V23990-K429-A40-PM datasheet (R) 1200 V / 75 A MiniSKiiP 3 PIM MiniSKiiP(R) 3 housing Features Solderless interconnection Trench Fieldstop IGBT4 technology Target Applications Schematic Industrial Motor Drives Types V23990-K429-A40-PM Maximum Ratings T j = 25 C, unless otherwise specified Parameter Condition Symbol Value Unit Rectifier Diode Repetitive peak reverse voltage V RRM 1600 V DC forward current I FAV 50 A Surge (non-repetitive) forward current I FSM 450 A 1020 A2s 93 W T jmax 150 C V CE 1200 V IC 75 A 225 A 222 W t p = 10 ms 2 I t-value I t Power dissipation P tot Maximum Junction Temperature T j = 25 C 2 T j = T jmax T s = 80 C Inverter Switch / Brake Switch Collector-emitter breakdown voltage DC collector current Repetitive peak collector current I CRM t p limited by T jmax Power dissipation P tot T j = T jmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech T j = 150 C V GE = 15 V T jmax 1 T s = 80 C 20 V 10 800 s V 175 C 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Maximum Ratings T j = 25 C, unless otherwise specified Parameter Condition Symbol Value Unit V RRM 1200 V IF 75 A 225 A 154 W T jmax 175 C Storage temperature T stg -40...+125 C Operation temperature under switching condition T op -40...+(T jmax - 25) C Inverter Diode / Brake Diode Repetitive peak reverse voltage DC forward current Repetitive peak forward current I FRM t p limited by T jmax Power dissipation P tot T j = T jmax Maximum Junction Temperature T s = 80 C Thermal Properties Isolation Properties Isolation voltage DC Test voltage* t =2s 5500 V AC voltage t = 1 min V is 2500 V Creepage distance With std lid For more information see handling instructions 6,3 mm Clearance With std lid For more information see handling instructions 6,3 mm Comparative Tracking Index CTI >200 * 100 % tested in production copyright Vincotech 2 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] V GS [V] V r [V] V CE [V] V DS [V] Value I C [A] I F [A] I D [A] T j [C] Unit Min Typ Max 0,8 1,03 0,93 0,92 0,79 0,004 0,005 1,35 Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) V to Slope resistance (for power loss calc. only) rt Reverse current Ir 35 1500 R th(j-s) paste = 2,5 W/mK (HPTP) Gate emitter threshold voltage V GE(th) V CE = V GE Collector-emitter saturation voltage V CEsat Thermal resistance junction to sink 25 125 25 125 25 125 25 125 V V 0,1 1,1 mA K/W 0,75 Inverter Switch / Brake Switch 0,003 15 75 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance junction to sink R th(j-s) 5 5,8 6,5 1,6 1,97 2,42 2,4 0,1 600 10 tr t d(off) 25 25 150 25 150 25 150 R goff = 4 R gon = 4 15 600 75 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA 173 189 30 40 284 359 78 120 6,51 10,61 4,25 6,68 ns mWs 4400 f = 1 MHz 25 0 25 290 pF 235 paste = 2,5 W/mK (HPTP) K/W 0,43 Inverter Diode / Brake Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance junction to sink 75 R gon = 4 15 600 ( di rf/dt )max E rec R th(j-s) 75 25 150 25 150 25 150 25 150 25 150 25 150 1,5 paste = 2,5 W/mK (HPTP) 2,01 2,05 57,3 68,4 310 602 6,29 14,8 1733 384 2,21 5,51 2,8 V A ns C A/s mWs 0,62 K/W 1000 Thermistor Rated resistance R Deviation of R 100 R/R R 100 25 R 100 = 1670 100 P 100 Power dissipation constant -3 3 1670,3125 % 25 mW/K A-value B (25/50) Tol. % 25 7,635*10-3 1/K B-value B (25/100) Tol. % 25 1,731*10-5 1/K Vincotech PTC Reference copyright Vincotech E 3 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Inverter / Brake Characteristics figure 1. Typical output characteristics I C = f(V CE) IGBT figure 2. IGBT Typical output characteristics I C = f(V CE) 200 IC (A) IC (A) 200 150 150 100 100 50 50 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 s 25 C 7 V to 17 V in steps of 1 V figure 3. Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 5 250 s 150 C 7 V to 17 V in steps of 1 V figure 4. Typical diode forward current as a function of forward voltage I F = f(V F) FWD 250 IC (A) IF (A) 75 V CE (V) 60 200 45 150 30 100 15 Tj = Tjmax-25C 50 Tj = 25C Tj = Tjmax-25C Tj = 25C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = s V 4 0,8 250 1,6 2,4 3,2 V F (V) 4 s 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Inverter / Brake Characteristics figure 5. IGBT figure 6. IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) E (mWs) 30 E (mWs) 30 Eon High T 25 25 20 20 Eon Low T Eon High T 15 15 Eoff High T 10 Eon Low T 10 Eoff High T Eoff Low T 5 5 0 Eoff Low T 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = C 25/150 25/150 V CE = 600 V V GE = 15 V R gon = 4 R goff = 4 4 8 12 16 RG( ) 20 With an inductive load at Tj = C 25/150 25/150 V CE = 600 V V GE = 15 V IC = 75 A figure 7. Typical reverse recovery energy loss as a function of collector current E rec = f(I C) FWD figure 8. Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 7,5 E (mWs) 7,5 FWD Erec Tj = Tjmax -25C 6 6 Tj = Tjmax -25C Erec 4,5 4,5 Erec 3 3 Tj = 25C Tj = 25C Erec 1,5 1,5 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at 25/150 Tj = 25/150 C V CE = 600 V V GE = 15 V R gon = 4 copyright Vincotech 4 8 12 16 RG( ) 20 With an inductive load at 25/150 Tj = 25/150 C V CE = 600 V V GE = 15 V IC = 75 A 5 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Inverter / Brake Characteristics figure 9. IGBT figure 10. IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) t ( s) 1 t ( s) 1 tdoff tdoff tdon tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 150 C V CE = 600 V V GE = 15 V R gon = 4 R goff = 4 4 8 12 16 RG( ) 20 With an inductive load at Tj = 150 C V CE = 600 V V GE = 15 V IC = 75 A figure 11. Typical reverse recovery time as a function of collector current t rr = f(I C) FWD figure 12. Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 1 FWD t rr( s) t rr( s) 1 trr 0,8 0,8 Tj = Tjmax -25C Tj = Tjmax -25C trr 0,6 0,6 trr Tj = 25C trr 0,4 0,4 Tj = 25C 0,2 0,2 0 0 0 At Tj = V CE = V GE = R gon = 30 25/150 25/150 600 15 4 copyright Vincotech 60 90 120 I C (A) 0 150 At Tj = VR= IF= V GE = C V V 6 4 25/150 25/150 600 75 15 8 12 16 R g on ( ) 20 C V A V 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Inverter / Brake Characteristics figure 13. FWD figure 14. FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 25 Qrr( C) Qrr( C) 25 Qrr 20 20 Tj = Tjmax -25C Tj = Tjmax -25C 15 10 10 Qrr Tj = 25C Tj = 25C 5 Qrr 5 0 0 0 At Qrr 15 At Tj = V CE = V GE = R gon = 30 60 90 120 I C (A) 150 0 4 8 25/150 25/150 600 C V At Tj = VR= 25/150 25/150 600 C V 15 4 V IF= V GE = 75 15 A V figure 15. Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 12 16 R g on ( ) figure 16. Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 20 FWD 100 IrrM (A) IrrM (A) 100 80 80 Tj = Tjmax -25C Tj = Tjmax - 25C IRRM 60 60 IRRM IRRM Tj = 25C Tj = 25C 40 40 20 20 IRRM 0 0 0 At Tj = V CE = V GE = R gon = 30 25/150 25/150 600 15 4 copyright Vincotech 60 90 120 I C (A) 0 150 At Tj = VR= IF= V GE = C V V 7 4 25/150 25/150 600 75 15 8 12 16 R gon ( ) 20 C V A V 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Inverter / Brake Characteristics figure 17. FWD figure 18. FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 3000 direc / dt (A/ s) direc / dt (A/ s) 3000 dI0/dt dIrec/dt 2500 dI0/dt dIrec/dt 2500 2000 2000 1500 1500 1000 1000 500 500 0 0 0 At Tj = V CE = V GE = R gon = 30 60 90 I C (A) 120 150 0 4 8 25/150 25/150 600 C V At Tj = VR= 25/150 25/150 600 C V 15 4 V IF= V GE = 75 15 A V figure 19. IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) IGBT 12 R gon ( ) 16 figure 20. FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) FWD Zth(j-s) (K/W) 101 Zth(j-s) (K/W) 101 20 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 102 10-1 100 t p (s) 101 tp/T 0,43 K/W 10-5 10-4 At D = R th(j-s) = tp/T 0,62 10-3 FWD thermal model values R (K/W) 1,59E-02 2,98E-02 7,90E-02 Tau (s) 3,18E+00 2,71E-01 4,84E-02 R (K/W) 2,30E-02 4,31E-02 1,14E-01 Tau (s) 4,61E+00 3,92E-01 7,01E-02 2,29E-01 4,27E-02 2,86E-02 1,97E-03 1,62E-02 3,15E-03 4,83E-04 2,33E-04 3,31E-01 6,18E-02 4,14E-02 2,86E-03 2,34E-02 4,55E-03 6,99E-04 3,38E-04 8 102 10-1 100 t p (s) 101 K/W IGBT thermal model values copyright Vincotech 10-2 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Inverter / Brake Characteristics figure 21. Power dissipation as a IGBT figure 22. Collector current as a function of heatsink temperature P tot = f(T s) IGBT function of heatsink temperature I C = f(T s) 100 IC (A) Ptot (W) 450 400 80 350 300 60 250 200 40 150 100 20 50 0 0 0 At Tj = 50 175 100 150 T s ( o C) 200 0 At Tj = V GE = C figure 23. Power dissipation as a FWD 50 175 15 100 150 T s ( o C) C V figure 24. Forward current as a function of heatsink temperature P tot = f(T s) 200 FWD function of heatsink temperature I F = f(T s) 100 IF (A) Ptot (W) 300 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = C 9 50 175 100 150 T s ( o C) 200 C 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Inverter / Brake Characteristics figure 25. Safe operating area as a function IGBT figure 26. Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) 103 IGBT IC (A) VGE (V) 16 10uS 14 240 V 100uS 102 12 960 V 100mS DC 10mS 1mS 10 101 8 6 100 4 10-1 2 0 100 At D = Ts = V GE = Tj = 102 101 103 0 copyright Vincotech 100 150 200 250 300 350 400 Q g (nC) At IC = single pulse 80 15 T jmax 50 V CE (V) 75 A C V 10 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Rectifier Diode figure 1. Diode figure 2. Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 100 IF (A) Zth(j-s) (K/W) 100 80 10-1 60 Tj = 25C Tj = Tjmax-25C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 40 10-2 20 0 0 At tp = 0,3 250 0,6 0,9 1,2 V F (V) 10-3 1,5 s figure 3. Diode 10-5 10-4 At D = R th(j-s) = tp/T 0,75 10-2 10-1 102 100 t p (s) 101 K/W figure 4. Power dissipation as a function of heatsink temperature P tot = f(T s) Diode Forward current as a function of heatsink temperature I F = f(T s) 100 IF (A) 210 Ptot (W) 10-3 180 80 150 60 120 90 40 60 20 30 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T s ( o C) 150 0 At Tj = C 11 30 150 60 90 120 T s ( o C) 150 C 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Thermistor figure 1. Thermistor Typical PTC characteristic as a function of temperature R T = f(T ) PTC-typical temperature characteristic R () 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (C) 125 12 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Switching Definitions Inverter General conditions Tj = 150 C = 4 R gon R goff = 4 figure 1. IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff figure 2. IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 200 IC 125 170 VCE tdoff 140 100 VCE 90% VGE 90% VCE 110 75 % IC % 80 tEoff 50 VGE tdon 50 25 VGE IC10% 20 IC 1% VCE 3% VGE10% 0 -10 -25 -0,2 tEon -0,1 0 0,1 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 600 t doff = t E off = 0,3 0,4 0,5 0,6 0,7 -40 0,8 0,9 time (us) 2,8 2,9 3 3,1 3,2 V V V V GE (0%) = V GE (100%) = V C (100%) = 75 A I C (100%) = 75 A 0,36 0,73 s s t don = t E on = 0,19 0,58 s s figure 3. Turn-off Switching Waveforms & definition of t f IGBT -15 15 600 3,4 3,5 3,6 3,7 time(us) V V V figure 4. Turn-on Switching Waveforms & definition of t r 140 IGBT 200 fitted Ic 120 170 VCE 100 140 IC IC 90% 80 VCE 110 IC 60% %60 IC90% % 80 IC 40% 40 tr 50 20 20 IC10% IC10% tf 0 -20 0,25 3,3 -10 -40 0,3 0,35 0,4 0,45 0,5 0,55 0,6 time (us) 3,1 3,2 3,3 3,4 V C (100%) = I C (100%) = 600 75 V A V C (100%) = I C (100%) = 600 75 V A tf = 0,12 s tr = 0,04 s copyright Vincotech 13 3,5 3,6 time(us) 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Switching Definitions Inverter figure 5. Turn-off Switching Waveforms & definition of t Eoff IGBT figure 6. Turn-on Switching Waveforms & definition of t Eon 120 IGBT 180 Pon Eoff Poff 100 150 80 120 Eon 90 60 % % 60 40 30 20 Uce3% Uge10% VGE 90% 0 0 tEon tEoff IC 1% -30 -20 -0,2 -0,05 0,1 P off (100%) = E off (100%) = t E off = 0,25 0,4 time (us) 45,10 6,68 0,73 0,55 0,7 2,9 0,85 kW mJ s 3 P on (100%) = E on (100%) = t E on = figure 7. Turn-off Switching Waveforms & definition of t rr 3,1 3,2 45,10 10,61 0,58 3,3 time(us) 3,4 3,5 3,6 3,7 kW mJ s FWD 120 Id 80 trr 40 % 0 Vd IRRM10% -40 fitted -80 IRRM100% IRRM90% -120 3 3,2 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,4 600 75 -68 0,60 time(us) 3,6 3,8 4 V A A s 14 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Switching Definitions Inverter figure 8. Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) FWD figure 9. Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 140 FWD 120 Id Erec Qrr 100 100 80 tErec tQrr 60 60 % 20 % 40 -20 20 Prec -60 0 -100 -20 3 3,2 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,4 3,6 75 14,81 1,20 3,8 time(us) 4 4,2 4,4 4,6 3 A C s 3,2 P rec (100%) = E rec (100%) = t E rec = 15 3,4 3,6 45,10 5,51 1,20 3,8 time(us) 4 4,2 4,4 4,6 kW mJ s 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code With std lid (6.5mm height) + no thermal grease V23990-K429-A40-/0A/-PM With thin lid (2.8mm height) + no thermal grease V23990-K429-A40-/0B/-PM With std lid (6.5mm height) + thermal grease (0,8 W/mK, P12, silicone-based) V23990-K429-A40-/1A/-PM With thin lid (2.8mm height) + thermal grease (0,8 W/mK, P12, silicone-based) V23990-K429-A40-/1B/-PM With std lid (6.5mm height) + thermal grease (2,5 W/mK, TG20032, silicone-free) V23990-K429-A40-/4A/-PM With thin lid (2.8mm height) + thermal grease (2,5 W/mK, TG20032, silicone-free) V23990-K429-A40-/4B/-PM With std lid (6.5mm height) + thermal grease (2,5 W/mK, HPTP, silicone-based) V23990-K429-A40-/5A/-PM V23990-K429-A40-/5B/-PM With thin lid (2.8mm height) + thermal grease (2,5 W/mK, HPTP, silicone-based) VIN Date code Name&Ver UL Lot Serial VIN WWYY NNNNNNVV UL LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Text Datamatrix Outline PCB pad table PCB pad table Pin X Y Function Pin X Y Function 1 15,83 -25,3 G5 45 -25,9 2,2 +B 2 15,83 -6,4 E5 46 10,82 8,74 B 3 15,83 -3,2 W 47 10,82 11,94 B 4 15,83 0 W 48 -32,82 8,74 B 5 15,83 3,2 W 49 -32,82 11,94 B 6 15,83 6,4 W 50 4,32 22,1 -B 7 Not assembled 51 4,32 25,3 -B 8 Not assembled 52 3,42 -25,3 +rect 3,42 -22,1 +rect 9 15,83 22,1 G6 53 10 15,83 25,3 E6 54 11 8,13 -25,3 -T 55 12 8,13 -22,1 +T 56 3,42 -9,3 +DC 57 3,42 -6,1 +DC 58 -39,32 15,7 GB 59 -39,32 18,9 EB -B 13 14 15 Not assembled 8,13 25,3 -DC Not assembled Not assembled Not assembled 16 41,82 -12,2 E3 60 -39,32 22,1 17 41,82 -8,98 V 61 -39,32 25,3 -B 18 41,82 -5,79 V 62 -40,22 -25,3 +rect 19 0,43 22,1 G4 63 -40,22 -22,1 +rect 20 0,43 25,3 E4 64 21 -1,07 -25,3 G3 Not assembled 65 Not assembled 22 Not assembled 66 -40,22 -9,3 +DC 23 Not assembled 67 -40,22 -6,09 +DC 24 -1,82 -8,98 V 68 -10,18 -25,3 L1 25 -1,82 -5,79 V 69 -10,18 -22,1 L1 26 27 Not assembled 70 Not assembled 71 Not assembled Not assembled 28 -7,27 25,3 -DC 72 -10,18 -9,5 29 -14,97 22,1 G2 73 -10,18 -6,3 L2 30 -14,97 25,3 E2 74 -10,18 6,3 -rect 31 75 -10,18 9,5 -rect 32 23,95 -11,8 U 76 -10,18 22,1 L3 33 23,95 -8,63 U 77 -10,18 25,3 L3 34 23,95 -5,42 E1 78 -53,82 -25,3 L1 35 -19,22 -25,3 G1 79 -53,82 -22,1 L1 36 Not assembled L2 Not assembled 80 Not assembled 37 -19,7 -11,8 U 81 38 -19,7 -8,62 U 82 -53,82 -9,5 L2 83 -53,82 -6,3 L2 39 40 Not assembled 17,74 -1 +B 84 Not assembled Not assembled 41 17,74 2,2 +B 85 -53,82 6,3 -rect 42 -22,67 22,1 -DC 86 -53,82 9,5 -rect 43 -22,67 25,3 -DC 87 -53,82 22,1 L3 44 -25,9 -1 +B 88 -53,82 25,3 L3 Pad positions refers to center point. For more informations on pad design please see package data copyright Vincotech 16 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Pinout Identification ID Component Voltage Current Function T1,T2,T3,T4,T5,T6 IGBT 1200 V 75 A Inverter Switch D1,D2,D3,D4,D5,D6 FWD 1200 V 75 A Inverter Diode T7 IGBT 1200 V 75 A Brake Switch D7 FWD 1200 V 75 A Brake Diode D8,D9,D10,D11,D12,D13 Rectifier 1600 V 50 A Rectifier Diode PTC1 PTC copyright Vincotech Comment Thermistor 17 28 Jan. 2018 / Revision 7 V23990-K429-A40-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 48 Standard