MSPS
170.3MHz @ –7.0dBFS
171.3MHz @ –7.0dBFS
SFDR = 92dBFS
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
0 52.50013.125 26.250 39.375
0
–0.8
–40
05489-048
TEMPERATURE (°C)
GAIN ERROR (%FSR)
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7
–20 0 20 40 60 80
Figure 43. AD9445-105 64k Point Two-Tone FFT/105 MSPS/170.3 MHz, 171.3 MHz Figure 46. AD9445-125 Gain vs. Temperature
0.4
–0.40
05489-049
OUTPUT CODE
DNL ERROR (LSB)
0 16384
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
4096 8192 12288
0
–120
–100 0
05489-046
FUNDAMENTAL LEVEL (dB)
SPUR AND IMD3 (dB)
–20
–40
–60
–80
–100
–10
–30
–50
–70
–90
–110
–90 –80 –70 –60 –50 –40 –30 –20 –10
SFDR dBFS
SFDR dBc
WORST IMD3 dBc
WORST IMD3 dBFS
Figure 44. AD9445-105 Two-Tone SFDR vs. Analog Input Level
105 MSPS/170.3 MHz, 171.3 MHz
Figure 47. AD9445-105 DNL Error vs. Output Code, 105 MSPS, 10.3 MHz
AD9445
Rev. 0 | Page 22 of 40
0.4
–0.40
05489-050
OUTPUT CODE
DNL ERROR (LSB)
0 16384
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
4096 8192 12288
1.0
–1.00
05489-053
OUTPUT CODE
INL ERROR (LSB)
0 163844096 8192 12288
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
Figure 48. AD9445-125 DNL Error vs. Output Code, 125 MSPS, 10.3 MHz Figure 51. AD9445-125 INL Error vs. Output Code, 125 MSPS, 10.3 MHz
400
00
05489-066
SAMPLE RATE (MSPS)
I
SUPPLY
(mA)
160
350
300
250
200
150
100
50
20 40 60 80 100 120 140
DRVDD
AVDD2
AVDD1
1.014
1.012
1.010
1.008
1.006
1.004
1.002
–40
05489-051
TEMPERATURE (°C)
VREF
–20 0 20 40 60 80
Figure 52. AD9445-105 Power Supply Current vs. Sample Rate
10.3 MHz @ −1 dBFS
Figure 49. AD9445-125 VREF vs. Temperature
78
71
1.8
05489-067
ANALOG INPUT RANGE (V p-p)
(dB)
4.2
170.3MHz SNR dB
225.3MHz SNR dB
300.3MHz SNR dB
77
76
75
74
73
72
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
0.5
–0.50
05489-052
OUTPUT CODE
INL ERROR (LSB)
0 163844096 8192 12288
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
Figure 53. AD9445-125 SNR vs. Analog Input Range, 125 MSPS/170.3 MHz,
225.3 MHz, 300.3 MHz
Figure 50. AD9445-105 INL Error vs. Output Code, 105 MSPS, 10.3 MHz
AD9445
Rev. 0 | Page 23 of 40
78
71
1.8
05489-068
ANALOG INPUT RANGE (V p-p)
(dB)
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
170.3MHz SFDR dBc
225.3MHz SFDR dBc
300.3MHz SFDR dBc
77
75
76
74
73
72
95
70
1.8
05489-071
ANALOG INPUT RANGE (V p-p)
(dB)
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
170.3MHz SFDR dBc
225.3MHz SFDR dBc
300.3MHz SFDR dBc
90
85
80
75
Figure 54. AD9445-105 SNR vs. Analog Input Range,
105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz
Figure 57. AD9445-105 SFDR vs. Analog Input Range,
105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz
400
00
05489-069
SAMPLE RATE (MSPS)
I
SUPPLY
(mA)
160
350
300
250
200
150
100
50
20 40 60 80 100 120 140
DRVDD
AVDD2
AVDD1
81
74
1.8 4.2
05489-039
ANALOG INPUT RANGE (V p-p)
(dB)
80
79
78
77
76
75
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
105M SNR dBFS
125M SNR dBFS
Figure 55. AD9445-125 Power Supply Current vs. Sample Rate
10.3 MHz @ −1 dBFS
Figure 58. SNR vs. Analog Input Range, 2.3 MHz @ −30 dBFS
95
70
1.8
05489-070
ANALOG INPUT RANGE (V p-p)
(dB)
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
170.3MHz SFDR dBc
225.3MHz SFDR dBc
300.3MHz SFDR dBc
90
85
80
75
Figure 56. AD9445-125 SFDR vs. Analog Input Range, 125 MSPS/170.3 MHz,
225.3 MHz, 300.3 MHz
AD9445
Rev. 0 | Page 24 of 40
THEORY OF OPERATION
The AD9445 architecture is optimized for high speed and ease
of use. The analog inputs drive an integrated, high bandwidth
track-and-hold circuit that samples the signal prior to quantization
by the 14-bit pipeline ADC core. The device includes an on-board
reference and input logic that accepts TTL, CMOS, or LVPECL
levels. The digital output logic levels are user selectable as standard
3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT
MODE pin.
ANALOG INPUT AND REFERENCE OVERVIEW
A stable and accurate 0.5 V band gap voltage reference is built
into the AD9445. The input range can be adjusted by varying
the reference voltage applied to the AD9445, using either the
internal reference or an externally applied reference voltage.
The input span of the ADC tracks reference voltage changes
linearly.
Internal Reference Connection
A comparator within the AD9445 detects the potential at the
SENSE pin and configures the reference into three possible states,
which are summarized in Table 9. If SENSE is grounded, the
reference amplifier switch is connected to the internal resistor
divider (see Figure 59), setting VREF to ~1.0 V. Connecting the
SENSE pin to VREF switches the reference amplifier output to
the SENSE pin, completing the loop and providing a ~1.0 V
reference output. If a resistor divider is connected as shown in
Figure 60, the switch again sets to the SENSE pin. This puts the
reference amplifier in a noninverting mode with the VREF
output defined as
+×= R1
R2
VVREF 15.0
In all reference configurations, REFT and REFB drive the
analog-to-digital conversion core and establish its input span.
The input range of the ADC always equals twice the voltage at
the reference pin for either an internal or an external reference.
Internal Reference Trim
The internal reference voltage is trimmed during the production
test to adjust the gain (analog input voltage range) of the AD9445.
Therefore, there is little advantage to the user supplying an external
voltage reference to the AD9445. The gain trim is performed
with the AD9445 input range set to 2.0 V p-p nominal (SENSE
connected to AGND). Because of this trim and the maximum ac
performance provided by the 2.0 V p-p analog input range, there
is little benefit to using analog input ranges <2 V p-p. Users are
cautioned that the differential nonlinearity of the ADC varies
with the reference voltage. Configurations that use <2.0 V p-p
may exhibit missing codes and, therefore, degraded noise and
distortion performance.
10μF+0.1μF
VREF
SENSE
0.5V
AD9445
VIN–
VIN+
REFT
0.1μF
0.1μF 10μF
0.1μF
REFB
SELECT
LOGIC
ADC
CORE +
05489-054
Figure 59. Internal Reference Configuration
05489-055
10μF+0.1μF
VREF
SENSE
R2
R1 0.5V
AD9445
VIN–
VIN+
REFT
0.1μF
0.1μF 10μF
0.1μF
REFB
SELECT
LOGIC
ADC
CORE +
Figure 60. Programmable Reference Configuration
Table 9. Reference Configuration Summary
Selected Mode SENSE Voltage Resulting VREF (V) Resulting Differential Span (V p-p)
External Reference AVDD1 N/A 2 × external reference
Programmable Reference 0.2 V to VREF
+× R1
R2
10.5 (See Figure 60) 2 × VREF
Internal Fixed Reference AGND to 0.2 V 1.0 2.0
AD9445
Rev. 0 | Page 25 of 40
3.5V
VIN+
VIN–
1V p-p
DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s
05489-056
External Reference Operation
The AD9445’s internal reference is trimmed to enhance the gain
accuracy of the ADC. An external reference may be more stable
over temperature, but the gain of the ADC is not likely to improve.
Figure 49 shows the typical drift characteristics of the internal
reference in both 1 V and 0.5 V modes.
When the SENSE pin is tied to AVDD, the internal reference is
disabled, allowing the use of an external reference. An internal
reference buffer loads the external reference with an equivalent
7 kΩ load. The internal buffer still generates the positive and
negative full-scale references, REFT and REFB, for the ADC
core. The input span is always twice the value of the reference
voltage; therefore, the external reference must be limited to a
maximum of 1.6 V.
Figure 61. Differential Analog Input Range for VREF = 1.0 V
Therefore, the analog source driving the AD9445 should be ac-
coupled to the input pins. The recommended method for driving
the analog input of the AD9445 is to use an RF transformer to
convert single-ended signals to differential (see
Analog Inputs
As with most new high speed, high dynamic range ADCs, the
analog input to the AD9445 is differential. Differential inputs
improve on-chip performance because signals are processed
through attenuation and gain stages. Most of the improvement
is a result of differential analog stages having high rejection of
even-order harmonics. There are also benefits at the PCB level.
First, differential inputs have high common-mode rejection of
stray signals, such as ground and power noise. Second, they
provide good rejection of common-mode signals, such as local
oscillator feedthrough. The specified noise and distortion of the
AD9445 cannot be realized with a single-ended analog input, so
such configurations are discouraged. Contact sales for
recommendations of other 14-bit ADCs that support single-
ended analog input configurations.
Figure 62).
Series resistors between the output of the transformer and the
AD9445 analog inputs help isolate the analog input source from
switching transients caused by the internal sample-and-hold
circuit. The series resistors, along with the 1 kΩ resisters connected
to the internal 3.5 V bias, must be considered in impedance
matching the transformer input. For example, if RT is set to
51 Ω, RS is set to 33 Ω, and there is a 1:1 impedance ratio trans-
former, the input will match a 50 Ω source with a full-scale drive
of 10.0 dBm. The 50 Ω impedance matching can also be incor-
porated on the secondary side of the transformer, as shown in
the evaluation board schematic (see Figure 67).
05489-057
0.1
μF
R
T
AD9445
VIN+
VIN–
R
S
R
S
ADT1–1WT
ANALOG
INPUT
SIGNAL
With the 1 V reference, which is the nominal value (see the
Internal Reference Trim section), the differential input range of
the AD9445 analog input is nominally 2.0 V p-p or 1.0 V p-p on
each input (VIN+ or VIN−).
Figure 62. Transformer-Coupled Analog Input Circuit
High IF Applications
The AD9445 analog input voltage range is offset from ground
by 3.5 V. Each analog input connects through a 1 kΩ resistor to
the 3.5 V bias voltage and to the input of a differential buffer.
The internal bias network on the input properly biases the
buffer for maximum linearity and range (see the
In applications where the analog input frequency range is
>100 MHz, the phase and amplitude matching at the analog
inputs becomes critical to optimize performance of the ADC.
The circuit in Figure 63 can be used to optimize the matching of
these parameters. This configuration uses a double balun config-
uration that has low parasitics, high bandwidth, and parasitic
cancellation.
Equivalent
Circuits section).
05489-058
0.1
μF
CT
AD9445
VIN+
VIN–
33
Ω
25
Ω
50
Ω
SOURCE
25
Ω
33
Ω
ETC1–1–13ETC1–1–13
0.1
μ
F
Figure 63. Double Balun-Coupled Analog Input Circuit
AD9445
Rev. 0 | Page 26 of 40
CLOCK INPUT CONSIDERATIONS
Any high speed ADC is extremely sensitive to the quality of the
sampling clock provided by the user. A track-and-hold circuit is
essentially a mixer, and any noise, distortion, or timing jitter on
the clock is combined with the desired signal at the analog-to-
digital output. For that reason, considerable care was taken in
the design of the clock inputs of the AD9445, and the user is
advised to give careful thought to the clock source.
Typical high speed ADCs use both clock edges to generate a
variety of internal timing signals and, as a result, may be
sensitive to the clock duty cycle. Commonly a 5% tolerance is
required on the clock duty cycle to maintain dynamic
performance characteristics. The AD9445 contains a clock duty
cycle stabilizer (DCS) that retimes the nonsampling edge,
providing an internal clock signal with a nominal 50% duty
cycle. Noise and distortion performance are nearly flat for a
30% to 70% duty cycle with the DCS enabled. The DCS circuit
locks to the rising edge of CLK+ and optimizes timing
internally. This allows for a wide range of input duty cycles at
the input without degrading performance. Jitter in the rising
edge of the input is still of paramount concern and is not
reduced by the internal stabilization circuit. The duty cycle
control loop does not function for clock rates of less than
30 MHz nominally. The loop is associated with a time constant
that should be considered in applications where the clock rate
can change dynamically, requiring a wait time of 1.5 μs to 5 μs
after a dynamic clock frequency increase or decrease before the
DCS loop is relocked to the input signal. During the time that
the loop is not locked, the DCS loop is bypassed, and the internal
device timing is dependent on the duty cycle of the input clock
signal. In such an application, it may be appropriate to disable
the duty cycle stabilizer. In all other applications, enabling the
DCS circuit is recommended to maximize ac performance.
The DCS circuit is controlled by the DCS MODE pin; a CMOS
logic low (AGND) on DCS MODE enables the duty cycle
stabilizer, and logic high (AVDD1 = 3.3 V) disables the
controller.
The AD9445 input sample clock signal must be a high quality,
extremely low phase noise source to prevent degradation of
performance. Maintaining 14-bit accuracy places a premium on
the encode clock phase noise. SNR performance can easily
degrade by 3 dB to 4 dB with 70 MHz analog input signals
when using a high jitter clock source. (See the AN-501
Application Note, Aperture Uncertainty and ADC System
Performance.) For optimum performance, the AD9445 must be
clocked differentially. The sample clock inputs are internally
biased to ~2.2 V, and the input signal is usually ac-coupled into
the CLK+ and CLK− pins via a transformer or capacitors.
Figure 64 shows one preferred method for clocking the
AD9445. The clock source (low jitter) is converted from single-
ended to differential using an RF transformer. The back-to-back
Schottky diodes across the secondary of the transformer limit
clock excursions into the AD9445 to approximately 0.8 V p-p
differential. This helps prevent the large voltage swings of the
clock from feeding through to other portions of the AD9445
and limits the noise presented to the sample clock inputs.
If a low jitter clock is available, it may help to band-pass filter
the clock reference before driving the ADC clock inputs.
Another option is to ac couple a differential ECL/PECL signal
to the encode input pins, as shown in Figure 65.
05489-059
0.1
μF
AD9445
CLK+
CLK–
HSMS2812
DIODES
CLOCK
SOURCE ADT1–1WT
Figure 64. Crystal Clock Oscillator, Differential Encode
05489-060
0.1
μF
AD9445
ENCODE
ENCODE
0.1μF
VT
VT
ECL/
PECL
Figure 65. Differential ECL for Encode
Jitter Considerations
High speed, high resolution ADCs are sensitive to the quality
of the clock input. The degradation in SNR at a given input
frequency (fINPUT) and rms amplitude due only to aperture jitter
(tJ) can be calculated using the following equation:
SNR = 20 log[2πfINPUT × tJ]
In the equation, the rms aperture jitter represents the root-
mean-square of all jitter sources, which includes the clock
input, analog input signal, and ADC aperture jitter
specification. IF undersampling applications are particularly
sensitive to jitter, see Figure 66.
The clock input should be treated as an analog signal in cases
where aperture jitter may affect the dynamic range of the
AD9445. Power supplies for clock drivers should be separated
from the ADC output driver supplies to avoid modulating the
clock signal with digital noise. Low jitter crystal-controlled
oscillators make the best clock sources. If the clock is generated
from another type of source (by gating, dividing, or another
method), it should be synchronized by the original clock during
the last step.
AD9445
Rev. 0 | Page 27 of 40
INPUT FREQUENCY (MHz)
SNR (dBc)
1
40
75
70
65
60
55
50
45
100010010
05489-061
0.2ps
0.5ps
1.0ps
1.5ps
2.0ps
2.5ps
3.0ps
resistor is placed at Pin 5 (LVDS_BIAS) to ground. Dynamic
performance, including both SFDR and SNR, is maximized
when the AD9445 is used in LVDS mode; designers are
encouraged to take advantage of this mode. The AD9445
outputs include complimentary LVDS outputs for each data bit
(Dx+/Dx−), the overrange output (OR+/OR−), and the output
data clock output (DCO+/DCO−). The RSET resistor current is
multiplied on-chip, setting the output current at each output
equal to a nominal 3.5 mA (11 × IRSET). A 100 Ω differential
termination resistor placed at the LVDS receiver inputs results
in a nominal 350 mV swing at the receiver. LVDS mode
facilitates interfacing with LVDS receivers in custom ASICs and
FPGAs that have LVDS capability for superior switching
performance in noisy environments. Single point-to-point net
topologies are recommended, with a 100 Ω termination resistor
placed as close to the receiver as possible. It is recommended to
keep the trace length less than 2 inches and to keep differential
output trace lengths as equal as possible.
Figure 66. SNR vs. Input Frequency and Jitter
POWER CONSIDERATIONS
Care should be taken when selecting a power source. The use of
linear dc supplies is highly recommended. Switching supplies
tend to have radiated components that may be received by the
AD9445. Each of the power supply pins should be decoupled as
closely to the package as possible using 0.1 μF chip capacitors.
CMOS Mode
In applications that can tolerate a slight degradation in dynamic
performance, the AD9445 output drivers can be configured to
interface with 2.5 V or 3.3 V logic families by matching
DRVDD to the digital supply of the interfaced logic. CMOS
outputs are available when OUTPUT MODE is CMOS logic
low (or AGND for convenience). In this mode, the output data
bits, Dx, are single-ended CMOS, as is the overrange output,
OR. The output clock is provided as a differential CMOS signal,
DCO+/DCO−. Lower supply voltages are recommended to
avoid coupling switching transients back to the sensitive analog
sections of the ADC. The capacitive load to the CMOS outputs
should be minimized, and each output should be connected to a
single gate through a series resistor (220 Ω) to minimize
switching transients caused by the capacitive loading.
The AD9445 has separate digital and analog power supply pins.
The analog supplies are denoted AVDD1 (3.3 V) and AVDD2
(5 V), and the digital supply pins are denoted DRVDD. Although
the AVDD1 and DRVDD supplies can be tied together, best
performance is achieved when the supplies are separate. This is
because the fast digital output swings can couple switching
current back into the analog supplies. Note that both AVDD1
and AVDD2 must be held within 5% of the specified voltage.
The DRVDD supply of the AD9445 is a dedicated supply for the
digital outputs in either LVDS or CMOS output mode. When in
LVDS mode, the DRVDD should be set to 3.3 V. In CMOS
mode, the DRVDD supply can be connected from 2.5 V to
3.6 V for compatibility with the receiving logic. TIMING
The AD9445 provides latched data outputs with a pipeline delay
of 13 clock cycles. Data outputs are available one propagation
delay (tPD) after the rising edge of CLK+. Refer to
DIGITAL OUTPUTS
LVDS Mode Figure 2 and
Figure 3 for detailed timing diagrams.
The off-chip drivers on the chip can be configured to provide
LVDS-compatible output levels via Pin 3 (OUTPUT MODE).
LVDS outputs are available when OUTPUT MODE is CMOS
logic high (or AVDD1 for convenience) and a 3.74 kΩ RSET
AD9445
Rev. 0 | Page 28 of 40
OPERATIONAL MODE SELECTION
Data Format Select
The data format select (DFS) pin of the AD9445 determines
the coding format of the output data. This pin is 3.3 V CMOS-
compatible, with logic high (or AVDD1, 3.3 V) selecting twos
complement and DFS logic low (AGND) selecting offset binary
format. Table 10 summarizes the output coding.
Output Mode Select
The OUPUT MODE pin controls the logic compatibility, as well
as the pinout of the digital outputs. This pin is a CMOS-compatible
input. With OUTPUT MODE = 0 (AGND), the AD9445 outputs
are CMOS compatible, and the pin assignment for the device is
as defined in Table 8. With OUTPUT MODE = 1 (AVDD1, 3.3
V), the AD9445 outputs are LVDS compatible, and the pin
assignment for the device is as defined in Table 7.
Duty Cycle Stabilizer
The DCS circuit is controlled by the DCS MODE pin; a CMOS
logic low (AGND) on DCS MODE enables the DCS, and logic
high (AVDD1, 3.3 V) disables the controller.
RF ENABLE
The RF ENABLE pin is a CMOS-compatible control pin that
optimizes the configuration of the AD9445 analog front end.
The crossover analog input frequency for determining the
RF ENABLE connection differs for the 105 MSPS and 125 MSPS
speed grades. For the 125 MSPS speed grade, connecting the
RF ENABLE to AGND optimizes SFDR performance for appli-
cations with analog input frequencies <210 MHz. For applications
with analog inputs >210 MHz, this pin should be connected to
AVDD1 for optimum SFDR performance. Connecting this pin to
AVDD1 reconfigures the ADC, thereby improving high IF and RF
spurious performance. Operating in this mode increases power dis-
sipation from AVDD2 by 150 mW to 200 mW. For the 105 MSPS
speed grade, connecting RF ENABLE to AGND optimizes SFDR
performance for applications with analog input frequencies
<230 MHz. For applications with analog inputs >230 MHz, this
pin should be connected to AVDD1 to optimize performance.
Table 10. Digital Output Coding
Code
VIN+ − VIN−
Input Span = 3.2 V p-p (V)
VIN+ − VIN−
Input Span = 2 V p-p (V)
Digital Output
Offset Binary (D13••••••D0)
Digital Output
Twos Complement (D13••••••D0)
16,383 +1.600 +1.000 11 1111 1111 1111 01 1111 1111 1111
8192 0 0 10 0000 0000 0000 00 0000 0000 0000
8191 −0.000195 −0.000122 01 1111 1111 1111 11 1111 1111 1111
0 −1.60 −1.00 00 0000 0000 0000 10 0000 0000 0000
AD9445
Rev. 0 | Page 29 of 40
EVALUATION BOARD
Evaluation boards are offered to configure the AD9445 in
either CMOS or LVDS mode only. This design represents a
recommended configuration for using the device over a wide
range of sampling rates and analog input frequencies. These
evaluation boards provide all the support circuitry required to
operate the ADC in its various modes and configurations.
Complete schematics are shown in Figure 67 through Figure 70.
Gerber files are available from engineering applications demon-
strating the proper routing and grounding techniques that should
be applied at the system level.
It is critical that signal sources with very low phase noise
(<60 fsec rms jitter) be used to realize the ultimate performance
of the converter. Proper filtering of the input signal to remove
harmonics and lower the integrated noise at the input is also
necessary to achieve the specified noise performance.
The evaluation boards are shipped with a 115 V ac to 6 V dc
power supply. The evaluation boards include low dropout
regulators to generate the various dc supplies required by the
AD9445 and its support circuitry. Separate power supplies are
provided to isolate the DUT from the support circuitry. Each
input configuration can be selected by proper connection of
various jumpers (see Figure 67).
The LVDS mode evaluation boards include an LVDS-to-CMOS
translator, making them compatible with the high speed ADC
FIFO evaluation kit (HSC-ADC-EVALA-SC). The kit includes a
high speed data capture board that provides a hardware solution
for capturing up to 32 kB samples of high speed ADC output
data in a FIFO memory chip (user upgradeable to 256 kB
samples). Software is provided to enable the user to download
the captured data to a PC via the USB port. This software also
includes a behavioral model of the AD9445 and many other
high speed ADCs.
Behavioral modeling of the AD9445 is also available at
www.analog.com/ADIsimADC. The ADIsimADC™ software
supports virtual ADC evaluation using ADI proprietary behavioral
modeling technology. This allows rapid comparison between
the AD9445 and other high speed ADCs with or without
hardware evaluation boards.
The user can choose to remove the translator and terminations
to access the LVDS outputs directly.
AD9445
Rev. 0 | Page 30 of 40
OPTIONAL
15
20
23
97
96
86
12
21
22
16
95
24
25
26
27
34
92
93
94
28
29
30
31
40
39
19
41
42
35
38
90
91
87
18
9
64
63
43
44
72
73
76
77
78
79
80
81 45
46
49
50
51
52
55
56
57
58
59
60
65
66
68
69
70
71
6
88
84
85
48
53
61
67
74
82
47
54
62
75
83
32
33
100
89 36
37
101
98
7
14
13
10
99
11
17
2
3
4
5
8
1
R11
1kΩ
VCC
GND
R3
3.74kΩ
DRGND
DRVDD
E24
EXTREF
D0_C (LSB)
D0_T
D1_C
D1_T
D3_C
D3_T
D4_C
D4_T
D5_C
D5_T
D7_C
D7_T
DR
D8_C/D0_Y
D8_T/D1_Y
D9_C/D2_Y
D9_T/D3_Y
D10_C/D4_Y
C98
DNP
GND
D15_C/D14_Y
E41
E25
E27
E26
VCC
GND
E6 E5
E4
GND
C3
0.1μF
C9
0.1μF
C86
0.1μF
R1
DNP
GND
5V
VCC
D14_C/D12_Y
DRGND
D6_T
D2_T
DRGND
D13_T/D11_Y
D10_T/D5_Y
DRB
D6_C
D2_C
DRVDD
D14_T/D13_Y
GND
VCC
D13_C/D10_Y
D12_T/D9_Y
D12_C/D8_Y
D11_T/D7_Y
D11_C/D6_Y
DRVDD
VCC
VCC
GND
VCC
VCC
VCC
5V
VCC
ENCB
GND
ENC
GND
VCC
5V
VCC
5V
GND
VCC
5V 5V
5V
5V
5V
GND
SCLK
VCC
VCC
GND
VCC
GND
5V
C13
DNP
R35
33Ω
R28
33Ω
R9
DNP
C91
0.1μF
C8
0.1μF
GND
GND
VCC
GND
VCC
EPAD
AD9445/AD9446
U1
R4
36Ω
P1
P2
P3
P22
PTMICRO4
VCC
5V
GND
GND
P4
1
2
3
4
P1
P2
P3
P21
PTMICRO4
EXTREF
DRVDD
XTALPWR
DRGND
P4
1
2
3
4
DCS MODE
DNC
OUTPUT MODE
DFS
LVDSBIAS
AVDD1
SENSE
VREF
AGND
REFT
REFB
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD1
AVDD1
AVDD1
AGND
VIN+
VIN–
AGND
AVDD2
VCC
DRGND
DOR_C
DOR_T/DOR_Y
GND
VCC
VCC
DRVDD
(MSB) D15_T/D15_Y
E1 E9
E10
GND
VCC
E14 E2
E3
GND
VCC
E66 E18
E19
GND
VCC
C12
0.1μF
C5
0.1μF
J4
SMBMST
R5
DNP
GND
TINB
GND
ANALOG
L1
10nH
E15 R6
36Ω
R2
DNP C51
10μFC2
0.1μF
C40
0.1μF
GND
GND
05489-062
DRGND
D10_T
D10_C
D9_T
D9_C
D8_T
D8_C
DCO
DCOB
D7_T
D7_C
DRVDD
DRGND
D6_T
D6_C
D5_T
D5_C
D4_T
D4_C
D3_T
D3_C
D2_T
D2_C
D1_T
D1_C
D12_T
D12_C
D11_T
D11_C
DRVDD
AGND
AGND
AGND
AVDD1
AVDD1
AVDD1
AVDD1
OR_C
OR_T
AGND
AVDD1
AVDD1
DRVDD
DRGND
D15_T
D15_C
D14_T
D14_C
D13_T
D13_C
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD1
AVDD1
AVDD1
AVDD2
AVDD1
AVDD2
AVDD1
ENC
AGND
ENCB
AGND
AVDD1
AVDD1
AVDD1
AGND
DRGND
DRVDD
D0_C
D0_T
H4
MTHOLE6
GND
DRGND
H3
MTHOLE6
H1
MTHOLE6
H2
MTHOLE6
GND C39
10μF
+
TOUT
CT
TOUTB
C7
0.1μF
PRI SEC
GND
GND
T5
ADT1-1WT
T2
1
5
3
6
2
4
NC
GND
GND
TINB TOUTB
TOUT
CT
PRI SEC
ETC1-1-13
3
4
1
25
PRI SEC
T1
ETC1-1-13
15
34
2
Figure 67. AD9445 Evaluation Board Schematic
AD9445
Rev. 0 | Page 31 of 40
IN
OUT OUT1
5V
C34
10μF
C89
10μF
3
42
1
ADP3338
U14
GND
GND
GND
5VX
5VX
5VX5V
GND
VIN
GND
+
+
IN
OUT OUT1
3.3V
L3
FERRITE
C6
10μF
C87
10μF
3
42
1
ADP3338
U7
GND
GND
VCCX
VCCX
GND
VIN
GND
+
+
IN
OUT OUT1
3.3V
C4
10μF
C88
10μF
3
42
1
ADP3338
U3
DRGND
DRGND
DRVDD
X
DRVDDX
DRGND
VIN
GND
+
+
PJ-102A
C33
10μF
1
3
2
P4
GND
VIN
+
1
3
2
POWER OPTIONS
ADT1-1WT
PRI SEC
NC
ENC
ENCB
GND
J5
SMBMST
R7
DNP
DNP
R39
0Ω
R8
50Ω
C26
0.1μF
C36
DNP
12
3
56
T3
23
1
CR2
CR1
C42
0.1μFGND
XTALINPUT
GND
CR2 TO MAKE LAYOUT AND PARASITIC
LOADING SYMMETRICAL
4
J1
SMBMST
1
32
ENCODE
GND
OUTVCC
VEE ~OUT
+
GND
GND
XTALINPUT
E30
C1
10μF
E31
8
14
7
U6
ECLOSC
E20
VXTAL
GND
5V
XTALPWR
VXTAL
VXTAL
1
+C44
10μF
C41
0.1μF
OPTIONAL ENCODE CIRCUITS
VCCXVCC
L4
FERRITE
DRVDDXDRVDD
L5
FERRITE
DRGNDGND
L2
DNP
05489-063
Figure 68. AD9445 Evaluation Board Schematic (Continued)
AD9445
Rev. 0 | Page 32 of 40
C96
0.1μFC97
0.1μFC84
0.1μFC46
0.1μF
C22
0.1μFC59
0.1μFC93
0.1μF
C94
0.1μFC95
0.1μF
5V
GND
C60
0.1μFC10
0.1μFC61
0.1μFC75
0.1μF
C27
0.1μFC90
0.1μFC50
0.1μF
C30
0.01μFC28
0.1μF
C35
0.1μFC32
0.1μF
VCC
BYPASS CAPACITORS
GND
C31
XX C38
XX C29
XX C19
XX
C17
XX C16
XX C15
XX
C11
XX C14
XX
VCC
GND
C37
0.1μFC48
0.1μFC18
0.1μF
C53
0.1μFC52
0.1μFC58
0.01μF
C56
10μF
+C85
0.1μF
5V
GND
C110
XX
C108
XX C109
XX
C72
XX C73
XX
5V
GND
C21
0.1μFC20
0.1μF
C65
10μF
+C47
0.1μFC23
0.1μF
DRVDD
DRGND
C64
10μF
+C43
0.1μF
C45
XX C49
XX
C69
XX C70
XX
DRVDD
DRGND
C55
10μF
+
EXTREF
GND
05489-064
Figure 69. AD9445 Evaluation Board Schematic (Continued)
AD9445
Rev. 0 | Page 33 of 40
05489-065
RSO16ISO
220
R8
R7
R6
R5
R4
R3
R1
R2
RSO16ISO
220
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ4
8
7
6
5
4
3
1
2
16
15
14
13
12
11
10
9
RZ5
D1O
D0O
D2O
D4O
D5O
D6O
D7O
D3O
D8O
D9O
D10O
D11O
D12O
D13O
D14O
D15O
GND5
VCC6
VCC5
GND4
END
D4Y
D3Y
D2Y
D1Y
ENC
C4Y
C3Y
C2Y
C1Y
GND3
VCC4
VCC3
GND2
B4Y
B3Y
B2Y
B1Y
ENB
A4Y
A3Y
A2Y
A1Y
ENA
GND1
VCC2
VCC1
GND
D4B
D4A
D3B
D3A
D2B
D2A
D1B
D1A
C4B
C4A
C3B
C3A
C2B
C2A
C1B
C1A
B4B
B4A
B3B
B3A
B2B
B2A
B1B
B1A
A4B
A4A
A3B
A3A
A2B
A2A
A1B
A1A
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
U8
SN75LVDS386
D15_C/D14_Y
D14_C/D12_Y
D13_C/D10_Y
D12_C/D8_Y
D11_C/D6_Y
D10_C/D4_Y
D9_C/D2_Y
D3_C
D15_T/D15_Y
D14_T/D13_Y
D13_T/D11_Y
D12_T/D9_Y
D11_T/D7_Y
D10_T/D5_Y
D9_T/D3_Y
D8_T/D1_Y
D8_C/D0_Y
D7_T
D7_C
D6_T
D6_C
D5_C
D5_T
D4_T
D4_C
D3_T
D2_T
D2_C
D1_T
D1_C
D0_T
D0_C
DRVDD
DRVDD
DRGND
DRGND
DRGND
DRVDD
DRVDD
DRGND
DRVDD
DRVDD
DRGND
DRVDD
DRVDD
DRVDD
DRVDD
DRGND
P1
P3
P5
P7
P9
P11
P13
P15
P17
P19
P21
P23
P25
P27
P29
P31
P33
P35
P37
P39
P2
P4
P6
P8
P10
P12
P14
P16
P18
P20
P22
P24
P26
P28
P30
P32
P34
P36
P38
P40
P6
C40MS
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
D14_C/D12_Y
D12_C/D8_Y
D10_C/D4_Y
D8_C/DO_Y
DRB
D7_C
D4_C
D3_C
D2_C
D5_C
D6_C
D9_C/D2_Y
D11_C/D6_Y
D13_C/D10_Y
D1_C
DOR_C
DRGND
D15_C/D14_Y
DRGND
D0_C
D14_T/D13_Y
D12_T/D9_Y
D10_T/D5_Y
D8_T/D1_Y
DR
D7_T
D4_T
D3_T
D2_T
D5_T
D6_T
D9_T/D3_Y
D11_T/D7_Y
D13_T/D11_Y
D1_T
DOR_T/DOR_Y
DRGND
D15_T/D15_Y
DRGND
D0_T R8
R7
R6
R5
R4
R3
R1
R2
EN_3_4
4Y
3Y
GND
VCC
2Y
1Y
EN_1_2
4B
4A
3B
3A
2B
2A
1B
1A
9
10
11
12
13
14
15
16
8
7
6
5
4
3
2
1
U15
SN75LVDT390
R19
0Ω
R10
0Ω
DRB
DOR_C
DR
DOR_T/DOR_Y
DRO
DRVDD
DRVDD
DRGND
ORO
DRVDD
C76
0.1μFC82
0.1μFC77
0.1μFC78
0.1μF
DRVDD
DRGND
P1
P3
P5
P7
P9
P11
P13
P15
P17
P19
P21
P23
P25
P27
P29
P31
P33
P35
P37
P39
P2
P4
P6
P8
P10
P12
P14
P16
P18
P20
P22
P24
P26
P28
P30
P32
P34
P36
P38
P40
P7
C40MS
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
D15O
D13O
D11O
D9O
D8O
D7O
D4O
D3O
D2O
D5O
D6O
D10O
D12O
D14O
D1O
DRO
DRGND DRGND
GNDN
DRGND
ORO
DRGND
D0O
Figure 70. AD9445 Evaluation Board Schematic (Continued)
AD9445
Rev. 0 | Page 34 of 40
Table 11. AD9445-125 Baseband Customer Evaluation Board Bill of Materials
Item Qty. Reference Designator Description Package Value Manufacturer Mfg. Part No.
1 7
C4, C6, C33, C34, C87,
C88, C89
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
2 44
C2, C3, C5, C7, C8,
C9, C10, C11, C12,
C15, C20, C21, C22,
C23, C26, C27, C28,
C32, C35, C38, C40,
C42, C43, C46, C47,
C48, C50, C52, C53,
C59, C60, C76, C77,
C78, C82, C84, C85,
C86, C90, C91, C94,
C95, C96, C97
Capacitor 402 0.1 F Digi-Key Corporation PCC2146CT-ND
3 2 C30, C58 Capacitor 201 0.01 F Digi-Key Corporation 445-1796-1-ND
4 4 C39, C56, C64, C65 Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
5 1 C51 Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND
6 1 CR1 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND
7 1 CR2 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND
8 20
E1, E2, E3, E4, E5, E6,
E9, E10, E14, E18, E19,
E20, E24, E25, E26, E27,
E30, E31, E36, E41
Header EHOLE Mouser Electronics 517-6111TG
9 2 J1, J4 SMA SMA Digi-Key Corporation ARFX1231-ND
10 1 L1 Inductor 0603A 10 nH Coilcraft, Inc. 0603CS-10NXGBU
11 3 L3, L4, L5 EMIFIL®
BLM31PG500SN1L
1206MIL Mouser Electronics 81-BLM31P500S
12 1 P4 PJ-002A PJ-002A Digi-Key Corporation CP-002A-ND
13 1 P7 Header C40MS Samtec, Inc. TSW-120-08-L-D-RA
14 1 R3 Resistor 402 3.74 kΩ Digi-Key Corporation P3.74KLCT-ND
15 1 R8 Resistor 402 50 Ω Digi-Key Corporation P49.9LCT-ND
16 4 R10, R19, R39, L2 Resistor 402 0 Ω Digi-Key Corporation P0.0JCT-ND
17 1 R11 BRES402 402 1 kΩ Digi-Key Corporation P1.0KLCT-ND
18 2 R28, R35 Resistor 402 33 Ω Digi-Key Corporation P33JCT-ND
19 2 RZ4, RZ5 Resistor array 16PIN 22 Ω Digi-Key Corporation 742C163220JCT-ND
20 2 T3, T5 Transformer ADT1-1WT Mini-Circuits ADT1-1WT
21 1 U1 AD9445BSVZ-125 SV-100-3 Analog Devices, Inc. AD9445BSVZ-125
22 1 U14 ADP3338-5 SOT-223HS Analog Devices, Inc. ADP3338-5
23 2 U3, U7 ADP3338-3.3 SOT-223HS Analog Devices, Inc. ADP3338-33
24 1 U8 SN75LVDT386 TSSOP64 Arrow Electronics, Inc. SN75LVDT386DGG
25 1 U15 SN75LVDT390 SOIC16PW Arrow Electronics, Inc. SN75LVDT390PW
26 2 R4, R6 Resistor 402 36 Ω Digi-Key Corporation P36JCT-ND
27 2 C1, C44, C551Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
28 23
C13, C14, C16, C17,
C18, C19, C29, C31,
C36, C37, C41, C45,
C49, C61, C69, C70,
C72, C73, C75, C93,
C108, C109, C1101
CAP402 402 XX
29 1 C981Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND
30 E151Header EHOLE Mouser Electronics 517-6111TG
31 J51SMA SMA Digi-Key Corporation ARFX1231-ND
32 P61Header C40MS Samtec, Inc. TSW-120-08-L-D-RA
33 2 R1, R21BRES402 402 XX
34 3 R5, R7, R91BRES402 402 XX
35 1 U21ECLOSC DIP4(14)
AD9445
Rev. 0 | Page 35 of 40
Item Qty. Reference Designator Description Package Value Manufacturer Mfg. Part No.
36 4 H1, H2, H3, H41MTHOLE6 MTHOLE6
37 2 T1, T21Balun transformer SM-22 M/A-COM ETC1-1-13
38 2 P21, P221Term strip PTMICRO4 Newark Electronics
1 Parts not populated.
Table 12. AD9445-125 IF Customer Evaluation Board Bill of Materials
Item Qty. Reference Designator Description Package Value Manufacturer MFG_PART_NO
1 7
C4, C6, C33, C34, C87,
C88, C89
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
2 44
C2, C3, C5, C7, C8,
C9, C10, C11, C12,
C15, C20, C21, C22,
C23, C26, C27, C28,
C32, C35, C38, C40,
C42, C43, C46, C47,
C48, C50, C52, C53,
C59, C60, C76, C77,
C78, C82, C84, C85,
C86, C90, C91, C94,
C95, C96, C97
Capacitor 402 0.1 F Digi-Key Corporation PCC2146CT-ND
3 2 C30, C58 Capacitor 201 0.01 F Digi-Key Corporation 445-1796-1-ND
4 4 C39, C56, C64, C65 Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
5 1 C51 Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND
6 1 CR1 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND
7 1 CR2 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND
8 20
E1, E2, E3, E4, E5, E6,
E9, E10, E14, E18, E19,
E20, E24, E25, E26, E27,
E30, E31, E36, E41
Header EHOLE Mouser Electronics 517-6111TG
9 2 J1, J4 SMA SMA Digi-Key Corporation ARFX1231-ND
10 1 L1 Inductor 0603A 10 nH Coilcraft, Inc. 0603CS-10NXGBU
11 3 L3, L4, L5 EMIFIL® BLM31PG500SN1L 1206MIL Mouser Electronics 81-BLM31P500S
12 1 P4 PJ-002A PJ-002A Digi-Key Corporation CP-002A-ND
13 1 P7 Header C40MS Samtec, Inc. TSW-120-08-L-D-RA
14 1 R3 Resistor 402 3.74 kΩ Digi-Key Corporation P3.74KLCT-ND
15 1 R8 Resistor 402 50 Ω Digi-Key Corporation P49.9LCT-ND
16 4 R10, R19, R39, L2 Resistor 402 0 Ω Digi-Key Corporation P0.0JCT-ND
17 1 R11 BRES402 402 1 kΩ Digi-Key Corporation P1.0KLCT-ND
18 2 R28, R35 Resistor 402 33 Ω Digi-Key Corporation P33JCT-ND
19 2 RZ4, RZ5 Resistor array 16PIN 22 Ω Digi-Key Corporation 742C163220JCT-ND
20 1 U1 AD9445BSVZ-125 SV-100-3 Analog Devices, Inc. AD9445BSVZ-125
21 1 U14 ADP3338-5 SOT-
223HS
Analog Devices, Inc. ADP3338-5
22 2 U3, U7 ADP3338-3.3 SOT-223HS Analog Devices, Inc. ADP3338-3.3
23 1 U8 SN75LVDT386 TSSOP64 Arrow Electronics, Inc. SN75LVDT386DGG
24 1 U15 SN75LVDT390 SOIC16PW Arrow Electronics, Inc. SN75LVDT390PW
25 2 T1, T2 Balun transformer SM-22 M/A-COM ETC-1-1-13
26 1 R5 Resistor 402 36 Ω Digi-Key Corporation P49.9LCT-ND
27 1 T3 Transformer ADT1-1WT Mini-Circuits ADT1-1WT
28 2 C1, C44, C551Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
AD9445
Rev. 0 | Page 36 of 40
Item Qty. Reference Designator Description Package Value Manufacturer MFG_PART_NO
29 23
C13, C14, C16, C17,
C18, C19, C29, C31,
C36, C37, C41, C45,
C49, C61, C69, C70,
C72, C73, C75, C93,
C108, C109, C1101
CAP402 402 XX
30 1 C981Capacitor 805 10 F Digi-Key Corporation 409-1717-1-ND
31 E151Header EHOLE Mouser Electronics 517-6111TG
32 J51SMA SMA Digi-Key Corporation ARFX1231-ND
33 P61Header C40MS Samtec, Inc. TSW-120-08-L-D-RA
34 2 R1, R21BRES402 402 XX
35 3 R5, R7, R91BRES402 402 XX
36 1 U21ECLOSC DIP4(14)
37 4 H1, H2, H3, H41MTHOLE6 MTHOLE6
38 2 R4, R61Resistor 402 36 Digi-Key Corporation P36JCT-ND
39 1 T51Transformer ADT1-1WT Mini-Circuits ADT1-1WT
40 2 P21, P221Term strip PTMICRO4 Newark Electronics
1 Parts not populated.
AD9445
Rev. 0 | Page 37 of 40
OUTLINE DIMENSIONS
COMP LIANT TO JEDEC S TANDARDS MS-026-AE D-HD
0.27
0.22
0.17
1
2526 49
76100 75
50
14.00 BSC SQ
16.00 BS C S Q
0.50 BS C
LEAD P ITCH
0.75
0.60
0.45
1.20
MAX
1
25
2650
76 100
75
51
1.05
1.00
0.95
0.20
0.09
0.08 M A X
COPLANARITY
VIEW A
RO TATE D 9 0
°
CCW
SEATING
PLANE
0° M IN
3.5°
0.15
0.05 VIEW A
PIN 1
TOP V IEW
(PINS DOWN)
BO T TOM V IEW
(PINS UP)
9.50 SQ
EXPOSED
PAD
NOTES
1. CENTER FIGURES ARE TYPICAL UNLE S S OT HERW ISE NOTE D.
2. THE PACKAGE HAS A CO NDUCTIV E HEAT S LUG TO HE LP DI S S IPATE HEAT AND ENSURE RE LIABLE O P E RATIO N OF
THE DE VICE OVER THE F ULL I NDUS T RIAL TEMPE RATURE RANGE. THE SLUG IS EX P OSED O N THE BO TTO M OF
THE PACKAGE AND ELECTRI CALLY CONNECT ED TO CHI P GROUND. IT IS RECOMME NDED THAT NO P CB S IGNAL
TRACE S OR VI AS BE L OCAT E D UNDE R T HE PACKAG E THAT COULD COME IN CONTACT W IT H THE CO NDUCT IVE
SL UG.ATTACHING THE SLUG TO A G ROUND PLANE WILL REDUCE THE JUNCTI ON TE MPER ATURE OF THE
DEVICE W HICH MAY BE BE NE FICIAL IN HI GH TEMPE RATURE ENVIRONMENTS.
Figure 71. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-100-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model Temperature Range Package Description Package Option
AD9445BSVZ-125 –40°C to +85°C 100-Lead TQFP_EP SV-100-3
1
AD9445BSVZ-105 –40°C to +85°C 100-Lead TQFP_EP SV-100-3
1
AD9445-IF-LVDS/PCB AD9445-125 IF (>100 MHz) LVDS Mode Evaluation Board
AD9445-BB-LVDS/PCB AD9445-125 Baseband (<100 MHz) LVDS Mode Evaluation Board
1 Z = Pb-free part.
AD9445
Rev. 0 | Page 38 of 40
NOTES
AD9445
Rev. 0 | Page 39 of 40
NOTES
AD9445
Rev. 0 | Page 40 of 40
NOTES
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05489–0–10/05(0)