50 GHz Wideband Analog Attenuator TGL4203 Key Features and Performance * * * * * * 0.25um 3MI MMW pHEMT Broadband Response DC to > 50 GHz 2dB typical Insertion Loss 17dB Variable Attenuation Range 15dB typical Return Loss Bias: -1V to 0V Primary Applications Chip Dimensions 1.7mm x 0.8 mm x 0.1mm * Point to Point Radio * Fiber Optic * Wideband Military & Space 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 A tte n u a tio n (d B ) In s e r tio n L o s s (d B ) Typical Electrical Characteristics 0 20 18 16 14 12 10 8 6 4 2 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 -3 -6 -9 -12 -15 -18 -21 -24 -27 -30 Frequency (GHz) G r o u p D e la y (p s e c ) R e tu rn L o s s S 1 1 (d B ) Frequency (GHz) 0 5 10 15 20 25 30 35 40 45 50 Frequency (GHz) 40 35 30 25 20 15 10 5 0 0 5 Bias Voltages Optimized for Flatness of Attenuation with respect 10 15 20 25 30 35 40 45 50 to Reference over Frequency Frequency (GHz) 1 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 TABLE I MAXIMUM RATINGS 1/ SYMBOL PARAMETER VALUE Attenuation Control Voltage Range -5 to +0.5 V | IG1 | Gate 1 Supply Current 2.2 mA | IG2 | Gate 2 Supply Current 19.8 mA PIN Input Continuous Wave Power 24 dBm PD Power Dissipation TCH Operating Channel Temperature 200 C TM Mounting Temperature (30 Seconds) 320 C TSTG NOTES TBD Storage Temperature 2/ -65 to 150 C 1/ These ratings represent the maximum operable values for this device. 2/ Junction operating temperature will directly affect the device median time to failure (TM). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels. TABLE II ELECTRICAL CHARACTERISTICS (Ta = 25 C Nominal) PARAMETER TEST CONDITIONS DC ~ 50 GHz MIN TYP MAX UNIT -1.3 -1 to 0 0 V 1.4 1.9 2.5 15 15 15 2 2.5 4 17 20 dB IL Attenuation Control Voltage Insertion Loss IRL Maximum Attenuation (max - min) Insertion Loss Input Return Loss DC - 20 GHz 20 - 40 GHz 40 - 50 GHz DC - 20 GHz 20 - 50 GHz DC ~ 50 GHz ORL Output Return Loss DC ~ 50 GHz 15 dB Pin1dB Input Power @ 1dB Atten. Change Group Delay Variation 5 to 25 GHz * dBm DC ~ 50 GHz +/-5 psec DC ~ 50 GHz 0.5 dB Max. Insertion Loss Ripple (peak to peak) 13 10 dB dB * Pin1dB varies depending on Attenuation State and frequency. See graphs on page 3 for details 2 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 Typical Pin1dB vs Attenuation Ta = 25 C Nominal Input Power @ 1dB Attenuation Change (dBm) 30 27 24 21 18 15 5 GHz 12 10 GHz 9 15 GHz 6 25 GHz 20 GHz 3 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Attenuation (dB) 3 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 Typical Attenuator Input TOI vs. Attenuation 35 Pin = 0dBm 30 IIP3 (dBm) 25 20 15 0dB 3dB 6dB 10dB 17dB 10 5 0 0 5 10 15 20 25 30 35 40 45 50 Frequency (GHz) 35 Freq = 10GHz 30 IIP3 (dBm) 25 20 15 0dB 3dB 6dB 10dB 17dB 10 5 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 Pin/tone (dBm) 4 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 Typical Attenuator Input TOI vs. Attenuation 35 Freq = 20GHz 30 IIP3 (dBm) 25 20 15 0dB 3dB 6dB 10dB 17dB 10 5 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 Pin/tone (dBm) 35 Freq = 30GHz 30 IIP3 (dBm) 25 20 15 0dB 3dB 6dB 10dB 17dB 10 5 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 Pin/tone (dBm) 5 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 Typical Measurement Over Temperature In p u t R etu rn L o ss (d B ) A tte n u a tio n (d B ) 20 15 10 5 0 -5 0 0 -10 -20 -30 -40 -50 5 10 15 20 25 30 35 40 45 50 Frequency (GHz) 0 5 10 15 20 25 30 35 40 45 50 Frequency (GHz) G ro u p D e lay (p s e c ) 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40 45 50 Frequency (GHz) 6 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 Mechanical Drawing GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. 7 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 DC Schematic GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. 8 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 Chip Assembly Diagram RF Ports must be DC Blocked GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. 9 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev - TGL4203 Assembly Process Notes Reflow process assembly notes: * * * * * Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 C (30 seconds max). An alloy station or conveyor furnace with reducing atmosphere should be used. No fluxes should be utilized. Coefficient of thermal expansion matching is critical for long-term reliability. Devices must be stored in a dry nitrogen atmosphere. Component placement and adhesive attachment assembly notes: * * * * * * * Vacuum pencils and/or vacuum collets are the preferred method of pick up. Air bridges must be avoided during placement. The force impact is critical during auto placement. Organic attachment can be used in low-power applications. Curing should be done in a convection oven; proper exhaust is a safety concern. Microwave or radiant curing should not be used because of differential heating. Coefficient of thermal expansion matching is critical. Interconnect process assembly notes: * * * * * Thermosonic ball bonding is the preferred interconnect technique. Force, time, and ultrasonics are critical parameters. Aluminum wire should not be used. Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire. Maximum stage temperature is 200 C. GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. 10 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com August 2011 (c) Rev -