Features
Power Supply Control
Power Supply Control: Power-on Factor (2 External Signals and 2 Internal Signals)
Battery Voltage Detection
Reset Detection
Thermal Protection
SMPL (Sudden Momentary Power Loss) Function
Power Supply Function
Step-down DC/DC Converter × 1 (One-shot PWM)
LDO × 9 (ECO-mode for LDO1 and 3)
Over-current Protection (All Linear Regulators)
Li-ion Battery Charger
CC/CV Charge
Internal P-MOS, Current Sense Resistor and Schottky Diode
Charge Current Control by Chip Temperature
White LED Driver and Charge Pump
White LED Driver for Backlight: Up to 25 mA/LED x 4
White LED Driver Charge Pump: Up to 100 mA
RTC
Built-In Coin Charge Regulator
32 kHz Crystal Oscillator (with Time Adjustment Function)
32 kHz Output
Audio CODEC
Voice CODEC: 16-bit Linear CODEC
Audio DAC: 16-bit Linear Stereo DAC
Tone Generator: Supports 16 DTMF Tones
Mono MIC Amplifier: Differential Amplifier
Stereo Headphone Amplifier: 22 mW (32 Ohm Load)
Mono Receiver Amplifier: 60 mW (32 Ohm BTL Load)
Mono Speaker Amplifier: 300 mW (8 Ohm BTL Load)
Microphone Bias Supply: Output Voltage = 2.2V
PLL
Jack Detect Input 200 kOhm Pull-up
CPU Interface
SPI (Max 10 MHz)
Others
GPIO 4ch2ch: Common Use with ADC Input
8-bit ADC (Battery Monitor, Charge Current Monitor, 2 Channels of External Input)
Package
96-pin CSP Package (Body size: 9 x 9 x 1mm, Pin pitch 0.8mm)
Process
CMOS Process
6329A–PMAAC–12-Aug-07
Power
Management
And Analog
Companions
(PMAAC)
AT73C206
Power
Management IC
and Audio
Codec
2
6329A–PMAAC–12-Aug-07
AT73C206
1. Description
The AT73C206 is the integrated analog device for VoIP and Cellular phones. It integrates a
power management IC, which includes LDO, DC/DC converter, Li-ion battery charger, White
LED driver, Charge Pump, RTC and GPIO, as well as Audio CODEC in one chip.
2. Pin Configuration
Figure 2-1. Pin Configuration
TOP
VIEW
12345678910
A
B
C
D
E
F
G
H
J
K
A XIN XOUT KEYLED ONSW PSHOLD IRQB P2 VDDIO VO1 VO3
B VIN7 VSB GNDKEY VIN6 ONOB ADPINB P3 SEN VDC1 VO4
C DIN3 DIN4 GNDLED SMPL RSTB P0 SDI SCLK VIN4 VO5
D DIN1 DIN2 CPOUT GNDD OUT32K P1 SDO GNDA REFO VO6
EC1PC2PVIN1LDO1SEL SMIC
BIAS VIN5 VO7 VO8
F C1M C2M GNDCP GSP SMICP SMICM MICBIAS VO9
G VIN3 VIN2 FB JKDETI LRCKIO VSS MICP MICM VDDANA VO10
H LX GNDDC GNDCHG CKOUT DOUT DIN SPOM RECOP VDDHP VSSANA
J CHGOUT IMONI VCAP CKIN JKDETO BCKIO SPOP RECOM VSSHP AVREF
K CHGADP VSSPLL ACAP VDDPLL VDD VBSP GNDSP HPOL HPOR VCOM
12345678910
TO P VIEW
3
6329A–PMAAC–12-Aug-07
AT73C206
3. Typical Application Circuit
LDO7
1.3V
20mA(PLL)
LDO3
2.5V
100mA(IO)
LDO4
1.8/2.8/3.0V
200mA(SIM)
LDO5
2.8/3.0/3.3V
100mA(Vibrator)
VREF
2.0V
LDO9
2.8V/100mA
(Analog Audio)
LDO8
1.8V/2.8V
150mA(Display)
1uF
2.2uF
1uF
1uF
1uF
1uF
0.47uF
VO3
VO4
VO5
VO7
VIN5
VO8
VO9
REFO
1uF
VIN4
1uF
1uF
VO6
CHGADP
CHGOUT
IMONI
White
LED
Driver
@25mA
Charge Pump
4.8V/100mA
5bit
DAC
2.7kΩ
GNDLED
4.7uF
LDO10
2.8V/100mA
(Digital Audio)
1uF
VO10
LDO1
0.9/1.0/1.3/1.5V
300mA(Core)
2.2uF
VO1
VDC1
BCKIO
LRCKIO
DIN
VDDANA
MICM
MICP
AVREF
VCOM
DIN1
DIN2
DIN3
DIN4
C1P
C1M
C2P
C2M
1.0uF
1.0uF
CPOUT
2.2uF
GNDCP
Stepdown
DC/DC
Converter
1.8V
650mA
(IO/Mems)
LX
FB
GNDDC
VIN3
2.2uH
4.7uF
2.2uF
VO2
VIN2
1uF
PLL
VDDPLL
VCAP
ACAP
VSSPLL
Audio
DAC
Logic
VDD
Voice
CODEC
Logic
VSS
SPOP
SPOM
RECOP
RECOM
HPOL
HPOR
VBSP
GNDSP
VDDHP
VSSHP
CODEC
Analog
MICBIAS
VSSANA
SMIC Bias
2.2V/1mA
GNDA
GPIO
P3
P2
P1/AN1
P0/AN0
SPI SCLK
SDO
SDI
SEN
PWRCNT
ONOB
RSTB
PSHOLD
OUT32K
GNDD
SMPL
ONSW
VIN6
GNDKEY
Keyp ad LED KEYLED
OSCREG
XIN
XOUT
RTC
Logic
CHG
Logic
MIC
AC Adap tor
5V
RESDET
BATDET
TSHUT
0.1uF
0.1uF
1uF
1uF
Power SW
Li-ion
Battery
Speaker
Receiver
Headphone L
Headphone R
Keypad LED
IRQB
MIC Bias
2.2V/1mA
SMICM
SMICP
SMICBIAS
MIC
0.1uF
SCLKO
SENO
SI
LDO1SEL
8bit
ADC
DOUT
VIN7 Coin Charge
VSB
Coin Battery
VIN1
2.2uF
GNDCHG
Jack
Detector
JKDETO
JKDETI
200kΩ
VDD
ADPINB
Li-ion
Linear
Charger
0.1uF
VDDIO
LDO6
1.3V
20mA(PLL)
CKIN
CKOUT
GSP
1kΩ
0.1uF
4
6329A–PMAAC–12-Aug-07
AT73C206
4. Pin Description
Table 4-1. Pin Description
No. Block Pin Name I/O If Level Description Notes
1RTC B2 VSB O Power input of coin charge regulator output and RTC
2 B1 VIN7 VCC VBAT Power supply for RTCREG
3
White
LED
Driver
C2 DIN4 O Backlight White LED driver output 4
4 C1 DIN3 O Backlight White LED driver output 3
5 C3 GNDLED GND GND GND for Backlight White LED driver
6 D2 DIN2 O Backlight White LED driver output 2
7 D1 DIN1 O Backlight White LED driver output 1
8
CHG
Pump
D3 CPOUT O Charge Pump output for White LED driver
9 E2 C2P O Voltage-boost capacitor connection pin for Charge Pump
10 E1 C1P O Voltage-boost capacitor connection pin for Charge Pump
11 E3 VIN1 VCC VBAT Power supply for Charge Pump
12 F1 C1M O Voltage-boost capacitor connection pin for Charge Pump
13 F2 C2M O Voltage-boost capacitor connection pin for Charge Pump
14 F3 GNDCP GND GND GND for Charge Pump
15
DC/DC
G3 FB I Output voltage feedback input of DC/DC converter
16 G2 VIN2 VCC VBAT Power supply for DC/DC converter control block
17 G1 VIN3 VCC VBAT Power supply for DC/DC converter driver
18 H1 LX O VBAT DC/DC converter switch output
19 H2 GNDDC GND GND GND for DC/DC converter
20
Charger
H3 GNDCHG GND GND GND for charger block Filter connection pin for
21 J2 IMONI O Battery charge current monitor
22 J1 CHGOUT O VBAT Li-ion battery charger output
23 K1 CHGADP VCC ACADP Charger block power (AC adaptor connected)
24
PLL
K2 VSSPLL GND GND PLL for GND
25 J3 VCAP O Filter connection pin for Voice PLL
26 K3 ACAP O Filter connection pin for Audio PLL
27 K4 VDDPLL VCC VO10 PLL power
28 J4 CKIN I Clock input
29 H4 CKOUT O Clock output
30 Jackdet G4 JKDETI I JACKDET input
31 J5 JKDETO O JACKDET output
5
6329A–PMAAC–12-Aug-07
AT73C206
No Block Pin Name I/O If Level Description Notes
32
Audio
/Voice
K5 VDD VCC VO10 Power supply for CODEC digital block
33 H5 DOUT O VDD Voice CODEC output
34 G5 LRCKIO I/O VDD Audio / Voice interface L/R select input / output
35 J6 BCKIO I/O VDD Audio / Voice interface serial clock input / output
36 H6 DIN I VDD Audio and Voice interface serial data input
37 G6 VSS GND GND GND for CODEC digital block
38 K6 VBSP VCC VBAT Power supply for speaker AMP
39 J7 SPOP O Speaker AMP output +
40 H7 SPOM O Speaker AMP output -
41 K7 GNDSP GND GND GND for speaker AMP output
42 H8 RECOP O Receiver AMP output +
43 J8 RECOM O Receiver AMP output -
44 H9 VDDHP VCC VO9 Power supply for headphone AMP output
45 K8 HPOL O Headphone output L
46 K9 HPOR O Headphone output R
47 J9 VSSHP GND GND GND for headphone AMP
48 K10 VCOM O Reference voltage Don't load this pin
49 J10 AVREF O Reference voltage Don't load this pin
50 G7 MICP I MIC input +
51 G8 MICM I MIC input -
52 H10 VSSANA GND GND GND for analog CODEC
53 G9 VDDANA VCC VO9 Power for analog CODEC
54 F7 SMICP I SMIC input +
55 F8 SMICM I SMIC input -
56 F9 MICBIAS O MIC Bias output
57 E7 SMICBIAS O SMIC Bias output
58
LDO
G10 VO10 O LDO10 output
59 F10 VO9 O LDO9 output
60 E8 VIN5 VCC VBAT Power supply for LDO6, 7, 8, 9, 10
61 E10 VO8 O LDO8 output
62 E9 VO7 O LDO7 output
63 D10 VO6 O LDO6 output
64 D8 GNDA GND GND GND for analog circuit
65 D9 REFO O Capacitor connection pin for reference voltage
source Don't load this pin
6
6329A–PMAAC–12-Aug-07
AT73C206
No Block Pin Name I/o If Level Description Notes
66
LDO
C10 VO5 O LDO5 output
67 C9 VIN4 VCC VBAT Power supply for LDO3, 4, 5 and VREF
68 B10 VO4 O LDO4 output
69 A10 VO3 O LDO3 output
70 A9 VO1 O LDO1 output
71 B9 VDC1 VCC VO2 Power supply for LDO1(DC/DC Output)
72
SPI
B8 SEN I VDDIO SPI enable input signal
73 C8 SCLK I VDDIO SPI clock input
74 D7 SDO O VDDIO SPI data output
75 C7 SDI O VDDIO SPI data input
76 A8 VDDIO VCC VO3 Power supply for I/O
77
GPIO
B7 P3 I/O VDDIO General purpose I/O port 3
78 A7 P2 I/O VDDIO General purpose I/O port 2
79 D6 P1/AN1 I/O VDDIO General purpose I/O port 1/ADC input 1
80 C6 P0/AN0 I/O VDDIO General purpose I/O port 0/ADC input 0
81
Power
Control
B6 ADPINB O VDDIO AC adaptor insertion detection output
82 A6 IRQB O VDDIO Interrupt request output
83 D5 OUT32K O VDDIO 32 kHz oscillation output
84 C5 RSTB O VDDIO Reset output (Low-active)
85 B5 ONOB O VDDIO Inverted output signal of ONSW.
86 A5 PSHOLD I VDDIO Signal input pin to maintain power-on.
87 D4 GNDD GND GND GND for digital circuit
88 C4 SMPL I VBAT SMPL enable signal input Pull-down
89 A4 ONSW I VBAT Power-on switch enable signal input Pull-down
90 B4 VIN6 VCC VBAT Power supply for VBAT detector and other circuits
91 E4 LDO1SEL I VBAT LDO1 initial value select input pin(1.5V or 1.3V)
92 F4 GSP I VBAT Initial state select input pin
93 Keypad LED A3 KEYLED O Keypad LED output (Nch open-drain)
94 B3 GNDKEY GND GND GND for Keypad LED driver
95 RTC A2 XOUT O 32.768kHz crystal oscillator output
96 A1 XIN I 32.768kHz crystal oscillator Input
7
6329A–PMAAC–12-Aug-07
AT73C206
5. Functional Blocks
5.1 Power Control & Reset
5.1.1 Power Control & Reset Block Diagram
Figure 5-1. Power Control & Reset Block Diagram
Table 5-1. Pin/Signal Description
Pin/signal Name Function Level
ONSW Power-on signal input pin VBAT
ONOB Inverted output signal of ONSW VDDIO
SMPL Power-on hold time setting capacitor
connection at SMPL VDDO
PSHOLD - Signal input pin to maintain power-on
- Self-reset input pin VDDIO
RSTB CPU reset signal output pin VDDIO
chgpon Power-on signal from charger block (Rapid
Charge signal)
ONSW
SMPL
PSHOLD L/S
rtcpon L/S
chgpon L/S
(From CHG)
(From RTC)
poweron
(To LDO & DCDC)
PS
Hold
&
Self
Reset
ONOB
1MΩ
VIN6
1MΩ
1MΩ
VIN6
VDDIO
VDDIO
VIN6
TSHUT
32kHz
(From RTC Block)
VDDIO
RSTB
Internal
Reset
VBAT
BATDET
VIN6
VIN6
VIN6
Reset
Timer
32kHz
(From RTC)
self reset
pshold
clkstp
VO3
regoffpon
batdet
smpl
resdet
RESDET
resdetsel
8
6329A–PMAAC–12-Aug-07
AT73C206
Note: Pin & Bit name (capital letter), Signal name (lowercase), Register name (r + capital letter)
5.1.2 Power ON/OFF Operation
The AT73C206 is asserted by ONSW (External pin), rtcpon(RTC alarm interrupt), SMPL (Sud-
den Momentary Power Loss) or chgpon (Power-on signal from charger block).
Figure 5-2. Power ON/OFF Sequence
1. Power ON by ONSW pin
When the "H" signal is input into ONSW pin at battery voltage over 3.1V, poweron
signal goes "H" and DC/DC, LDO (GSP= “L”:LDO1, 3, 6, 7, GSP= “H”: LDO1,3,5,6,8)
are turned on. ONOB goes “L”.
When the output voltage of LDO3 reaches 90% of its regulation voltage, the internal
rtcpon RTC alarm interrupt signal
clkstp 32 kHz oscillator stop signal
poweron DC/DC & LDO enable signal output
Table 5-1. Pin/Signal Description
Pin/signal Name Function Level
TSRES
(20ms)
batdet
VBAT
(VIN6)
3.1V
ONSW
poweron
DCDC
(VDC1)
resdet
90%
RSTB
RDLY
(60ms)
PSHOLD
SMPL
1.5V
smpl
0.7V
pshold
LDO's
Depend on external
capasita
VO3(LDO3):90%
ONOB
9
6329A–PMAAC–12-Aug-07
AT73C206
reset timer starts and outputs “L” through the RSTB pin. CPU powers up and RSTB pin
becomes "H" after reset delay time 60ms (Typ). After CPU finishes its system
initialization, CPU will turn PSHOLD to "H".The system can keep power on by holding
this PSHOLD at "H". For this operation, it needs to push PSHOLD signal “H” before
ONSW pin falls “L”. If ONSW falls “L” before pushing PSHOLD “H”, AT73C206 will
power off.
2. Power ON by rtcpon signal
When an interrupt generates in RTC block, rtcpon goes “H” and AT73C206 powers on
performing same power-on sequence as ONSW.
3. Power ON by SMPL pin
When PSHOLD goes "H", SMPL becomes "H" through the internal diode. SMPL keeps
"H" by external capacitor even when the battery is momentarily disconnected.
If it keeps "H" until battery is reconnected, AT73C206 powers on performing same
power-on sequence as ONSW.
4. Power ON by chgpon signal
When AC adapter is inserted, AT73C206 enters to Rapid Charge Mode and chgpon
goes "H" and poweron signal goes “H” irrespective of BATDET output. PSHOLD func-
tions as same as when power-on by ONSW.
AT73C206 cannot perform power-off during Rapid Charge.
Figure 5-3. Power ON/OFF Sequence by chgpon
chgpon
poweron
DCDC
(VDC1)
resdet
90%
RSTB
PSHOLD
SMPL
1.5V
smpl
0.7V
pshold
LDO's
Depend on external
capasita
Rapid Charge
VO3(LDO3):90%
CHGONB = "1"
R
DLY
(60ms)
T
SRES
(20ms)
10
6329A–PMAAC–12-Aug-07
AT73C206
5.1.3 SMPL Operation
When the battery loses contact momentarily due to impact or vibration on the handset by some
event such as dropping the device, SMPL remains “H” with capacitor and re-powers as the bat-
tery is reconnected. The SMPL “H” maintain time depends on the capacitor size. To achieve this
function, pull PSHOLD “H” before SMPL falls down to 0.7V.
Figure 5-4. SMPL Operation Timing
5.1.3.1 Relation of SMPL-high-maintain-time vs. Capacitor when momentary power loss
Figure 5-5. SMPL-high-maintain-time when momentary power loss (VIN6 = 3.6V)
5.1.4 Voltage Detector
The AT73C206 has two voltage detectors in power control block, BATDET and RESDET. BAT-
DET detects low battery voltage and RESDET detects the LDO3 output voltage and generates
Battery
Voltage
SMPL
PSHOLD
0.7V
Power ON
Factor
DCDC
LDO's
C[uF] Time[ms]
0.10 157
0.22 345
0.47 738
1.00 1570
0
200
400
600
800
1000
1200
1400
1600
1800
00.20.40.60.811.2
Capacito ruF
Timems
11
6329A–PMAAC–12-Aug-07
AT73C206
the reset signal through RSTB pin. RESDET needs to change by LDO3 output voltage set.
When raise LDO3 output setting voltage, set LDO3 output voltage by LDO3SEL bit first and then
change RESDET voltage by RESDETSEL bit with 200us of delay time. Adversely, when lower
LDO3 output setting voltage, RESDETSEL bit should be set prior to LDO3SEL bit.
Figure 5-6. VO3 and RESDET Control Timing
5.1.5 BATDET Electrical Characteristic
Operating Conditions (unless otherwise specified) Ta = 25°C.
5.1.6 RESDET Electrical Characteristic
Operating Conditions (unless otherwise specified) VIN = 3.6V, Ta = 25°C.
5.1.7 RSTB Electrical Characteristic
Operating Conditions (unless otherwise specified) VIN = 3.6V, Ta = 25°C.
200us
(min)
(85%)
(85%)
(85%)
VO3
RV
DET
0us(min)
Table 5-2. BATDET Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
BVREL BATDET Cancellation Voltage Battery Voltage Rising -3 % 3.1 +3 % V
BVDET BATDET Detection Voltage Battery Voltage Falling 2.9 V
Table 5-3. RESDET Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
RVREL RESDET Cancellation Voltage VO3 Voltage Rising -3 90 +3 %
RVDET RESDET Detection Voltage VO3 Voltage Falling 85 %
Table 5-4. RSTB Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
RDLY Reset Delay Timer Delay Time from VO390% to
RSTB = “H” 60 ms
12
6329A–PMAAC–12-Aug-07
AT73C206
5.1.8 Thermal Shutdown Circuit
The thermal shutdown circuit consists of Thermal Detection Circuit and Comparator.
5.1.8.1 Thermal Shutdown Block Diagram
Figure 5-7. Thermal Shutdown Block Diagram
5.1.8.2 Thermal Shutdown Explanation of Operation
Thermal shutdown circuit detects overheat state by comparing the output voltages of Thermal
Detection Circuit and REFO. If the overheat state is detected, AT73C206 will turn off to protect
itself from overheating. It is impossible to power on AT73C206 at overheat state.
5.1.8.3 Target Thermal Shutdown Electrical Characteristics
Operating Conditions (unless otherwise specified) VIN = 3.6V
5.1.9 Self-reset by PSHOLD
When PSHOLD pin is held at “L” more than 20 ms, AT73C206 powers off as described in
Section 5.1.2 “Power ON/OFF Operation” on page 8.
However, if PSHOLD pin is pushed up “H” within 20 ms, the AT73C206 will conduct self-reset by
RSTB= “L” for 60 ms.
When self-reset, the DC/DC and LDOs are all reset to initial state since all the register is
initialized.
After self-reset, AT73C206 maintains power-on by PSHOLD="H" as same as when normal
power-on.
pon
regoff
Thermal
Detection
Circuit
REFO
VIN6
Table 5-5. Thermal Shutdown Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
TDET Detected Temperature 140
TRET Return Temperature 110
ISS1 Supply Current Ta = 25°C 5 15 uA
ISS2 Standby Current Ta = 25°C1uA
13
6329A–PMAAC–12-Aug-07
AT73C206
Figure 5-8. Self-reset
5.1.10 Oscillator Stop
If the 32 kHz clock oscillator stops, clkstp signal goes "H" and self-reset function becomes
invalid. In this case, PSHOLD= “L” will power off the AT73C206.
Also, when the 32 kHz clock oscillator stops, AT73C206 generates an interrupt. (See “Power-on
reset and Oscillator stop detection function” on page 42.)
5.2 Regulators
The AT73C206 has 9 Low Drop Output regulators. The output voltage of LDO1, 3, 4, 5 and 8 are
programmable. LDO1 must be power supplied by DC/DC output (1.8V) and the other LDOs are
power supplied by battery.
The initial output voltage of LDO1 is selectable by LDO1SEL pin or GSP pin. After power-on, the
LDO1 output voltage is programmable via SPI.
After power-on, the output voltages for LDO3, 4, 5 and 8 are programmable via SPI.
Power on/off of LDO4 to 10 regulators and switchover between ECO-mode and Normal-mode of
LDO1 and 3 are controllable via SPI.
For optimized phase compensation, the bypass capacitor must be ceramic type.
VREF regulator provides reference voltage to LDO1, 3, 5, 6, 7, 10, RESDET and TSHUT.
RSTB
PSHOLD
Initial ON LDOs
and DCDC
Initial OFF LDOs
(60ms)
20ms or less
Power-on by programm is possible
20ms or more
100ms
Push PSHOLD pin "H" within 20 ms.
(20ms)
poweron
T
DLY
T
SRES
T
PSHOLD
Table 5-6. Self-reset Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
TSRES Self-reset time 20 ms
TPSHOLD PSHOLD time 100 ms
14
6329A–PMAAC–12-Aug-07
AT73C206
5.2.1 LDO Regulator Block Diagram
Figure 5-9. LDO Regulator Block Diagram
LDO1
(Core)
DCDC
(IO/Mems)
LDO3
(IO)
LDO4
(SIM)
LDO5
(Vibrator)
LDO7
(PLL)
LDO8
(Display)
LDO9
(Audio-A)
LDO10
(Audio-D)
2.2uF
4.7uF
1uF
2.2uF
1uF
1uF
1uF
1uF
1uF
VO1
VO2
VO3
VO4
VO5
VO6
1uF
VO7
VO8
VO9
VO10
VREF
0.47uF
REFO
VIN5
VIN4
VDC1
VIN2
VIN3
Power
Control
LDOEN
LDO4ON
LDO5ON
LDO8ON
LDO9ON
LDO10ON
poweron
LDO6ON
LDO7ON
LDO1CNT LDO1DAC
OPMODE1
LDO3CNT OPMODE3
LDO4CNT LDO4DAC
LDO5CNT LDO5DAC
LDO8CNT LDO8SEL
LDO1SEL
LDO3SEL
LDO6
(PLL)
GSP
15
6329A–PMAAC–12-Aug-07
AT73C206
5.2.2 Linear Regulators Table
Table 5-7. Linear Regulators Table
GSP
LDO1
(Core)
LDO3
(IO)
LDO4
(SIM)
LDO5
(Vibrator)
LDO6
(PLL)
LDO7
(PLL)
LDO8
(Display)
LDO9
(Audio
Analog)
LDO10
(Audio
Digital)
Initial
Value
L1.3V/1.5V
(LDO1SEL) 2.5V 1.8V 3.0V
1.3V 1.3V
1.8V
2.8V 2.8V
H1.3V/1.5V
(LDO1SEL) 2.8V 1.8V 2.8 V 2.8V
Output current max 300mA 100mA 200mA 100mA 20mA 20mA 150mA 100mA 100mA
Programmable
Output Voltage
0.9V
1.0V
1.3V
1.5V
2.5V
2.8V
3.0V
1.8V
2.8V
3.0V
3.1V
2.7V
2.8V
3.0V
3.3V
Fixed Fixed 1.8V
2.8V Fixed Fixed
Initial
State
L ON ON OFF OFF ON ON OFF OFF OFF
H ON ON OFF ON ON OFF ON OFF OFF
ECO-mode Yes Yes No No No No No No No
ON/OFF
Control
SPI
(LDO4ON)
SPI
(LDO5ON)
SPI
(LDO6ON)
SPI
(LDO7ON)
SPI
(LDO8ON)
SPI
(LDO9ON)
SPI
(LDO10ON)
Bypass Capacitor
(COUT)2.2uF 1.0uF 2.2uF 1.0uF 1.0uF 1.0uF 1.0uF 1.0uF 1.0uF
Table 5-8. Recommended Capacitor
Capacitor Manufacturer Model No
2.2 uF TAIYO YUDEN®JMK107BJ225KA
1.0 uF TAIYO YUDEN®JMK105BJ105KVB
16
6329A–PMAAC–12-Aug-07
AT73C206
5.2.3 ECO-mode of LDO1 and 3
During ECO-mode, LDO1 and 3 are operating on the low bias current for reducing the power
consumption. When CPU are in Sleep State or Low Power State, ECO-mode makes it possible
to keep outputting voltage to peripheral ICs at low power consumption current. The maximum
output current in ECO-mode is half as much as in Normal-mode.
LDO1 and 3 can be ECO-mode by setting the corresponding bits to the operation mode control
register OPMODE1and OPMODE3.
5.2.3.1 Timing Chart of Switchover between ECO-mode and Normal-mode
Figure 5-10. Transition from Normal to ECO, ECO to Normal
Note: When operation mode is changed, AT73C206 has 1ms of transition time. Mode transition is not
recommendable during this mode transition time (1ms). The maximum output current during tran-
sition is same as ECO-mode.
1ms 1ms
Transition Time Transition Time
Normal-mode ECO-mode Normal-mode
OPMODE bit write ("1") OPMODE bit write ("0")
17
6329A–PMAAC–12-Aug-07
AT73C206
5.2.4 LDO1 Electrical Characteristic
5.2.4.1 NORMAL Mode
Operating Normal Conditions (unless otherwise specified): VDDIN1 = DCDCOUT = 1.8V, COUT = 2.2uF, Ta = 25°C.
Table 5-9. LDO1 Normal Mode Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT1 Output Voltage 1.8V(-3%) VDDIN1 1.8V(+3%)
50uA < IOUT1 < Ioutmax -3% 1.3/1.5 +3% V
IOUT1 Output Current ----- 300 mA
ISHT1 Short Current VO1=0V 200 mA
VOUT1
VIN Line Regulation 1.8V(-3%) VDDIN1 1.8V(+3%)
IOUT1 = Ioutmax/2 10 mV
VOUT1
IOUT1 Load Regulation 50uA < IOUT1 < Ioutmax 30 mV
VOUT1
Ta
Output Voltage
Temperature Coefficient -40°C Ta 85°C+100 ppm
RR1 Ripple Rejection f=1kHz, IOUT1= Ioutmax/2 60 dB
EN1 Output Noise (RMS) BW=100Hz-100kHz, IOUT1= Ioutmax/2 70 uVrms
ISS1 Supply Current (IOUT1=0mA) 80 uA
IOFF1 Standby Current IOUT1=0mA 1 uA
VTr1 Rising Time IOUT1= 0mA
VO1 > VOUT1 x 90% 200 us
VTf1 Falling Time IOUT1=0mA
VO1 < 0.5V 500 us
POUT1 Programmable
Output Voltage IOUT1= Ioutmax/2
0.9V
1.0V
1.3V
1.5V
V
18
6329A–PMAAC–12-Aug-07
AT73C206
5.2.4.2 ECO mode
Table 5-10. LDO1 ECO Mode Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT1 Output Voltage 1.8V(-3%) VDDIN1 1.8V(+3%)
IOUT1= Ioutmax/2 -3% 1.3/1.5 +3% V
IOUT1 Output Current ----- 150 mA
ISHT1 Short Current VO1=0V 200 mA
ISS1 Supply Current IOUT1= 0mA 3 uA
POUT1 Programmable
Output Voltage IOUT1= Ioutmax/2
-4% 0.9V
1.0V +4%
V
-3% 1.3V
1.5V +3%
19
6329A–PMAAC–12-Aug-07
AT73C206
5.2.5 LDO3 Electrical Characteristic
5.2.5.1 NORMAL mode
Operating Normal Conditions (unless otherwise specified): VIN = 3.6V, COUT = 1uF, Ta = 25°C
5.2.5.2 ECO mode
Table 5-11. LDO3 Normal Mode Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT3 Output Voltage 3.1V VIN 4.2V
50uA < IOUT3 < Ioutmax -3% 2.5 +3% V
IOUT3 Output Current ----- 100 mA
ISHT3 Short Current VO3=0V 60 mA
VOUT3
VIN Line Regulation 3.1V VIN 4.2V
IOUT3=Ioutmax/2 10 mV
VOUT3
IOUT3 Load Regulation 50uA < IOUT3 < Ioutmax 20 mV
VOUT3
Ta
Output Voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm
RR3 Ripple Rejection f=1kHz, IOUT3= Ioutmax/2 60 dB
EN3 Output Noise (RMS) BW=100Hz-100kHz, IOUT3= Ioutmax/2 100 uVrms
ISS3 Supply Current (IOUT3=0mA) 50 uA
IOFF3 Standby Current IOUT3=0mA 1 uA
VTr3 Rising Time IOUT3= 0mA
VO3 > VOUT3 x 90% 200 us
VTf3 Falling Time IOUT3=0mA
VO3 < 0.5V 500 us
POUT3 Programmable
Output Voltage IOUT3= Ioutmax/2 -3%
2.5V
2.8V
3.0V
+3% V
Table 5-12. LDO3 ECO Mode Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT3 Output Voltage 3.1V VIN 4.2V
IOUT3= Ioutmax/2 -3% 2.5 +3% V
IOUT3 Output Current ----- 50 mA
ISHT3 Short Current VO3=0V 60 mA
ISS3 Supply Current IOUT3= 0mA 3 uA
POUT3 Programmable
Output Voltage IOUT3= Ioutmax/2 -3%
2.5V
2.8V
3.0V
+3% V
20
6329A–PMAAC–12-Aug-07
AT73C206
5.2.6 LDO4 Electrical Characteristic
Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 2.2uF, Ta = 25°C.
Table 5-13. LDO4 Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT4 Output Voltage 3.1V VIN 4.2V
50uA < IOUT4 < Ioutmax -3% 1.8 +3% V
IOUT4 Output Current ----- 200 mA
ISHT4 Short Current VO4=0V 100 mA
VOUT4
VIN Line Regulation 3.1V VIN 4.2V
IOUT4=Ioutmax/2 10 mV
VOUT4
IOUT4 Load Regulation 50uA < IOUT4 < Ioutmax 30 mV
VOUT4
Ta
Output Voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm
RR4 Ripple Rejection f=1kHz, IOUT4 = Ioutmax/2 60 dB
EN4 Output Noise (RMS) BW=100Hz-100kHz, IOUT4= Ioutmax/2 50 uVrms
ISS4 Supply Current (IOUT4=0mA) 80 uA
IOFF4 Standby Current IOUT4=0mA 1 uA
VTr4 Rising Time IOUT4= 0mA
VO4 > VOUT4 x 90% 200 us
VTf4 Falling Time IOUT4=0mA
VO4 < 0.5V 500 us
POUT4 Programmable
Output Voltage IOUT4 = Ioutmax/2
1.8V
2.8V
3.0V
3.1V
V
21
6329A–PMAAC–12-Aug-07
AT73C206
5.2.7 LDO5 Electrical Characteristic
Operating Conditions (unless otherwise specified): VIN = 3.6V, COUT = 1 uF, Ta = 25°C.
Table 5-14. LDO5 Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT5 Output Voltage 3.1V VIN 4.2V
50uA < IOUT5 < Ioutmax -3% 3.0 +3% V
IOUT5 Output Current ----- 100 mA
ISHT5 Short Current VO5=0V 60 mA
VOUT5
VIN Line Regulation 3.1V VIN 4.2V
IOUT5=Ioutmax/2 10 mV
VOUT5
IOUT5 Load Regulation 50uA < IOUT5 < Ioutmax 20 mV
VOUT5
Ta
Output voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm/
ISS5 Supply Current IOUT5 = 0mA 50 uA
IOFF5 Standby Current IOUT5 = 0mA 1 uA
VTr5 Rising Time IOUT5= 0mA
VO5 > VOUT5 x 90% 200 us
VTf5 Falling Time IOUT5=0mA
VO5 < 0.5V 500 us
POUT5 Programmable
Output Voltage IOUT5 = Ioutmax/2
2.8V
3.0V
3.3V
V
22
6329A–PMAAC–12-Aug-07
AT73C206
5.2.8 LDO6 Electrical Characteristic
Operating Conditions (unless otherwise specified): VIN = 3.6V, COUT = 1uF, Ta = 25°C.
Table 5-15. LDO6 Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT6 Output Voltage 3.1V VIN 4.2V
50uA < IOUT6 < Ioutmax -3% 1.3 +3% V
IOUT6 Output Current ----- 20 mA
VOUT6
VIN Line Regulation 3.1V VIN 4.2V
IOUT6 = Ioutmax/2 10 mV
VOUT6
IOUT6 Load Regulation 50uA < IOUT6 < Ioutmax 10 mV
VOUT6
Ta
Output Voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm/
RR6 Ripple Rejection f=1kHz, IOUT6= Ioutmax/2 60 dB
ISS6 Supply Current (IOUT6=0mA) 50 uA
IOFF6 Standby Current IOUT6=0mA 1 uA
VTr6 Rising Time IOUT6=0mA
VO6 > VOUT6 x 90% 200 us
VTf6 Falling Time IOUT6=0mA
VO6 < 0.5V 500 us
23
6329A–PMAAC–12-Aug-07
AT73C206
5.2.9 LDO7 Electrical Characteristic
Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25°C.
Table 5-16. LDO7 Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT7 Output Voltage 3.1V VIN 4.2V
50uA < IOUT7 < Ioutmax -3% 1.3 +3% V
IOUT7 Output Current ----- 20 mA
VOUT7
VIN Line Regulation 3.1V VIN 4.2V
IOUT7 = Ioutmax/2 10 mV
VOUT7
IOUT7 Load Regulation 50uA < IOUT7 < Ioutmax 10 mV
VOUT7
Ta
Output Voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm/
RR7 Ripple Rejection f=1kHz, IOUT7= Ioutmax/2 60 dB
ISS7 Supply Current (IOUT7=0mA) 50 uA
IOFF7 Standby Current IOUT7=0mA 1 uA
VTr7 Rising Time IOUT7=0mA
VO7 > VOUT7 x 90% 200 us
VTf7 Falling Time IOUT7 = 0mA
VO7 < 0.5V 500 us
24
6329A–PMAAC–12-Aug-07
AT73C206
5.2.10 LDO8 Electrical Characteristic
Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25°C.
Table 5-17. LDO8 Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT8 Output Voltage 3.1V VIN 4.2V
50uA < IOUT8 < Ioutmax -3% 1.8 +3% V
IOUT8 Output Current ----- 150 mA
ISHT8 Short Current VO8=0V 100 mA
VOUT8
VIN Line Regulation 3.1V VIN 4.2V
IOUT8=Ioutmax/2 10 mV
VOUT8
IOUT8 Load Regulation 50uA < IOUT8 < Ioutmax 30 mV
VOUT8
Ta
Output Voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm/
RR8 Ripple Rejection f=1kHz, IOUT8= 30mA 70 dB
EN8 Output Noise (RMS) BW=100Hz-100kHz, IOUT8=30 mA 50 uVrms
ISS8 Supply Current IOUT8 = 0mA 100 uA
IOFF8 Standby Current IOUT8 = 0mA 1 uA
VTr8 Rising Time IOUT8= 0mA
VO8 > VOUT8 x 90% 200 us
VTf8 Falling Time IOUT8=0mA
VO8 < 0.5V 500 us
POUT8 Programmable
Output Voltage IOUT8 = Ioutmax/2 1.8
2.8 V
25
6329A–PMAAC–12-Aug-07
AT73C206
5.2.11 LDO9 Electrical Characteristic
Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25°C.
Table 5-18. LDO9 Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT9 Output Voltage 3.1V VIN 4.2V
50uA < IOUT9 < Ioutmax -3% 2.8 +3% V
IOUT9 Output Current ----- 100 mA
ISHT9 Short Current VO9=0V 60 mA
VOUT9
VIN Line Regulation 3.1V VIN 4.2V
IOUT9=Ioutmax/2 10 mV
VOUT9
IOUT9 Load Regulation 50uA < IOUT9 < Ioutmax 20 mV
VOUT9
Ta
Output Voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm/
RR9 Ripple Rejection f=1kHz, IOUT9=Ioutmax/2 70 dB
EN9 Output Noise (RMS) BW=100Hz-100kHz, IOUT9=Ioutmax/2 50 uVrms
ISS9 Supply Current IOUT9 = 0mA 100 uA
IOFF9 Standby Current IOUT9 = 0mA 1 uA
VTr9 Rising Time IOUT9= 0mA
VO9 > VOUT9 x 90% 200 us
VTf9 Falling Time IOUT9=0mA
VO9 < 0.5V 500 us
26
6329A–PMAAC–12-Aug-07
AT73C206
5.2.12 LDO10 Electrical Characteristic
Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25°C.
Table 5-19. LDO10 Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VOUT10 Output Voltage 3.1V VIN 4.2V
50uA < IOUT10 < Ioutmax -3% 2.8 +3% V
IOUT10 Output Current ----- 100 mA
ISHT10 Short Current VO10=0V 60 mA
VOUT10
VIN Line Regulation 3.1V VIN 4.2V
IOUT10=Ioutmax/2 10 mV
VOUT10
IOUT10 Load Regulation 50uA < IOUT10 < Ioutmax 20 mV
VOUT10
Ta
Output Voltage
Temperature
Coefficient
-40°C Ta 85°C+100 ppm/
RR10 Ripple Rejection f=1kHz, IOUT10=Ioutmax/2 60 dB
EN10 Output Noise (RMS) BW=100Hz-100kHz, IOUT10=Ioutmax/2 110 uVrms
ISS10 Supply Current IOUT10 = 0mA 50 uA
IOFF10 Standby Current IOUT10 = 0mA 1 uA
VTr1 0 Rising Time IOUT10= 0mA
VO10 > VOUT10 x 90% 200 us
VTf10 Falling Time IOUT10=0mA
VO10 < 0.5V 500 us
27
6329A–PMAAC–12-Aug-07
AT73C206
5.3 Step-down DC/DC Converter
AT73C206 has a one-shot PWM DC/DC converter. It employs external inductor and capacitor
for smoothing output voltage and also external R1, R2 and Cf for both voltage setting and phase
compensation.
The Control Circuit is power supplied by VIN2 and the Switch Transistor is power supplied by
VIN3. AT73C206 features soft-start to reduce inrush current at power-on and current limit circuit
for over-current protection.
5.3.1 Step-down DC/DC Converter Block Diagram
Figure 5-11. Step-down DC/DC Converter Block Diagram
5.3.2 Step-down DC/DC Converter Operation
During standby mode, LX pin is high impedance. When DC/DC becomes active, the internal
soft-start circuit is enabled and output voltage starts boosting. AT73C206 compares internal ref-
erence voltage (typ.0.6V) and FB voltage. If FB voltage is below the reference voltage, it turns
on high-side switch by enabling one-shot circuit.
The high-side switch remains on for minimum-on-time or until FB voltage rises over the refer-
ence voltage or inductor current exceeds limit current. Once the high-side switch is disabled, it
remains off until FB voltage falls below the reference voltage or inductor current falls below the
limit current. During high-side switch is off, low-side switch remains on until inductor current
approaches 0. The DC/DC converter regulates the output voltage by repeating the above
operation.
Therefore, oscillator frequency varies by input voltage, output voltage, output current and exter-
nal circuit (R1, L, Cf).
In addition, the feedback loop from LX pin through R1 and from VO2 through Cf eliminate phase
lag by output capacitor providing the stable loop and fast transient response.
GNDDC
LX
Cf
Switching Control
Circuit
VIN3
L
GND
FB
Current
Limit
VO2
Cout
Soft-start
DCDC Vref
One-Shot
Circuit
VIN2
GND
R2
R1
GND
+
poweron
28
6329A–PMAAC–12-Aug-07
AT73C206
However, the output voltage is reduced by output current on DCR of inductor. (Theoretically,
output voltage falls [IOUT(A) x DCR(Ohm)])
5.3.3 Output Voltage Setting Calculation Formula
Use the external components below for VOUT2=1.8V.
L=2.2 uH, R1=200 k, R2=100 k, VOUT2=1.8V, Cf=110 pF, Cout=4.7 uF
5.3.4 Step-down DC/DC Converter Electrical Characteristic
Operating Conditions (unless otherwise specified): VIN=3.6V, Ta = 25°C, L=2.2uH, Cout=4.7uF
Note: Load Regulation, which is determined by DC resistance (DCR) on inductor, is given by:
Load Regulation(Typ) = DCR() x IOUTDA (A)
For example, if DCR is 100 m;
DC/DC
Step Down
LX
VIN
FB
GNDDC
GND
GND
VO2
2.2uH
4.7uF
Cf
=100kΩ
R1
VOUT2 = Output Voltage
R
1
= Upper part resistance
(R
1
+R
2
)×0.6
R
2
VOUT2=
C
f
L×10
(0.6V)
GND
R2
The output voltage can be calculated by formular below.
The phase margin capacitor is determined by formular below.
R
1
Table 5-20. Step-down DC/DC Converter Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VBATT Input Voltage 3.1 4.2 V
VOUT2 Output Voltage Range 0.9 1.8 2.5 V
IOUTD Output current VIN=3.1 to 4.2V 650 mA
ISSD Consumption Current VIN=3.1 to 4.2V
IOUTD=0mA, no switching 80 uA
IOFFD Standby Current VIN=4.2V
OFF state 1uA
ILIMD Limit detection Current 800 mA
VFB FB Voltage -1.5% 0.6 +1.5% V
VFB
VIN FB Line Regulation VIN=3.1 to 4.2V
IOUTD= Ioutmax/2 5mV
h Efficiency R1=200 k, R2=100 k, Cf=110 pF,
IOUTD=200mA 90
trRising Time Soft-start 120 us
VFB
T
FB Voltage
Temperature Coefficient -30 Ta +85 ±100 ppm/
Tonmin Minimum-On-Time 100 ns
29
6329A–PMAAC–12-Aug-07
AT73C206
0.1 x 0.65A = 65 mV (Typ.)
5.4 White LED Driver and Charge Pump
5.4.1 Charge Pump
The AT73C206 integrates boost Charge Pump for White LED driver. For maximized power effi-
ciency, the Charge Pump operates in 1x mode, 1.5x mode and 2x mode. It includes over-voltage
lockout circuit to control the output voltage below the over-voltage detection voltage and Soft-
start circuit to prevent excessive inrush current at power-on. The Charge Pump is on except
when LEDCNT register is set to “0”.
5.4.2 White LED Driver
The AT73C206 White LED driver drives up to 4 White LEDs with regulated constant current. It
integrates 5-bit DAC and performs the brightness control in 32-step by register set.
5.4.3 Block Diagram
Figure 5-12. White LED Driver and Charge Pump Block Diagram
5.4.4 Charge Pump Operation
5.4.4.1 Initial
When AT73C206 powers on, the Charge Pump initially starts in 1x mode and VOUT outputs VIN
voltage. At this moment, the built-in soft-start circuit prevents excessive inrush current. See (1)
in Figure 5-13 on page 31.
5.4.4.2 1x mode
The Charge Pump switches to 1.5x mode if any DIN pin meets the following condition:
DIN<0.25V
VIN1
GND
Charge Pump
Feed Back
C2M
C1M
CPOUT
GNDCP
DIN1
DIN2
DIN3
DIN4
White LED
Driver
5-bit DAC
Current Control
ON
C2P
C1P
GND
2.2uF
GNDLED
Current Setting Signal
ON
rLEDCNT
2.2uF
1.0uF 1.0uF
30
6329A–PMAAC–12-Aug-07
AT73C206
See (2) in Figure 5-13 on page 31.
5.4.4.3 1.5x mode
The Charge Pump switches to 2x mode if any DIN pin meets the following condition:
DIN<0.25V
See (3) in Figure 5-13 on page 31.
Every second, Charge Pump switches to 1x check mode only for 100us. Then it switches to:
1x mode if any DIN pin meets the following condition:
DIN>0.4V
See (5) in Figure 5-13 on page 31.
1.5x mode if any DIN pin meets the following condition:
DIN<0.4V
See (6) in Figure 5-13 on page 31.
5.4.4.4 2x mode
Every second, Charge Pump switches to 1.5x check mode for 100us. Then it switches to:
1.5x mode if any DIN pin meets the following condition:
DIN>0.4V
See (8) in Figure 5-13 on page 31.
2x mode if any DIN pin meets the following condition:
DIN<0.4V
See (9) in Figure 5-13 on page 31.
31
6329A–PMAAC–12-Aug-07
AT73C206
5.4.4.5 1x/1.5x/2x mode transition
Figure 5-13. Mode Transition Diagram
5.4.5 Protection Circuit
When any DIN pin is floating or grounded during operation, Charge Pump pin switches over to
2x mode following mode transition sequence. At that time, over-voltage lockout circuit regulates
output voltage below the protection voltage by on/off boost operation periodically.
Besides, when CPOUT is smaller than 1.2V, Short-Circuit Protection stops boost-operation and
regulates output current. In addition, the protection operation halts when Charge Pump stops.
5.4.6 Unused DIN Pin
In case there is any unused DINx pin, connect it to GND. Then, the AT73C206 recognizes the
unused pin at power-on and then excludes it from mode transition condition.
5.4.7 Target Charge Pump and White LED Driver Electrical Characteristics
Unless noted, VIN=3.6V, Ta=25°C, C1=C2=1uF, Cout=2.2uF
Initial CPOUT = 0V
Soft Start
1x Mode
1.5x Mode
2x Mode
1x Check
Mode(100us)
1.5x Check
Mode(100us)
CPOUT = 0V -> VIN
(1)
(2) DIN < 0.25V
(3) DIN < 0.25V
(4) Every second
(5) DIN > 0.4V
(6) DIN < 0.4V
(7) Every second
(8) DIN > 0.4V
(9) DIN < 0.4V
32
6329A–PMAAC–12-Aug-07
AT73C206
Table 5-21. Charge Pump and White LED Driver Electrical Characteristics
Symbol Parameter Conditions Min Typ Max Units
Charge Pump
VIN Operation voltage range VIN1 voltage 3.1 4.5 V
VOVLV Over-voltage lockout voltage Repeat ON/OFF 4.8 V
IOUT Output current VIN1>3.1V, CPOUT=4.2V 100 mA
fCP Switching frequency 1.25 MHz
tSSoft-start time 0.3 ms
ISS Supply current
1x mode, No load,
(DET, Reference ON) 500 uA
1.5x mode or 2x mode 5 mA
IOFF Standby supply current VIN1 current 1 uA
ISHT Short current CPOUT=0V 50 mA
White LED Driver
ILED Sink current range DIN1-4 0 25 mA
Iacc LED current accuracy IDIN=25mA=1Fh, DINx=0.25V -5 5 %
Imat LED current matching -3 3 %
Vtth 1x to 1.5x, 1.5x to 2x transition
threshold voltage If any pin among DIN1-4 falls under, 250 mV
Vthys 1x to 1.5x, 1.5x to 2x transition
hysteresis voltage 150 mV
ttr 1x to 1.5x, 1.5x to 2x transition time 100 us
Ilsd DIN1-4 leakage current when shut-down 0.01 uA
33
6329A–PMAAC–12-Aug-07
AT73C206
5.5 Li-ion Battery Charger
5.5.1 Description
The Li-ion battery charger contains a Charge Regulator, Charge Control Circuit, Charge Current
Monitor, AC Adapter Detector, AC Adaptor Over-voltage Detector and Chip Temperature
Detector.
It has 2 charge modes, Trickle Charge and Rapid Charge, the charge current of which is con-
trolled by registers.
When AT73C206 detects that chip temperature approaches the die temperature by chip temper-
ature Detector, which is user selectable by register, it reduces charge current to 20% of charge
current.
When AT73C206 detects over-voltage by adaptor over-voltage detector, it stops charging and
outputs over-voltage interrupt request flag (ADPBIR & ADPIR). Thousandth of charge current is
output from IMONI pin. The resistor on IMONI pin converts the charge current to voltage. This
feature allows AT73C206 to monitor charge current through ADC.
5.5.2 Li-ion Battery Charger Block Diagram
Figure 5-14. Li-ion Battery Charger Block Diagram
Charge Regualtor
Charger
Control Circuit
Charge Current
Monitor
Adapter Detector
Temperature
Detector
Over Voltage
Detector
AC Adapter
ADPINB
GNDCHG
IMONI
CHGOUT
CHGADP
VDDIO
VBAT
1uF
2.7kOhm¶
RPC[2:0]
CHGONB
TP[1:0]
ADPBIREN/
ADPIREN
ADPBIR/ADPIR
To 8-bit ADC
rCHGCNT
To IRQ
Monitor
Li-ion
Battery
4.7uF
Table 5-22. Pin Description
Pin Name Function Level
CHGADP Power input pin for charger block (Connected to AC adaptor) 5V
CHGOUT Charge output pin (Connected to battery) VBAT
IMONI Charge current monitor output (Pull-down with external 2.7 kOhm resistor)
ADPINB AC adaptor insertion detection output (Output “L” when AC adaptor inserted.) VDDIO
34
6329A–PMAAC–12-Aug-07
AT73C206
5.5.3 Li-ion Battery Charger Operation
When AC Adapter is connected, charge is asserted from charge off state. See (1) in Figure 5-15
on page 35.
5.5.3.1 Charge OFF Mode
At Charge OFF state, charge is disabled and charge current is 0mA. And, the power-on signal
from charger block (chgpon) is “L”. AT73C206 moves to Trickle Charge mode if:
VCHGADP > 4.6V and VCHGADP 5.9V and CHGONB bit = “0"
See (2) in Figure 5-15 on page 35.
5.5.3.2 Trickle Charge Mode
Perform the Trickle Charge with 10% of the Rapid Charge current, which is register-programma-
ble. The power-on signal from charger block (chgpon) is “L”. AT73C206 moves to Rapid Charge
1 Mode with Soft-start if:
VCHGOUT > 2.7V
See (3) in Figure 5-15 on page 35.
5.5.3.3 Rapid Charge 1 Mode
Rapid Charge 1 current is register-programmable. The power-on signal from charger block (chg-
pon) becomes “H”. AT73C206 moves to Trickle Charge mode with Soft-stop if:
VCHGOUT 2.6V
See (4) in Figure 5-15 on page 35.
Also, over-temperature is detected by chip temperature detector, AT73C206 moves to Rapid
Charge 2 with Soft-stop.
See (5) in Figure 5-15 on page 35.
5.5.3.4 Rapid Charge 2 Mode
Perform the Rapid Charge 2 with 20% of Rapid Charge 1 current, which is register-programma-
ble. The power-on signal from charger block (chgpon) is “H”. When chip temperature falls, the
charge current returns back to Rapid Charge Mode 1 with Soft-start.
See (6) in Figure 5-15 on page 35.
5.5.3.5 Any state
AT73C206 moves to Charge OFF mode if:
VCHGADP < 4.5V or VCHGADP >6V or CHGONB bit = “1”
See (7) in Figure 5-15 on page 35.
AT73C206 monitors charge current with ADC and disables charging by writing CHGONB= “1”.
35
6329A–PMAAC–12-Aug-07
AT73C206
5.5.4 Li-ion Battery Charger State Diagram
Figure 5-15. Li-ion Battery Charger State Diagram
5.5.5 Li-ion Battery Charger Chip Temperature Detection
When Rapid Charge 1, if chip temperature approaches the die temperature, which is user
selectable by register TP [1:0], AT73C206 reduces charge current to 20% of Rapid Charge 1
current. (Rapid Charge 2)
When chip temperature falls, the charge current returns back to its full current. By repeating this
process, AT73C206 is able to keep itself in temperature regulation. This feature not only pro-
Asynchronous from any state
Charge OFF
Charge Current=0mA
Tri ckl e Charge
10% Charge Current
Rapid Charge1
100% Charge Current
VCHGOUT4.2V
VCHGADP > 4.6V
and VCHGADP < 5.9V
and CHGONB bit = 0
VCHGOU T > 2.7V
VCHGOUT < 2.6V
Rapid Charge2
20% Charge Current
VCHGOUT4.2V
High Tempreature
Detected
High Tempreature
Released
AC adapter connected
VCHGADP < 4.5V
or VCHGADP > 6V
or CHGONB bit = 1
chgpon=H
chgpon=H
chgpon=L
chgpon=L
ADPINB=H
ADPINB=L
VCHGADP > 4.6VVCHGADP < 4.5V
Soft-Stop
Soft-Start
Soft-Start
Soft-Stop
36
6329A–PMAAC–12-Aug-07
AT73C206
tects AT73C206 from overheating, but also allows higher charge current without risking damage
to the system.
Soft-start/stop is used to minimize in-rush current on battery.
Figure 5-16. Chip Temperature Detection and Soft-start/stop
5.5.6 Li-ion Battery Charger Electrical Characteristics
Operating Conditions (unless otherwise specified): VIN= 3.6V, Ta = 25°C, CHGOUT=1uF.
100mA(20%)
50mA(10%)
500mA(100%)
3ms 3ms3ms
Soft-start Soft-startSoft-stop
I Charge
Time
Start
Trickle ChargeStart
Rapid 1Charge
0
When AT73C206 detects over chip temperature, it
gradually reduces charge current down to 20% (Soft-stop).
If the chip temperature falls, A73C206 gradually
pulls charge current back to 100% (Soft-start).
Table 5-23. Li-ion Battery Charger Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
VCHGADP AC adapter Operation Voltage 4.5 6.3 V
AVDET AC adapter Detection Voltage VCHGADP
, rising 4.6 V
hysteresis 0.1
AVOVLO
AC Adapter
Over Voltage Lock-Out
VCHGADP
, rising 6 V
hysteresis 0.1
CISS Consumption Current Rapid Charge = 500mA 3 mA
Charge OFF 1
VCHG Battery Charge Voltage ICHGOUT = 0, Ta = 0 to 85°C4.2V
RIMONI IMONI Resistor 2.7 k
VIMONI Charge Current
Monitor Output
RIMONI=2.7k,
ICHGOUT = 850mA 2.295 V
37
6329A–PMAAC–12-Aug-07
AT73C206
CIRapid Rapid Charge Current -12%
500
550
600
650
700
750
800
850
+12% mA
CITr i ck l e Trickle Charge Current VCHGOUT =2.2V, Ta = 0 to 85°C
Percentage of CIRapid
51015%
CTth
Chip Temperature
Detection Threshold
95
105
115
135
CVT
Transition Voltage to
Rapid Charge 1 Mode
VCHGOUT
, rising 2.7 V
hysteresis 0.1
Table 5-23. Li-ion Battery Charger Electrical Characteristics
38
6329A–PMAAC–12-Aug-07
AT73C206
5.6 A/D Converter
The AT73C206 has an 8-bit A/D converter with 4 channels.
Input is selectable by register set: External pins AN0 & AN1 (Common use with P0 and P1
pins of GPIO), battery voltage monitor (batmon) and charge current monitor (IMONI).
Input voltage ranges from 0V to VDDIO.
Generates the clock using RTC 32KHz
Starts conversion by register set and inform the end of conversion to CPU through
ADCECIR.
The Resistive Voltage Divider for battery voltage monitor is on/off controllable by register.
Buffer is on/off controllable by register.
Figure 5-17. ADC Block Diagram
5.6.1 Explanation of Operation
Writing “1” in ADSTART bit starts conversion. ADSTART bit will be automatically cleared after
conversion starts. After the conversion is completed, AT73C206 sets ADEND bit and notices
completion of conversion to CPU through IRQB. The ADEND bit will be cleared by reading the
converted data or by writing “1” in ADSTART bit. And ADCECIR is cleared by writing “0”. For re-
conversion, write “1” in ADSTART bit.
Changing ADSEL is prohibited during AD Conversion.
8bit
ADC
Buf
M
U
X
P0/AN0
P1/AN1
IMONI
VIN6
VDDIO
Control
Circuit
rADDATA[7:0]
rADSTART
32kHz
from RTC
batmon
ADSTART
ADEND
rADCCNT
ADIREN
ADECIR ADECIR
ADSEL[1:0]
BTMEN
BUFEN
39
6329A–PMAAC–12-Aug-07
AT73C206
Figure 5-18. ADC Timing Diagram
Figure 5-19. ADC Internal Operation Sequence
5.6.2 Electrical Specification
5.6.2.1 A/D Converter
Operating Conditions (unless otherwise specified) VDDIO=2.5V or 2.8V or 3.0V, Ta = 25°C.
pow eron
VO3
rADEND
rADCECIR
rADDATA[7:0]
rADSTART
reading
ADDATA
clearing
rADCECIR
conversion data
conversion
time conversion
time conversi
o
time
rADSEL 2'h00
min 100us
wait
rBUFEN
(rBTMEN)
Table 5-24. A/D Converter Electrical Characteristics
Symbol Item Condition Min Typ Max Units
A/D Converter
ADBIT Resolution 8bits
INLE Integral nonlinearity error AN(0,1) = 0 to VDDIO-0.1V -1 1 LSB
DNLE Differential nonlinearity error AN(0,1) = 0 to VDDIO-0.1V -1 1 LSB
Input voltage range 0 VDDIO V
Conversion time 397 us
32kHz
ADSTART
ADEND
12 34 5 12
ADCECIR
SAMPLE
POINT reading
ADDATA
clearing
rADCECIR
40
6329A–PMAAC–12-Aug-07
AT73C206
Note: After conversion, A/D converter shifts to sleep mode automatically.
ISS Supply Current While Converting 1 mA
Sleeping (Note) 1 uA
Buffer
ISS Supply Current BUFEN=1 250 uA
BUFEN=0 1 uA
Battery monitor
Ratio Resistive voltage divider ratio 0.5 Times
Rdiv Resistive voltage divider 2 M
Table 5-24. A/D Converter Electrical Characteristics
41
6329A–PMAAC–12-Aug-07
AT73C206
5.7 Real Time Clock
The Real Time Clock provides the coin charge regulator and 2 system of alarm function, which
generate an interrupt on a set time. The accuracy of clock is dependant on the Clock Error Off-
set circuit. Real Time Clock operates with 32.768 kHz of external X’tal and capacitor.
5.7.1 Features
Coin charge regulator built in with Reverse-current protection diode
Counters for Clock and Calendar
Alarm function
Combination of day of the week, hour and minute
Combination of hour and minute only
Provides 32.768 kHz clock output
Power-on flag, which recognizes that a power supplier turns on from 0V
Automatic definition for leap year is 2099, 12-hour or 24-hour format selectable
High-accuracy of clock error offset circuit function
Alarm Interrupts power on AT73C206
5.7.2 Block Diagram
Figure 5-20. RTC Block Diagram
VIN7
OSC
REG
OSC
Stop
Detector
VDDIO
RD
RF 1sec
Timer
XIN
XOUT
32kHz
CLKSTP
OUT32K
VSB
Coin Battery
RTC
Logic
Coin Charge
Regulator
rtcpon
RTCCTFGM
RTCWAFGM
RTCDAFGM
rCK32EN
1kΩ
42
6329A–PMAAC–12-Aug-07
AT73C206
5.7.3 Power Supply and Charge of External Coin Battery
When battery voltage over monitoring voltage
The external coin battery performs charge with the regulated voltage applied from battery and, at
the same time, this power is supplied to Real Time Clock.
5.7.4 Function of Real Time Clock
1. Clock Function
The clock and calendar in term of seconds, minutes, hours, day, month and below 2-digit-year
are readable and writable via CPU. A low-order 2-digit-year that can be divided by 4 is defined
as leap year. AT73C206 provides an automatic definition of leap year until 2099.
2. Alarm function
AT73C206 provides an alarm function, which generates interrupt signal for CPU on a pro-
grammed time. There are 2 types of alarm; Alarm_W and Alarm_D. Alarm_W can program a
minute, hour and day of the week. Single and multiple day of the week are also programmable.
However, Alarm_D is minute and hour programmable. These two alarms are output from IRQB
pins. The CPU is allowed to check the status of each alarm by reading the corresponding regis-
ter.
3. High-accuracy clock error offset circuit function
Oscillator circuit is configured by connecting an external X’tal and capacitors (CG & CD). For
accuracy of the clock, AT73C206 has the internal Clock Error Offset circuit which keeps the
clock precise by compensating the oscillator frequency drift with about 3 ppm (or about 1 ppm)
step in range of ±189 ppm (or about ±63 ppm).
(Error ±1.5 ppm (or ±0.5 ppm) at 25°C after the compensation.)
The compensation of frequency in each system;
Enables high-accuracy of clock by using the X’tal which covers wide fluctuation.
Compensates a season-frequency-drift by correcting the clock error every season.
Enables high-accuracy of clock by correcting the clock error according to the temperature
fluctuation.
(This function is available only for the system with temperature detection function.)
4. Constant cycle interrupt generation function
In addition to alarm function, constant cycle interrupt is output through IRQB pin. The cycle is
selectable from 2 Hz (1 time/0.5 sec.), 1 Hz (1 time/1sec.), 1/60 Hz (minute), 1/3600 Hz (hour)
and month (first day of each month). There are two types of output waveforms selectable in con-
stant cycle; one is the waveform (2 Hz, 1 Hz) on normal pulse and the other is the one (every
second, minute, hour and month), which is designed considering a CPU interrupt and a level
interrupt. The status of register pin can be checked.
5. 32768 Hz clock output
Oscillator frequency clock of X’tal units can be output through an OUT32K pin. The enable/dis-
able of clock output is controllable by the CK32EN bit.
6. Power-on reset and Oscillator stop detection function
a. Power-on reset function (PON Flag)
When the VSB Power-supply pin rises from 0V, AT73C206 resets the control register and,
simultaneously, allows CPU informed it by issuing flag. This feature allows CPU to judge
whether VSB Power-supply pin has raised from 0V or it has been power-supplied by battery.
43
6329A–PMAAC–12-Aug-07
AT73C206
b. Oscillator stop detection function (OSC stop detector)
AT73C206 has a register, which remembers on/off of oscillator. This feature allows CPU
judge whether oscillation has stopped.
OSC stop detector generates interrupt when it detects that the clock stops. Enabling/dis-
abling of the interrupt is selectable by STPIREN bit in CLKCNT register. Also, the output of
the OSC stop detector can be read from the Status Monitor register.
5.7.5 Electrical Specification
Operating Conditions (unless otherwise specified): VIN = 3.6V, Ta = 25°C.
5.7.6 Structure of Oscillation Circuit
Figure 5-21. Structure of Oscillation Circuit
Note: Recommended external device:
X’tal: FC-135 (EPSON®), (f: 32.768 kHz), (R =70k max), CL = 9 pF
CG, CD: 12 pF typ
Note: Standard of Internal device:
RF: 20M typ
RD: 100k typ
Note: Oscillation circuit operates in internal voltage regulator.
Note: X’tal units: For X’tal units, use FC-135 (CL=9pF) of EPSON. Check with the manufacturer about
the value of crystal units in use.
Note: Notes on mounting:
Place the crystal units as close as possible to the IC.
Do not place signal/power supply lines near the oscillation circuit.
Table 5-25. RTC Electrical Characteristics
Symbol Parameter Condition Min. TYP. Max Unit
COIN CHARGE REGULATOR
CCROUT VSB Output Voltage VIN7=3.1 to 4.2V
Iout=0uA 2.943 3.050 3.157 V
Vf Diode Forward Voltage Iout = 1mA 0.75 V
RTC
VSBV Oscillator Operating Voltage VIN7=OPEN 1.3 3.0 V
Tosc Oscillation Start Time 1s
OSCtor Oscillation Tolerance 5 times
ISS Supply Current 1.5 uA
32kHz
Internal clock
32kHz
CG
CD
A
XIN
XOUT
RF
RD
OSCREG
VSB
44
6329A–PMAAC–12-Aug-07
AT73C206
Make the insulation resistance between XIN/XOUT pins and PCB board as high as possible.
Do not wire XIN and XOUT in a long parallel line.
Condensation may stop the crystal oscillation or cause other errors.
Note: External input of clock (32.768 kHz) to XIN
Note: DC binding: Forbidden due to the inconsistency with input level.
Note: AC binding: Possible. However, oscillation stop detection is not assured, for error detection may
occur due to the noise and other effects.
Note: Do not operate other IC with oscillation output (XOUT output) in order to protect the stability of
oscillation characteristics.
5.8 Audio/Voice
5.8.1 Features
Voice CODEC: 16-bit Linear CODEC (Sampling frequency: 8 kHz and 16 kHz)
Audio DAC: 16-bit Linear Stereo DAC (Sampling frequency: 48 kHz to 8 kHz)
Tone generator: Supports 16 DTMF tones
Mono MIC amplifier: Differential amplifier
Stereo headphone amplifier: 22 mW (32 Ohm load,THD+N=0.5%)
Mono receiver amplifier: 60 mW (32 Ohm BTL load,THD+N=1%)
Mono speaker amplifier: 300 mW (8 Ohm BTL load,THD+N=1%)
Microphone bias supply: Output Voltage=2.2V
PLL: Reference clock=32.768 kHz
Jack detect: Input 200 kOhm pull-up
5.8.2 Block Diagram
Power supply
Digital: 2.8V (VDD)
Analog: 2.8V(VDDANA)
Speaker Amplifier: 3.6V[Battery Voltage level] (VBSP)
Receiver Amplifier: 2.8V (VDDHP)
Headphone Amplifier: 2.8V (VDDHP)
PLL: 2.8V (VDDPLL)
45
6329A–PMAAC–12-Aug-07
AT73C206
Figure 5-22. CODEC Block Diagram
Note: The value of resistance must be determined depending on the specification of the microphone which is used. When power ana-
log CODEC (VDDANA), it is also required to supply power to digital CODEC (VDD).
CODEC Block
VOICE
ADC
VOICE
DAC
AUDIO
DAC
Lch
AUDIO
DAC
Rch
Micro
phone
MICP
MICM
SPOP
SPOM
HPOL
HPOR
MICBIAS
MICBIAS
Serial
Interface
AVREF
VCOM
Control
Interface
VDDPLL
VSSPLL
ACAP
VCAP
Reference
Circuit
delta-Sigma
Modulator
delta-Sigma
Modulator
Decimation
Filter
AUDIO D/A CONVERTE R
TONE/DTMF BLOCK
delta-Sigma
Modulator
ATT
ATT Digital
Filter
VOICE
PLL
DOUT
DSP
I/F
LRCKIO
BCKIO
DIN
TONE GENERATOR
VOICE CODEC
VOICE CODEC
TONE1
RECOP
RECOM
VDDHP
VSSHP
VBSP
GNDSP
8ohm
32ohm
32ohm
32ohm
TONE2ATT
ATT
ATT
VTTNSW
VRTNSW
MICDG(4:0)
MUTE,-10 to 20dB
1dB step
RECDG(4:0)
MUTE,-30 to 0dB
1dB step
TNG1(3:0)
-15 to 0dB
1dB step
TNG2(3:0)
-15 to 0dB
1dB step
LPF
LPF
LPF
+6dB
+6dB
+0dB
+0dB
MICAG(3:0)
0 to 30dB
step 2dB
DRVAG(4:0)
-40.5 to 6dB
step1.5dB
JKDETI
JKDETO
200kohm
TNG3(2:0)
-42 to 0dB
6dB step
MIXER
LO
RO
AUL
AUR
VO
VOLUME
FS=1.5Vpp
FS=2Vpp
FS=1.5Vpp
FS=1.5Vpp
FREQSEL(4:0)
+0dB
MUTEDRV
DRIVER AM P
MUTEMIC
MUTEDA
delta-Sigma
Modulator
Digital
Filter
ATT
ATT
DATTR(5:0)
MUTE,- 62 to 0dB
1dB step
DATTL(5:0)
MUTE,-62 to 0dB
1dB step
MICPON
AFS(2:0)
APLLSRC
ADIVN/M(11:0)
APLLPON
AUDIO
PLL
AUDIO D/A CONVERTER
VFS
VPLLSRC
VDIVN/M(11:0)
VPLLPON
PLL
AFORMAT(1:0)
ACLKSEL
IFEN
SIDE
TONE
MUTESIDE
SIDEDG(5:0)
-62dB to 0dB
1dB step
TNCON
MODECO(3:0)
1uF
1uF
1kΩ
(Note)
1kΩ
(Note)
47uF
47uF
0.1uF
0.1uF
1uF
0.1uF
MUX
VASEL
DIN
VLRCKO
VBCKO
ABCKIO
ALRCKIO
0.1uF
MUTESMIC
SMICBIAS
SMICPON
VSSANA
VDDANA
0.1uF
SMICBIAS
0.1uF
SMICP
SMICM
1uF
1uF
1kΩ
(Note)
Micro
phone
1kΩ
(Note)
CKIN
CKOUT
From RTC
1 msec x4
Deglitch
Interrupt
46
6329A–PMAAC–12-Aug-07
AT73C206
5.8.3 Voice Codec
16-bit Linear CODEC
Sampling frequency: 8 kHz and 16 kHz
Interface: IIS
Data format: Linear
Transmit channel: 1ch
Inputs: 2ch (MICP/MICM, SMICP/SMICM)
Outputs: Receiver, Stereo Headphone, Speaker
Internal Tone generator: DTMF/Single Tone
Mode: Master
Level Diagram: Analog Input=2.0Vpp -> DOUT Output=3.17dBm0
DIN Input=0dBFS -> Analog Output=1.5Vpp
TONE DATA MIX Function: Mix of TONE DATA and VOICE DATA is controlled by register set
Attenuator: TX System: MUTE, -10dB to 20dB / 1dB step
RX System: MUTE, -30dB to 0dB / 1dB step
SIDE TONE: Loop-back of TX side to RX side (MUTE,-62dB to 0dB)
Smoothing Gain control: Gain changes to the current set value by Smoothing Gain control at
1dB/fs
Available in TX System, RX System and SIDE TONE
5.8.4 Audio DAC
DAC: 16-bit Linear Stereo DAC
Sampling frequency: 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 11.025 kHz, 8
kHz
Interface Data format: IIS, LJF, RJF
Interface Mode: Master and Slave
Level Diagram: DIN Input=3.17dBm0 -> Analog Output=1.5Vpp
Outputs: Receiver, Stereo Headphone, Speaker
Attenuator: MUTE,-62dB to 0dB / 1dB step
Smoothing Gain control: Gain changes to the current set value by Smoothing Gain control at
1dB/fs
Available in Lch and Rch
5.8.5 Tone Generator
16 DTMF tones: DTMF Low tone is 697,770, 852 or 941Hz.
DTMF High tone is 1209,1336, 1477 or 1633Hz.
2 programmable tones: From 0Hz to 3992.1875Hz
Frequency of programmable tone1/2 = 7.8125Hz x PTN1/2 can be generated
independently
Software start: Writing the register (TNCON bit) via SPI starts tone generating
Hardware stop: Internal programmable hardware timer stops tone generating. The range of
the time is from 80ms to 200ms (default 100ms)
47
6329A–PMAAC–12-Aug-07
AT73C206
Gain Control: Gains of TONE1 and TONE2 in Tone generator are individually settable. After
mixing TONE1 and TONE2, the gain of TONE3 is settable.
5.8.6 Analog Control
Mode Control: Driver AMP (Receiver AMP/ Speaker AMP/ Headphone AMP)
Power-down / Stand-by
Mono/ Stereo
Mute Control: MICAMP, SMICAMP Mute
DRIVER amplifier Mute
Gain Control: MIC-Gain: 0 to 30dB/ Step 2dB
Driver-Gain –40.5 to 6dB/ Step 1.5dB
5.8.7 MICBIAS, SMICBIAS
MICBIAS and SMICBIAS consist of Power supply, Error amplifier, Driver transistor and Resistor
set for output voltage setting. ON/OFF of MICBIAS and SMICBIAS is controllable by register set.
The regulator has an internal sink transistor.
Figure 5-23. MICBIAS, SMICBIAS
5.8.8 PLL
There are two types of PLL: PLL for Voice CODEC and PLL for Audio DAC. It provides the clock
corresponding to the register-set sampling frequency by regulating the reference clock.Power
down control of PLL for Voice CODEC and PLL for Audio DAC can be operated independently.
When Power down control of PLL for Voice is set, Digital Voice codec block also goes to power-
down mode.
When Power down control of PLL for Audio is set, Digital Audio DAC block also goes power-
down mode.
VDDANA MICBIAS
1:ON
0:OFF
MICPON
NchTr
VSSANA
MICBIAS
VREF
0.1uF
(SMICPON)
(SMICBIAS)
(SMICBIAS)
48
6329A–PMAAC–12-Aug-07
AT73C206
5.8.9 Jack Detector
AT73C206 integrates an input port (with 200 kOhm of pull-up resistor) and an output port for
detecting headset insertion. The detection signal will be output through the output port after per-
form chattering rejection (1ms x 4). When the insertion/removal of the headset jack is detected,
AT73C206 will generate an interrupt. Permit/prohibit of the interrupt is controllable by register.
5.8.10 Interface Timing Data Format
5.8.10.1 Voice Interface Timing
Figure 5-24. Voice Interface Timing
Operating Conditions (unless otherwise specified): VDD=2.8V, Ta = 25°C, fs:16 kHz, 8 kHz
Note: fs: 16kHz, 8kHz
Table 5-26. Voice Interface Electrical Characteristics
Parameter Condition Min Typ Max Unit
BCKIO Frequency tBCLK 32* fs kHz
LRCKIO Delay Time tBLR BCKIO falling -10 100 ns
DIN Setup Time tADS BCKIO rising 50 ns
DIN Hold Time tADH BCKIO rising 50 ns
DOUT Delay Time tBADO BCKIO falling - 50 ns
LR C KIO
BCKIO
DIN
DOUT
tB A D O
tA D H
tA D S
tB L R
49
6329A–PMAAC–12-Aug-07
AT73C206
5.8.10.2 Voice Interface Data Format
Linear<TX 16bit_Linear/ RX 16bit_Linear >
Figure 5-25. Voice Interface Data Format: IIS Format
Figure 5-26. Voice Interface Data Format: Left justify Format
LRCKIO
BCKIO
DOUT
DIN
D15 D14 D1 D0 D15
D15 D14 D1 D0 D15
Lch Rch
LRCKIO
BCKIO
DOUT
DIN
D15 D14 D1 D0 D15
D15 D14 D1 D0 D15
Lch Rch
D14
D14
50
6329A–PMAAC–12-Aug-07
AT73C206
5.8.10.3 Audio Interface Timing - Slave and Master Modes
Figure 5-27. Audio Interface Timing (Slave mode)
Operating Conditions (unless otherwise specified) VDD =2.8V, Ta = 25°C.
Note: fs: 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 11.025 kHz, 8 kHz
Figure 5-28. Audio Interface Timing (Master mode)
Operating Conditions (unless otherwise specified): VDD=2.8V Ta = 25°C.
Note: fs: 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 11.025 kHz, 8 kHz
Table 5-27. Audio Interface (Slave mode) Electrical Characteristics
Parameter Conditions Min Typ Max Unit
BCKIO Frequency tBCLK 32*fs 64*fs kHz
LRCLKO Delay Time tBLR BCKIO falling -100 100 ns
DIN Setup Time tADS BCKIO rising 50 ns
DIN Hold Time tADH BCKIO rising 50 ns
Table 5-28. Audio Interface (Master mode) Electrical Characteristics
Parameter Conditions Min Typ Max Unit
BCKIO Frequency tBCLK 64*fs kHz
LRCKIO Delay Time tBLR BCKIO falling -10 100 ns
DIN Setup Time tADS BCKIO rising 50 ns
DIN Hold Time tADH BCKIO rising 50 ns
LRCKIO
BCKIO
DIN
tBLR
tADS tADH
LRCKIO
BCKIO
DIN
tBLR
tADS tADH
51
6329A–PMAAC–12-Aug-07
AT73C206
5.8.10.4 Audio Interface Format - IIS, Left Justify, Right Justify
Figure 5-29. Audio Interface Format - IIS
Figure 5-30. Audio Interface Format - Left Justify Format
Figure 5-31. Audio Interface Format - Right justify Format
where:
LRCKIO: Audio interface L/R select input/output
BCKIO: Audio interface serial bit clock input/output
DIN: Audio interface serial data input
Note: Input/output mode of LRCKIO and BCKIO pins is controllable by register set. (Slave Mode/Master
Mode)
LRCKIO
BCKIO
DIN
Lch Rch
D15 D14 D1 D0 D15 D14 D1 D0
LRCKIO
BCKIO
DIN
Lch Rch
D15 D14
D1 D0
D15 D14
D1 D0
LRCKIO
BCKIO
DIN
Lch Rch
D15 D14
D1 D0
D15 D14
D1 D0
D1 D0
52
6329A–PMAAC–12-Aug-07
AT73C206
5.8.11 Audio Electrical Characteristics
Operating Conditions (unless otherwise specified): VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V,
VDDPLL=2.8V, Ta = 25°C.
Table 5-29. Electrical Characteristics
Parameter Conditions Min Typ Max Units Comment
Digital Power Supply
Current Audio playback mode, fs=48kHz 12 15 mA
Analog Power Supply
Quiescent Current No Load, No Signal 12 15 mA
Speaker Driver
Quiescent Current No Load, No Signal 3 6 mA
Digital Power down Current 1.0 5 uA
Analog Power down Current 0.5 3 uA
Micamp Input impedance 60 kohm
Headphone
Amplifier Output Power
THD+N = 0.5%, fOUT = 1kHz
RL=32 ohm 22 mW
Mono Receiver
Amplifier Output Power
THD+N = 1%, fOUT = 1kHz
RL=32 ohm 60 mW
Mono Speaker
Amplifier Output Power
THD+N = 1%, fOUT = 1kHz
RL=8ohm 300 mW
Headphone Amplifier Total
Harmonic Distortion +
Noise1
fIN = 1kHz, POUT = 16 mW
RL=32 ohm
Audio DAC path
0.01 %
Mono Receiver Amplifier
Total
Harmonic Distortion + Noise
fIN = 1kHz, POUT = 40 mW
RL=32 ohm
Audio DAC path
0.01 %
Mono Speaker Amplifier
Total
Harmonic Distortion + Noise
fIN = 1kHz, POUT = 200 mW
RL=8 ohm 0.2 %
Signal-to-Noise Ratio
(Voice Playback Path)
Signal=0dBFS@1 kHz;
Noise=digital zero,
A-weighted; 0dB gain setting
fs = 8KHz
85 dB
Signal-to-Noise Ratio
(Audio Playback Path)
Signal=0dBFS@1 kHz;
Stereo Load; Noise=digital zero,
A-weighted; 0dB gain setting
90 dB
Dynamic Range
(Voice Playback Path)
Signal=-60dBFS@1 kHz;
Stereo Load;
A-weighted; 0dB gain setting
fs = 8 kHz
85 dB
Dynamic Range
(Audio Playback Path)
Signal=-60dBFS@1 kHz;
Stereo Load;
A-weighted; 0dB gain setting
fs = 44.1kHz
90 dB
53
6329A–PMAAC–12-Aug-07
AT73C206
Note: Conditions of Dynamic Range: +60dB SINAD at –60dB FS digital input.
Signal-to-Noise Ratio
(Voice ADC Path)
Reference signal = 0dBFS;
MICP, MICM terminated with
2uF to ground;
20 dB MICAMP gain setting
fs = 8 kHz
75 dB
Dynamic Range
(Voice ADC Path)
MICP, MICM terminated with
Signal=-60dBFS@1 kHz
0dB MIC preamp gain setting
fs = 8 kHz
75 dB
Stereo Channel-to-Channel
Crosstalk
fS=44.1 kHz, fIN=1 kHz
sine wave at –3dBFS -75 dB
Maximum Voltage
Differential
MIC Input Voltage
0dB MIC Preamp gain setting 2 VP-P
MICBIAS Output Voltage 10uA IOUT IOUTmax 2.1 2.2 2.3 V
Table 5-29. Electrical Characteristics
Parameter Conditions Min Typ Max Units Comment
54
6329A–PMAAC–12-Aug-07
AT73C206
5.8.11.1 Voice ADC CODEC Electrical Characteristics
Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V,
VDDPLL=2.8V, Ta = 25°C.
Table 5-30. Voice ADC Electrical Characteristics
Parameter Conditions Min Typ Max Unit Comment
Absolute Gain 0dBm0@1020Hz, Gain=0dB -1 1 dB
Gain Tracking
-10dBm0@1020Hz
3dBm0 to 40dBm0 -0.3 0.3 dB
-40dBm0 to 55dBm0 -0.5 0.5 dB
S/N
8kHz: C-Message
1020Hz, Analog Gain=0dB
3dBm0
73 83 dB
THD+N
BW= C-Message
1020Hz, Analog Gain=0dB
3dBm0 -50 -40 dB
0dBm0 -50 -40 dB
-5dBm0 -60 -50 dB
-10dBm0 -60 -50 dB
-20dBm0 -50 -40 dB
-30dBm0 -45 -35 dB
-40dBm0 -40 -30 dB
Speech Delay 0.5 ms
Idle Channel
Noise8kHz:C-
Message
Analog Gain=0dB -86 dBV
55
6329A–PMAAC–12-Aug-07
AT73C206
5.8.11.2 Voice DAC CODEC Electrical Characteristics
Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V,
VDDPLL=2.8V, Ta = 25°C.
Table 5-31. Voice DAC Electrical Characteristics
Parameter Conditions Min Typ Max Unit Comment
Absolute Gain 0dBm0@1020Hz, Gain=0dB -1 1 dB
Gain Tracking
-10dBm0@1020Hz, Gain=0dB
3dBm0 to 40dBm0 -0.3 0.3 dB
-40dBm0 to 55dBm0 -0.5 0.5 dB
S/N
HPOL Output
8kHz: C-Message
1020Hz, Gain=0dB
3dBm0 73 83 dB
THD+N
HPOL Output
8kHz:C-Message
1020Hz, Gain=0dB
3dBm0 -60 -50 dB
0dBm0 -60 -50 dB
-5dBm0 -70 -60 dB
-10dBm0 -70 -60 dB
-20dBm0 -60 -50 dB
-30dBm0 -50 -40 dB
-40dBm0 -40 -30 dB
Speech Delay 0.5 ms
Idle Channel Noise
8kHz:C-Message HPOL Output -90 dBV
56
6329A–PMAAC–12-Aug-07
AT73C206
5.8.11.3 Audio DAC Electrical Characteristics
Operating Conditions (unless otherwise specified): VDD=2.8V, VDDANA=2.8V, VBSP=3.6V, VDDHP=2.8V,
VDDPLL=2.8V, Ta = 25°C, Gain:0dB, fs =44.1kHz
Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V,
VDDPLL=2.8V, Ta = 25°C.
Table 5-32. Audio DAC Electrical Characteristics
Parameter Conditions Min Typ Max Unit Comment
Absolute Gain -3dBFS@1020Hz, Gain=0dB -1 1 dB
Gain Tracking
-10dBFS@1020Hz
0dBFS to 35dBFS -0.3 0.3 dB
-35dBFS to 50dBFS -0.5 0.5 dB
S/N 0dBFS@1020Hz 84 90
A-Weight dB
THD+N
Gain=0dB
-80 -700dBFS@1020Hz
BW=20Hz to 20kHz
Crosstalk -75 dB
Table 5-33. Audio DAC Digital Filter Electrical Characteristics
Parameter Conditions Min Typ Max Unit Comment
Pass Band 0.445 fs
Pass Band Ripple 0Fs to 0.445 fs -0.3 0 0.3 dB
Stop Band 0.555 fs
Stop Band
attenuation 0.555 fs to 1 fs -50 dB 48/44.1/32kHz
Stop Band
attenuation 0.555 fs to 1 fs -75 dB 24/22.05/16/11.025/8
kHz
57
6329A–PMAAC–12-Aug-07
AT73C206
5.8.11.4 TONE Generator Electrical Characteristics
Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V,
VDDPLL=2.8V, Ta = 25°C.
5.8.11.5 MICBIAS, SMICBIAS Electrical Characteristics
Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V,
VDDPLL=2.8V, Ta = 25°C.
Table 5-34. Tone Generator Electrical Characteristics
Parameter Conditions Min Typ Max Unit Comment
Signal Output Level Gain=0dB Setting 3.17 dBm0
Frequency Deviation 50Hz to 3.4kHz -2 2 Hz
THD+N HPOL(ToneGain=0dB) -40 dB
Table 5-35. MIC(SMIC)BIAS Electrical Characteristics
Symbol Parameter Conditions Min Typ Max Unit
VOUT Output Voltage 10uA IOUT IOUTmax 2.1 2.2 2.3 V
IOUT Output Current 1mA
Iss Consumption Current
on Operation-mode IOUT=0mA 200 uA
Istnby Consumption Current
on OFF-mode MICBIAS on OFF-mode 0.01 1 uA
RR Ripple Rejection Rate 2.8V+0.1Vp-p
IOUT=IOUTmax/2=217Hz 65 dB
VOUT/
topt
Output Voltage
Temperature Efficiency -30°C Ta 85°C ±100 ppm/
en Output Noise Level BW=20Hz to 6.6kHz(with C-Message),
IOUT=IOUTmax/2 10 uVrms
tu Rise Time Cout=0.1uF, IOUT=IOUTmax, VOUT > 90% 100 us
td Fall Time Cout=0.1uF, IOUT=0mA, VOUT < 0.5V 500 us
58
6329A–PMAAC–12-Aug-07
AT73C206
5.8.12 CLK
Voice PLL generates the clock for Voice block.
Audio PLL generates the clock for Audio block.
5.8.12.1 Block Diagram
Figure 5-32. Clock Block Diagram
Figure 5-33. PLL Block Diagram
PLL
Audio
Block
PLL
Voice
Block
rVPLLPON
rAPLLPON
32.768KHz
Select
rVPLLSRC
32.768KHz
Select
Divide factor
Divide factor
Voi ce PL L
Audio PL L
rAPLLSRC
rAFS
OSC
XIN
XOUT
32.768KHz
CKIN
CKIN
powerdown
powerdown
32.768KHz
div/Mux
CKOUT
CKIN
32.768kHz
Voice PLL
Audio PLL
VCAP
ACAP
Generated Clock for Voice
Generated Clock for Audio
59
6329A–PMAAC–12-Aug-07
AT73C206
5.8.13 Voice PLL
The internally generated clock frequency for voice PLL should be:
fv=53.248MHz.
If input clock=XIN (When XIN selected, it is automatically multiplied by 1625.)
The internally generated clock fv= 32.768kHz x 1625=53.248MHz.
If input clock = CKIN, the internally generated clock can be calculated by:
Example: If CKIN=26 MHz,
5.8.14 Audio PLL
The internally generated clock frequency for Audio PLL should be:
fA = fs x 512
If input clock = XIN (When XIN selected, it is automatically multiplied by AFS bit value).
Note: MA = ADIVM + 1, NA = ADIVN + 1
If input clock=CKIN (This does not exist in AFS bit.)
Example: If CKIN = 26MHz:
Note: Set each register value considering the relation between the main system clock and Audio codec
clock when the Audio codec clock needs to synchronize with the main system clock.
Note: Sampling Rate Setting: When using CKIN for input clock, set NV(NA) at CKIN ÷ NV(NA) > 30 kHz.
fv=CKIN x NV
MV (MV= VDIVM +1, NV=VDIVN+1)
fv=26MHz x 125
256 = 53.248MHz
Table 5-36. Audio PLL (Input clock = XIN)
fs (kHz) NA MA Internally generated fA(MHz)
48 1 750 24.576
44.1 1 689 22.577152
32 1 500 16.384
Table 5-37. Audio PLL (Input clock = CKIN)
fs (kHz) NA MA Internally generated fA(MHz)
48 347 328 24.576369
44.1 114 99 22.578947
32 411 259 16.384428
f
A
=CKIN x NA
MA
60
6329A–PMAAC–12-Aug-07
AT73C206
5.8.15 Clock Output Function
Each clock can be output through CKOUT pin. The output clock is selectable by CKOSEL bit.
Figure 5-34. Clock Output Diagram
5.8.16 PLL
5.8.16.1 AUDIO PLL/VOICE PLL
Electrical Characteristics: VDDPLL=2.8V, Ta = 25°C.
M
U
X
CKOUT32.768kHz
div.
fA
CKOSEL[2:0]
Table 5-38. PLL Electrical Characteristics
Parameter Conditions Min Typ Max Unit Comment
Input Frequency CKIN pin 0.1 30 MHz
XIN pin 32.768 KHz
Output jitter Short term, δ 200 ps No impact on Audio DAC
Output Duty Cycle 40 50 60 % No impact on Audio DAC
Lock Time 5 10 ms
Supply Current (Voice) Input Clock = 19.2 MHz 1 3 mA
Supply Current (Audio) Input Clock = 19.2 MHz 1 mA
61
6329A–PMAAC–12-Aug-07
AT73C206
5.9 Keypad LED
KEYLED driver has Nch open-drain type large current output pin. And, the LED ON/OFF is con-
trollable by register set and the brightness is settable by external current control resistor
5.9.1 Block Diagram
Figure 5-35. Keypad LED Driver Block Diagram
5.9.2 Explanation of Operation
KEYLED ON/OFF is controllable by KLEDEN bit. When KLEDEN bit is “1”, KEYLED is enabled.
5.9.3 Electrical Characteristics
VIN=3.6V, Ta = 25°C.
KLEDEN
VIN
KEYLED Keypad LED
GNDKEY
Table 5-39. Keypad LED Driver Pin Description
Pin Name I/O Function
KEYLED O KEYLED driver
GNDKEY G GND only for KEYLED driver
Table 5-40. Keypad LED Driver Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
VOL Output voltage “L” Level Iout = -100 mA 0.5 V
IOZ Output OFF leakage VIN=04.2V 1 uA
62
6329A–PMAAC–12-Aug-07
AT73C206
5.10 General Purpose I/O
AT73C206 supports 4-channel GPIO.
All GPIO input/output are controlled by register configure independently.
5.10.1 Block Diagram
Figure 5-36. General Purpose IO Block Diagram
5.10.2 Explanation of Operation
The GPIO has 4-channel I/O function. With pin control, it is possible to control input or output
setting of each channel individually. When it is set in output modeGPIODIR= “1”, the output data,
which is written in GPOSET register, is output. When it is set in input mode GPIODIR= “0”, the
pin level is readable from GPIMON register. I/O voltage varies by VDDIO voltage.
Set GPAIN= “0” when connect analog signal to P0/AN0 and P1/AN1. Then, GPIODIR becomes
invalid and GPIO starts operating in analog input mode. And, the GPIMONI will be set to “0”.
GPOSET[1:0]
GPIMON[1:0]
GPIODIR[1:0]
VDDIO
OEB
GPAIN[1:0]
P0/AN0
P1/AN1
GPOSET[3:2]
GPIMON[3:2]
GPIODIR[3:2]
VDDIO
OEB
P2
P3
to ADC Block
63
6329A–PMAAC–12-Aug-07
AT73C206
Note: 1. Hi-z is prohibited.
Table 5-41. GPIO Truth Table
Setting Register
GPIO Terminal
Reading
Register
GPAIN GPIODIR GPOSET GPIMON
0
(Analog input mode) Don’t care Don’t care Analog signal
input -> ADC 8-bit L
1
1
(Output mode)
1H1
0L0
0
(Input mode) Don’t care
H1
L0
Hi-z(1) X
64
6329A–PMAAC–12-Aug-07
AT73C206
5.11 IRQ Monitor
With IRQ monitor, AT73C206 can read all the permitted interrupt request flags coming from dif-
ferent functional blocks
When interrupt occurred, CPU is informed it by asserting IRQB and read register rIRQMON reg-
ister to identify which block is producing the interrupt. The rIRQMON is read only register. NOR
gate signal of each permitted interrupt request flags will be output from IRQB.
Figure 5-37. IRQ Monitor Block Diagram
ADCEC IR
CTFG
rIRQMON
IRQB
WAFG
DAFG
JACKBIR
JACKIR
ADPBIR
ADPIR
STPIR
JKBIREN
JKIREN
ADPBIREN
ADPIREN
STPIREN
ADCIREN
WALE
DALE
JACKBIRM
JACKIRM
ADPBIRM
ADPIRM
STPIRM
ADCECIRM
CTFGM
WAFGM
DAFGM
CT[2:0]
65
6329A–PMAAC–12-Aug-07
AT73C206
5.12 CPU Interface
AT73C206 employs a synchronous SPI for interfacing to CPU.
5.12.1 SEN and Data Read Write Timing
AT73C206 interfaces with CPU using 4 signal lines. SDI is data input (Write) from CPU and
SDO is data output (Read) to CPU. SCLK is synchronous clock and CPU outputs data at falling
edge of SCLK and inputs at rising edge of SCLK. AT73C206 CPU interface consists of Address
decoder, Address latch, Shift register, Control circuit and Clock counter. Refer to the diagram
below.
Figure 5-38. CPU Interface Configuration
5.12.2 Data Transmission Format
An “H” to “L” transition on SEN line asserts data transmission and an “L” to “H” transition deas-
serts data transmission. The data is transmitted by byte. The first 7 bits contains register
address and the last bit determines Read or Write. When writing mode, the following 1 byte will
be the data. When read mode, the following 8-bit is ignored and an appointed address data (8-
bit) is output from SDO pin. CPU needs to deassert SEN everytime after read and write data.
Figure 5-39. Writing Data
Shift register
Clock counter
Address latch
Address decoder CE
WDATA[7:0]
WB
Register
Block
RDATA[7:0]
Shift register
SDI
SDO
SCLK
SEN Control circuit
Writing data
SEN
SCLK
A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
SDI
SDO
0
Hi-ZHi-Z
66
6329A–PMAAC–12-Aug-07
AT73C206
Figure 5-40. Reading Data
5.12.3 Target Electrical Characteristics
AC characteristics: Ta = -30°C to 85°C
D0
Reading data
SEN
A6 A5 A4 A3 A2 A1 A0
D7 D6 D5 D4 D3 D2 D1
SDI
SDO
Don't care
1
SCLK
Hi-Z
Hi-Z
Table 5-42. AC Characteristics
Symbol Parameter Min Typ Max Units
tcymc CLK cycle time 100 ns
twhmc CLK cycle high interval 50 ns
twlmc CLK cycle low interval 50 ns
trmc CLK rise time 20 ns
tfmc CLK fall time 20 ns
tws Write data setup time 20 ns
twh Write data hold time 10 ns
trd Read data delay time 25 ns
trh Read data hold time 0 ns
tdre Read data output enable delay time 25 ns
tdrd Read data output disable delay time 25 ns
tses Time from SEN “H” to a SCK input 50 ns
tseh SEN “H” hold time 100 ns
tsel SEN Minimum “L” time 100 ns
67
6329A–PMAAC–12-Aug-07
AT73C206
Figure 5-41. CPU Interface Timing Chart
tcymc
twhmc
trmc tfmc twlmc
SCLK
SDI A7
tws twh
SEN
tses tseh
D0
SCLK
SDO
trd trh
SEN
tdre
D7
tdrd
A5 A0
tsel
68
6329A–PMAAC–12-Aug-07
AT73C206
6. Registers
Name Address Register R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
LDO
00 LDOEN R/W - LDO10ON LDO9ON LDO8ON LDO7ON LDO6ON LDO5ON LDO4ON
01 LDO1CNT R/W OPMODEV - - OPMODE1 - - LDO1DAC[1] LDO1DAC[0]
02 LDO3CNT R/W RESDET
DAC[1]
RESDET
DAC[0] - OPMODE3 - - LDO3DAC[1] LDO3DAC[0]
03 LDO4CNT R/W - - - - - - LDO4DAC[1] LDO4DAC[0]
04 LDO5CNT R/W - - - - - - LDO5DAC[1] LDO5DAC[0]
05 LDO8CNT R/W - - - - - - - LDO8SEL
White LED
Driver 06 LEDCNT R/W D7 D6 D5 D4 D3 D2 D1 D0
Charger 07 CHGCNT1 R/W - - TP[1] TP[0] RPC[2] RPC[1] RPC[0] CHGONB
08 CHGCNT2 R/W - - - - ADPBIREN ADPIREN ADPBIR ADPIR
ADC
09 ADCCNT R/W - - BUFEN BTMEN ADCECIR ADCIREN ADSEL[1] ADSEL[0]
0A ADSTART R/W - - - - - - ADEND ADSTART
0B ADCDATA R ADDATA[7] ADDATA[6] ADDATA[5] ADDATA[4] ADDATA[3] ADDATA[2] ADDATA[1] ADDATA[0]
Keypad LED 0C KLED R/W - - - - - - - KLEDEN
CLK 0D CLKCNT R/W - - - - - STPIREN STPCLKIR CK32EN
IRQ 0E IRQMON1 R - - - - JACKBIRM JACKIRM ADPBIRM ADPIRM
0F IRQMON2 R - - - CLKSTPM ADCECIRM CTFGM WAFGM DAFGM
RTC
10 SEC R/W - S40 S20 S10 S8 S4 S2 S1
11 MIN R/W - M40 M20 M10 M8 M4 M2 M1
12 HOUR R/W - - H20PA H10 H8 H4 H2 H1
13 WEEK R/W - - - - - W4 W2 W1
14 DAY R/W - - D20 D10 D8 D4 D2 D1
15 MONTH R/W - - - MO10 MO8 MO4 MO2 MO1
16 YEAR R/W Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1
17 RTCADJ R/W - F6 F5 F4 F3 F2 F1 F0
18 WAL_MIN R/W - WM40 WM20 WM10 WM8 WM4 WM2 WM1
19 WAL_HOUR R/W - - WH20PA WH10 WH8 WH4 WH2 WH1
1A WAL_WEEK R/W - WW6 WW5 WW4 WW3 WW2 WW1 WW0
1B DAL_MIN R/W - DM40 DM20 DM10 DM8 DM4 DM2 DM1
1C DAL_HOUR R/W - - DH20PA DH10 DH8 DH4 DH2 DH1
1D - - - - - - - - - -
1E RTCCNT1 R/W WALE DALE Z1224 SCRA TEST CT2 CT1 CT0
1F RTCCNT2 R/W - XSTZ PON SCRB CTFG WAFG DAFG
69
6329A–PMAAC–12-Aug-07
AT73C206
Addres
s Register R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Audio/Voice
20 PWRCNT R/W - - SMICPON MICPON - - DAUON DVOON
21 VMODE R/W VASEL MSSEL IFEN VFS - - - VFORMAT
22 AMODE R/W - AFS[2] AFS[1] AFS[0] - - AFORMAT[
1]
AFORMAT[
0]
23OMODER/W----
MODECO[3
]
MODECO[2
]
MODECO[1
]
MODECO[0
]
24 MUTE R/W - - MUTEDA MUTESIDE - MUTEDRV MUTESMIC MUTEMIC
25 DRVAG R/W - - - DRVAG[4] DRVAG[3] DRVAG[2] DRVAG[1] DRVAG[0]
26 MICAG R/W - - - - MICAG[3] MICAG[2] MICAG[1] MICAG[0]
27 MICDG R/W - - - MICDG[4] MICDG[3] MICDG[2] MICDG[1] MICDG[0]
28ReservedR/W--------
29ReservedR/W--------
2A SIDEDG R/W - - SIDEDG[5] SIDEDG[4] SIDEDG[3] SIDEDG[2] SIDEDG[1] SIDEDG[0]
2B RECDG R/W - - - RECDG[4] RECDG[3] RECDG[2] RECDG[1] RECDG[0]
2C DATTL R/W - - DATTL[5] DATTL[4] DATTL[3] DATTL[2] DATTL[1] DATTL[0]
2D DATTR R/W - - DATTR[5] DATTR[4] DATTR[3] DATTR[2] DATTR[1] DATTR[0]
2EReservedR/W--------
2F TNCNT R/W TNCON VRTNSW VTTNSW - TNTIME[3] TNTIME[2] TNTIME[1] TNTIME[0]
30 TNSET R/W TNG3[2] TNG3[1] TNG3[0] FREQSEL[4
]
FREQSEL[3
]
FREQSEL[2
]
FREQSEL[1
]
FREQSEL[0
]
31 TNGAIN R/W TNG2[3] TNG2[2] TNG2[1] TNG2[0] TNG1[3] TNG1[2] TNG1[1] TNG1[0]
32 PTN1SETL R/W PTN1[7] PTN1[6] PTN1[5] PTN1[4] PTN1[3] PTN1[2] PTN1[1] PTN1[0]
33PTN1SETHR/W-------PTN1[8]
34 PTN2SETL R/W PTN2[7] PTN2[6] PTN2[5] PTN2[4] PTN2[3] PTN2[2] PTN2[1] PTN2[0]
35PTN2SETHR/W-------PTN2[8]
36 APLLCNT R/W APLLPON CKOSEL[2] CKOSEL[1] CKOSEL[0] - - - APLLSRC
37 VPLLCNT R/W VPLLPON - - - - - - VPLLSRC
38 ADIVNL R/W ADIVN[7] ADIVN[6] ADIVN[5] ADIVN[4] ADIVN[3] ADIVN[2] ADIVN[1] ADIVN[0]
39 ADIVNH R/W - - - - ADIVN[11] ADIVN[10] ADIVN[9] ADIVN[8]
3A ADIVML R/W ADIVM[7] ADIVM[6] ADIVM[5] ADIVM[4] ADIVM[3] ADIVM[2] ADIVM[1] ADIVM[0]
3B ADIVMH R/W - - - - ADIVM[11] ADIVM[10] ADIVM[9] ADIVM[8]
3C VDIVNL R/W VDIVN[7] VDIVN[6] VDIVN[5] VDIVN[4] VDIVN[3] VDIVN[2] VDIVN[1] VDIVN[0]
3D VDIVNH R/W - - - - VDIVN[11] VDIVN[10] VDIVN[9] VDIVN[8]
3E VDIVML R/W VDIVM[7] VDIVM[6] VDIVM[5] VDIVM[4] VDIVM[3] VDIVM[2] VDIVM[1] VDIVM[0]
3F VDIVMH R/W - - - - VDIVM[11] VDIVM[10] VDIVM[9] VDIVM[8]
STATUS40STMONR-----JACKMON
CLKSTPMO
NONSWMON
70
6329A–PMAAC–12-Aug-07
AT73C206
Notes: 1. Don’t set “1” to reserved bits.
2. Don’t write “1” or “0” to undefined registers.
3. The registers 07h08h are power supplied from CHGADP. When not connected to AC adaptor, these registers(07h08h)will be
cleared.
4. The registers 10h1Fh are power supplied from VSB. When there is no sub-battery, these registers(10h1Fh ) will be cleared.
5. The registers 20H3Fh are power supplied from VDD. If turn off LDO10, registers 20H3Fh will be cleared.
At this time, writing in these registers will not be available.
6.1 Regulators Registers
6.1.1 LDOEN: LDOs Output Control Register (Address 00h)
GPIO
41 GPIODIR R/W - - GPAIN1 GPAIN0 GPIODIR3 GPIODIR2 GPIODIR1 GPIODIR0
42 GPOSET R/W - - - - GPOSET3 GPOSET2 GPOSET1 GPOSET0
43 GPIMON R - - - - GPIMON3 GPIMON2 GPIMON1 GPIMON0
JACK 44 JACKCNT R/W - - - - JKBIREN JKIREN JACKBIR JACKIR
Bit Symbol R/W Function 1 0
Initial value
GSP=L GSP=H
7 ----- ----- Reserved ----- ----- ----- -----
6 LDO10ON R/W LDO10 ON/OFF control bit ON OFF 0 0
5 LDO9ON R/W LDO9 ON/OFF control bit ON OFF 0 0
4 LDO8ON R/W LDO8 ON/OFF control bit ON OFF 0 1
3 LDO7ON R/W LDO7 ON/OFF control bit ON OFF 1 0
2 LDO6ON R/W LDO6 ON/OFF control bit ON OFF 1 1
1 LDO5ON R/W LDO5 ON/OFF control bit ON OFF 0 1
0 LDO4ON R/W LDO4 ON/OFF control bit ON OFF 0 0
71
6329A–PMAAC–12-Aug-07
AT73C206
6.1.2 LDO1CNT: LDO1 Control Register (Address 01h)
Note: The Initial value is selectable by LDO1SEL pin.
VREF ECO-mode (OPMODEV= “1”) is settable only when LDO1 and LDO3 are in ECO-mode
(OPMODE1, OPMODE3) and LDO4~10 are disabled. In other case, set it in Normal-mode
(OPMODEV= “0”).
Bit Symbol R/W Function 1 0 Initial value
7 OPMODEV R/W VREF ECO/Normal control bit ECO Mode Normal Mode 0
6-5 ----- ----- Reserved ----- ----- -----
4 OPMODE1 R/W LDO1 ECO/Normal control bit ECO Mode Normal Mode 0
3-2 ----- ----- Reserved ----- ----- -----
1-0 LDO1DAC[1:0] R/W Setting the output voltage to LDO1 See the LDO1 output voltage table below (Note)
Output voltage for LDO1
LDO1DAC [1:0] Output voltage
11 1.5V
10 1.3V
01 1.0V
00 0.9V
Initial value select for LDO1
LDO1SEL LDO1DAC Initial Value
H11
L10
72
6329A–PMAAC–12-Aug-07
AT73C206
6.1.3 LDO3CNT: LDO3 Control Register (Address 02h)
Bit Symbol R/W Function 1 0
Initial value
GSP=L GSP=H
7-6 RESDETDAC[1:0] R/W Setting the RESDET Voltage As below 00 01
5 ----- ----- Reserved ----- ----- -----
4 OPMODE3 R/W LDO3 ECO/Normal control bit ECO Mode Normal Mode 0
3-2 ----- ----- Reserved ----- ----- -----
1-0 LDO3DAC[1:0] R/W Setting the output voltage to LDO3 As below 00 01
RESDET detection voltage
RESDETDAC [1:0] Detection voltage
11 -----
10 For 3.0V
01 For 2.8V
00 For 2.5V
Output voltage of LDO3
LDO3DAC [1:0] Output voltage
11 -----
10 3.0V
01 2.8V
00 2.5V
73
6329A–PMAAC–12-Aug-07
AT73C206
6.1.4 LDO4CNT: LDO4 Control Register (Address 03h)
Bit Symbol R/W Function 1 0 Initial value
7-2 ----- ----- Reserved ----- ----- -----
1-0 LDO4DAC[1:0] R/W Setting the output voltage to LDO4 As below 00
Output voltage of LDO4
LDO4DAC [1:0] Output voltage
11 3.1V
10 3.0V
01 2.8V
00 1.8V
74
6329A–PMAAC–12-Aug-07
AT73C206
6.1.5 LDO5CNT: LDO5 Control Register (Address 04h)
6.1.6 LDO8CNT: LDO8 Control Register (Address 05h)
Bit Symbol R/W Function 1 0
Initial value
GSP=L GSP=H
7-2 ----- ----- Reserved ----- ----- ----- -----
1-0 LDO5DAC[1:0] R/W Setting the output voltage to LDO5 As below 10 01
Output voltage of LDO5
LDO5DAC [1:0] Output voltage
11 3.3V
10 3.0V
01 2.8V
00 2.7V
Bit Symbol R/W Function 1 0
Initial value
GSP=L GSP=H
7-1 ----- ----- Reserved ----- ----- ----- -----
0 LDO8SEL R/W Setting the output voltage to LDO8 2.8V 1.8V 0 1
75
6329A–PMAAC–12-Aug-07
AT73C206
6.2 White LED Driver Register
6.2.1 LEDCNT: White LED Brightness (Address 06h)
Each sink current of DIN1-4 can be set by the code of D4-D0. Defaults shown in bold.
LED Current (mA) Data Charge
Pump
White LED D7 D6 D5 D4 D3 D2 D1 D0
25.0 ----- ----- ----- 1 1 1 1 1 ON
24.2 ----- ----- ----- 1 1 1 1 0 ON
23.4 ----- ----- ----- 1 1 1 0 1 ON
22.6 ----- ----- ----- 1 1 1 0 0 ON
21.8 ----- ----- ----- 1 1 0 1 1 ON
21.0 ----- ----- ----- 1 1 0 1 0 ON
20.2 ----- ----- ----- 1 1 0 0 1 ON
19.4 ----- ----- ----- 1 1 0 0 0 ON
18.5 ----- ----- ----- 1 0 1 1 1 ON
17.7 ----- ----- ----- 1 0 1 1 0 ON
16.9 ----- ----- ----- 1 0 1 0 1 ON
16.1 ----- ----- ----- 1 0 1 0 0 ON
15.3 ----- ----- ----- 1 0 0 1 1 ON
14.5 ----- ----- ----- 1 0 0 1 0 ON
13.7 ----- ----- ----- 1 0 0 0 1 ON
12.9 ----- ----- ----- 1 0 0 0 0 ON
12.1 ----- ----- ----- 0 1 1 1 1 ON
11.3 ----- ----- ----- 0 1 1 1 0 ON
10.5 ----- ----- ----- 0 1 1 0 1 ON
9.7 ----- ----- ----- 0 1 1 0 0 ON
8.9 ----- ----- ----- 0 1 0 1 1 ON
8.1 ----- ----- ----- 0 1 0 1 0 ON
7.3 ----- ----- ----- 0 1 0 0 1 ON
6.5 ----- ----- ----- 0 1 0 0 0 ON
5.6 ----- ----- ----- 0 0 1 1 1 ON
4.8 ----- ----- ----- 0 0 1 1 0 ON
4.0 ----- ----- ----- 0 0 1 0 1 ON
3.2 ----- ----- ----- 0 0 1 0 0 ON
2.4 ----- ----- ----- 0 0 0 1 1 ON
1.6 ----- ----- ----- 0 0 0 1 0 ON
0.8 ----- ----- ----- 0 0 0 0 1 ON
off ----- ----- ----- 0 0 0 0 0 OFF
76
6329A–PMAAC–12-Aug-07
AT73C206
6.3 Charger Control Registers
6.3.1 CHGCNT1 : Charger Control Register1 (Address 07h)
TP1, TP0 (bit5, 4) [W]: Chip temperature detection threshold select bits
RPC [2:0] (bit3, 2, 1) [W]: Rapid Charge current select bits
6.3.2 CHGCNT2 : Charger Control Register2 (Address 08h)
Bit Name R/W Function 10Initial value
7-6 ----- ----- Reserved ----- ----- -----
5-4 TP[1:0] R/W Chip temperature detection threshold As below 01
3-1 RPC [2:0] R/W Rapid Charge current select bits As below 000
0 CHGONB R/W Charger ON/OFF control bit OFF ON 0
TP [1:0] Chip temperature detection threshold
11 135
10 115
01 105
00 95
RPC [2:0] Rapid Charge current
111 850 mA
110 800 mA
101 750 mA
100 700 mA
011 650 mA
010 600 mA
001 550 mA
000 500 mA
Bit Name R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3 ADPBIREN R/W Over voltage adaptor disconnection interrupt enable Enable Disable 0
2 ADPIREN R/W Over voltage adaptor connection interrupt enable Enable Disable 0
1 ADPBIR R Over voltage adaptor disconnection interrupt flag Generated None ---
0 ADPIR R Over voltage adaptor connection interrupt flag Generated None ---
77
6329A–PMAAC–12-Aug-07
AT73C206
6.4 A/D Converter Registers
6.4.1 ADCCNT: A/D Converter Control Register (Address 09h)
Note: 1. This bit can be cleared by writing “0” but can not set flag by writing “1”.
6.4.2 ADSTART: A/D Converter Conversion Start Register (Address 0Ah)
ADEND: End of the AD conversion bit
1: AD conversion is completed.
This bit is cleared by reading the converted data.
ADSTART: Start of the AD conversion command
1: Start AD conversion
This bit is automatically cleared after conversion starts.
Bit Symbol R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5 BUFEN R/W Buffer enable bit Enable Disable 0
4 BTMEN R/W Battery monitor enable bit Enable Disable 0
3 ADCECIR R/W ADC “End of Conversion” interrupt request bit (1) Generated None 0
2 ADCIREN R/W ADC interrupt enable bit Enable Disable 0
1-0 ADSEL [1:0] R/W ADC input select As below As below 00
ADSEL: Selecting ADC input
11 P1/AN1
10 P0/AN0
01 IMONI
00 BATMONI
Bit Symbol R/w Function 1 0 Initial Value
7-2 ----- ----- Reserved ----- ----- -----
1 ADEND R End of the AD conversion bit As below 0
0 ADSTART W Start of the AD conversion command As below 0
78
6329A–PMAAC–12-Aug-07
AT73C206
6.4.3 ADCDATA: Conversion Data Register (Address 0Bh)
Bit Symbol R/w Function 1 0 Initial Value
7-0 ADDATA [7:0] R Conversion Data Conversion Data 0
Result
ADC AN0 AN1 IMONI(V) BATMONI(V)
255 VDDIO VDDIO VDDIO VDDIO x 2
0 0.000 0.000 0.000 0.000
79
6329A–PMAAC–12-Aug-07
AT73C206
6.5 Keypad LED Registers
6.5.1 KLED: Keypad LED Control Register (Address 0Ch)
Bit Symbol R/W Function 1 0
Initial value
GSP=L GSP=H
7-1 ----- ----- Reserved ----- ----- ----- -----
0 KLEDEN R/W Enable KEYLED Driver ON OFF 0 0
80
6329A–PMAAC–12-Aug-07
AT73C206
6.6 Clock Control Register
6.6.1 CLKCNT: Clock Control Register (Address 0Dh)
Note: This bit can be cleared by writing “0” but can not set flag by writing “1”.
Bit Symbol R/W Function 1 0
Initial value
GSP=L GSP=H
-3 ----- ----- Reserved ----- ----- ----- -----
2 STPIREN R/W Clock stop interrupt enable Enable Disable 0 0
1 STPIR R/W Clock stop interrupt request flag (Note) Generated None 0 0
0 CK32EN R/W OUT32K output enable Enable Disable 1 0
81
6329A–PMAAC–12-Aug-07
AT73C206
6.7 Interrupt Request Flag Monitor Registers
6.7.1 IRQMON1: Interrupt Request Flag Monitor 1 Register (Address 0Eh)
Note: The bit, whose interrupt is prohibited from generating by each interrupt enable/disable register bit,
has “0”.
6.7.2 IRQMON2: Interrupt Request Flag Monitor 2 Register (Address 0Fh)
Note: The bit, whose interrupt is prohibited from generating by each interrupt enable/disable register bit,
has “0”.
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3 JACKBIRM R Jack disconnection interrupt flag monitor Requested None 0
2 JACKIRM R Jack connection interrupt flag monitor Requested None 0
1 ADPBIRM R Over voltage adaptor disconnection interrupt flag
monitor Requested None 0
0 ADPIRM R Over voltage adaptor connection interrupt flag monitor Requested None 0
Bit Symbol R/W Function 1 0 Initial value
7-5 ----- --- Reserved ----- ----- -----
4 STPIRM R Clock stop detection interrupt flag monitor Requested None 0
3 ADCECIRM R ADC “End of conversion” interrupt flag monitor Requested None 0
2 CTFGM R RTC CTFG flag monitor Requested None 0
1 WAFGM R RTC WAFG flag monitor Requested None 0
0 DAFGM R RTC DAFG flag monitor Requested None 0
82
6329A–PMAAC–12-Aug-07
AT73C206
6.8 RTC Registers
6.8.1 RTC Counter Registers
6.8.1.1 SEC: Second Counter Register (Address 10h)
6.8.1.2 MIN: Minute Counter Register (Address 11h)
6.8.1.3 HOUR: Hour Counter Register (Address 12h)
Digit display(BCD code)
Second:
Range is 00 to 59. The second digit is rounded up to the minute digit when the count
changes from 59 to 00.
Minute:
Range is 00 to 59. The minute digit is rounded up to the hour digit when the count changes
from 59 to 00.
Hour:
The hour digit is rounded up to the day or day of the week when the count changes from
PM11 to PM12 or from 23 to 00.
The lower-order counter than one second counter is reset when the writing second counter
is conducted.
Rounding up from any incorrect and invalid data in the counter register results in unpredictable
behavior. Only valid and correct data must be written to the counter register.
Bit7 6543210
Symbol Reserved S40 S20 S10 S8 S4 S2 S1
R/W --- R/W R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
Bit7 6543210
Symbol Reserved M40 M20 M10 M8 M4 M2 M1
R/W --- R/W R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
Bit7 6 543210
Symbol Reserved Reserved H20PA H10 H8 H4 H2 H1
R/W --- --- R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
83
6329A–PMAAC–12-Aug-07
AT73C206
6.8.1.4 WEEK: A Day of a Week Counter Register (Address 13h)
When the day digit is rounded up, the digit is incremented by 1.
Day of week display (septet incremental count): (W4W2W1)=(000) -> (001) -> ...(110) -> (000)
Correspondence between day of the week and count value are user programmable. (e.g.
Sunday=000)
Writing (W4W2W1)=(111) is prohibited except when day of the week is unused.
6.8.1.5 DAY: Day Counter Register (Address 14h)
6.8.1.6 MONTH: Month Counter and 100year bit Register (Address 15h)
6.8.1.7 YEAR: Year Counter Register (Address 16h)
Digit display (BCD code) is as follows according to the auto calendar function.
Day digit:
1 to 31 (January, March, May, July, August, October, and December)
1 to 30 (April, June, September, and November)
1 to 29 (February in a leap year)
1 to 28 (February in regular year)
Bit76543210
Symbol Reserved Reserved Reserved Reserved Reserved W4 W2 W1
R/W --- --- --- --- --- R/W R/W R/W
Default --- --- --- --- --- --- --- ---
Bit7 6 543210
Symbol Reserved Reserved D20 D10 D8 D4 D2 D1
R/W --- --- R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
Bit7 6 5 43210
Symbol Reserved Reserved Reserved MO10 MO8 MO4 MO2 MO1
R/W --- --- --- R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
Bit76543210
Symbol Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1
R/W R/WR/WR/WR/WR/WR/WR/WR/W
Default --- --- --- --- --- --- --- ---
84
6329A–PMAAC–12-Aug-07
AT73C206
(The day digit is rounded up to the month digit when the count value returns to 1.)
Month digit:
Range is 1 to 12. The month digit is rounded up to the year digit when the count value
returns to 1.
Year digit:
Range is 00 to 99. Years 00, 04, 08, …, 92, 96 are leap years (corresponding to the year
2000 to 2099).
Rounding up from any incorrect and invalid data in the counter register results in unpredictable
behavior of the chip. Only valid and correct data must be written to the counter register.
6.8.1.8 RTCADJ: RTC Adjustment Register (Address 17h)
F6 ~ F0
The count value of one second is changed by the value of this register. Normally, the second
count is incremented by 32768 clock pulses generated by the oscillator. The clock error offset
circuit functions by writing data to this register.
Register value F6=“0”: The count value is incremented by ((F5,F4,F3,F2,F1,F0)-1) x 2.
Register value F6=“1”: The count value is decremented by((/F5,/F4,/F3,/F2,/F1,/F0)+1) x 2.
When F6,F5,F4,F3,F2,F1,F0= (*,0,0,0,0,0,*), there is no change in the count value.
/F5, /F4, /F3, /F2, /F1, /F0 indicate reversed F5, F4, F3, F2, F1, F0.
Example
When (F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,1,1,1) and second digit is 00, 20 or 40, the count value
becomes 32768+(7-1)Þ2=32780.It puts clock back.
When (F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,0,0,1) and second digit is 00, 20 or 40, count value is
hold at 32768 without making any change.
When 2 pulses are added to clock every 20sec, the count value becomes 2/(32768 x 20)=3.051
ppm and the clock will be put back around 3ppm. Likewise, when 2 pulses are reduced, 3ppm
will be put forward. The clock error can be regulated in maximum ±1.5ppm.
But the clock error offset corrects only clock not oscillator frequency. (32k clock output not
guaranteed.)
Bit7 6543210
Symbol Reserved F6 F5 F4 F3 F2 F1 F0
R/W --- R/W R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
85
6329A–PMAAC–12-Aug-07
AT73C206
6.8.2 RTC Alarm_W Registers
6.8.2.1 WAL_MIN: Alarm_W Minute Register (Address 18h)
6.8.2.2 WAL_HOUR: Alarm_W Hour Register (Address 19h)
6.8.2.3 WAL_WEEK: Alarm_W A Day of a Week Register (Address 1Ah)
Alarm_W hour register:
Register D5 indicates AM/PM on 12-hour format (AM:0, PM: 1) and 20 WH20PA on 24-hour
format.
Set the alarm register only to correct time for proper alarm operation since incorrect data to
the alarm register results in no match between the counter and alarm register.
Hour digit on 12-hour format:
AM 0 o’clock -> 12, PM 0 o’clock -> 32
WW0 ~ WW6 correspond to day of the week counter (W4,W2,W1) = (0,0,0) ~ (1,1,0)
When WW0 ~ WW6 are all “0”, Alarm_W will not be output.
Bit7 6543210
Symbol Reserved WM40 WM20 WM10 WM8 WM4 WM2 WM1
R/W --- R/WR/WR/WR/WR/WR/WR/W
Default --- --- --- --- --- --- --- ---
Bit76543210
Symbol Reserved Reserved WH20PA WH10 WH8 WH4 WH2 WH1
R/W --- --- R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
Bit7 6543210
Symbol Reserved WW6 WW5 WW4 WW3 WW2 WW1 WW0
R/W --- R/W R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
86
6329A–PMAAC–12-Aug-07
AT73C206
6.8.3 RTC Alarm_D Registers
6.8.3.1 DAL_MIN : Alarm_D Minute Register (Address 1Bh)
6.8.3.2 DAL_HOUR : Alarm_D Hour Register (Address 1Ch)
Alarm_D hour Register: D5 indicates AM/PM on 12-hour format(AM:0, PM:1) and DH20PA on
24-hour format.
Set the alarm register only to correct time for proper alarm operation since incorrect data to
the alarm register results in no match occurring between the counter and alarm register.
Hour digit on 12-hour format: AM 0 o’clock -> 12, PM 0 o’clock -> 32
Bit7 6543210
Symbol Reserved DM40 DM20 DM10 DM8 DM4 DM2 DM1
R/W --- R/W R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
Bit7 6 543210
Symbol Reserved Reserved DH20PA DH10 DH8 DH4 DH2 DH1
R/W --- --- R/W R/W R/W R/W R/W R/W
Default --- --- --- --- --- --- --- ---
87
6329A–PMAAC–12-Aug-07
AT73C206
6.8.4 RTCCNT1 : RTC Control Register 1 (Address 1Eh)
Z1224 (bit5) [R/W] : 12-hour/24-hour format select bit
Setting 12-hour /24-hour must be preceded writing of time data. Time-digit display table is
shown below.
SCRA (bit4) [R/W]
The written value in SCRA (scratch bit) has no effect on RTC operation. And, it is not initialized
even at power-off and hold by VSB power.
TEST (bit3) [W]
Bit Name R/W Function 1 0 Initial value
7WALE R/W ALARM_W enable bit Enable Disable 0
6DALE R/W ALARM_D enable bit Enable Disable 0
5Z1224 R/W Selecting 12-hour/24-hour format As below 0
4SCRA R/W Scratch bit (for user) 1 0 0
3TEST W TEST control bit As below 0
2-0 CT [2:0] R/W Constant cycle interrupt select bit As below 000
Z1224 Selecting 12-hour/24-hour format
1 24-hour format
0 AM/PM display 12hour format
24-hour format 12-hour format 24-hour format 12-hour format
00 12 (AM12) 12 32 (PM12)
01 01 (AM 1) 13 21 (PM 1)
02 02 (AM 2) 14 22 (PM 2)
03 03 (AM 3) 15 23 (PM 3)
04 04 (AM 4) 16 24 (PM 4)
05 05 (AM 5) 17 25 (PM 5)
06 06 (AM 6) 18 26 (PM 6)
07 07 (AM 7) 19 27 (PM 7)
08 08 (AM 8) 20 28 (PM 8)
09 09 (AM 9) 21 29 (PM 9)
10 10 (AM10) 22 30 (PM10)
11 11 (AM11) 23 31 (PM11)
88
6329A–PMAAC–12-Aug-07
AT73C206
It is prohibited to write “1” to the Test bit.
CT [2:0] (bit 2,1,0): Constant Cycle Interrupt select bit
1. Pulse mode
2 Hz, 1 Hz for clock is provided. See diagram below for second count-up.
Figure 6-1. Pulse Mode Diagram
There is a delay from falling edge of output in second count-up. And about 1 sec delayed time
than RTC will be readable right after the falling edge of output.
Even though second counter is re-written, IRQB goes “L” once since lower-order counter than
one second sec is reset.
2. Level mode
Interrupt cycle is selectable from 1 second, 1 minute, 1 hour or 1 month. Second count-up is
synchronous with falling of interrupt output. See the timing chart with interrupt cycle set at 1 sec-
ond below.
TEST TEST bit
1 Test Mode (Note) Read data is fixed “0”.
0 Normal Mode
CT [2:0]
Description
Waveform mode Cycle and falling timing
111 Level mode *2) 1 time/1 month (every month 1day AM 00 o’clock 00 minute 00
second)
110 Level mode *2) 1 time/1 hour (every hour, 00 minute 00 second)
101 Level mode *2) 1 time/1 min. (every minute, 00 second)
100 Level mode *2) 1 time/ 1sec. (simultaneous with second count-up)
011 Pulse mode *1) 1Hz (Duty50%)
010 Pulse mode *1) 2Hz (Duty50%)
001 - “L” fixed
000 - OFF(H)
CTFG Bit
IRQB Pin
Second count-up Rewrite of second count-up
89
6329A–PMAAC–12-Aug-07
AT73C206
Figure 6-2. Level Mode Diagram
The interrupt cycle varies 1 time/20 sec or 1 time/1 min when use Clock Error Offset circuit
Pulse mode:
The period of “L” output pulse fluctuates in maximum ±3.784 ms. For example, duty is
50±0.3784% at 1Hz.
Level mode:
The cycle/1 sec fluctuates in maximum ±3.784 ms.
CTFG Bit
IRQB Pin
Second count-up
Writing "0" to CTFG
Second count-up Writing "0" to CTFG
Second count-up
90
6329A–PMAAC–12-Aug-07
AT73C206
6.8.5 RTCCNT2 : RTC Control Register 2 (Address 1Fh)
XSTZ (bit5) [R/W]: Oscillator stop detection monitor bit
When AT73C206 detects oscillator stop at XSTZ=“1”, it clears “1” to “0”. By reading this bit, host
judges whether oscillator has stopped.
PON (bit4) [R/W]: Power-on reset bit
Once Power-supply becomes 0V, PON becomes “1” and it is kept at “1” even though power-sup-
ply voltage returns to normal operation voltage. The validity of clock and calendar data can be
judged by XSTZ.
When PON = “1”, clock error offset register, control register1 and control register2 (except PON
and XSTZ) become “0” so that IRQB and OUT32K pins stop outputting. “0”is only valid value in
PON. Writing “1” makes no change.
When PON = “1”, writing to control register 1,2, second counter register and clock error offset
register is not possible. (But, PON can be cleared.)
SCRB (bit3) [R/W]
The written value in the SCRB (Scratch bit) has no effect on RTC operation. It will not be initial-
ized even at power-off and hold by VSB power.
Bit Name R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5 XSTZ R/W Oscillator stop detection monitor bit As below -----
4 PON R/W Power-on reset bit As below 1
3 SCRB R/W Scratch bit (for user) 1 0 0
2 CTFG R/W Constant cycle interrupt flag bit As below 0
1 WAFG R/W Alarm_W flag bit As below 0
0 DAFG R/W Alarm_D flag bit As below 0
XSTZ Oscillator stop detection monitor bit
1 Normal operation of oscillator
0 Oscillator stop detected
PON Power-on reset bit
1 Power-on reset detected
0 Normal operation
91
6329A–PMAAC–12-Aug-07
AT73C206
CTFG (bit2) [R/W]: Constant cycle interrupt flag bit
CTFG becomes “1” when constant clock cycle interrupt outputs (IRQB pin).
“0” is only valid data in CTFG when constant cycle interrupt is on level mode. Writing “0” disables
IRQB pin ("H"). In next cycle, it will become “L” again. “0” is only valid data in CTFG. Writing “1”
makes no change.
WAFG, DAFG (bit1, 0): Alarm_W flag bit, Alarm_D flag bit
WAFG and DAFG are valid only when both WALE and DALE bits are “1”. It becomes “1” and
keeps it for about 61us when each alarm set time and present time coincide.Only writing “0” to
these bits is valid. By writing “0”, IRQB becomes “H”(OFF) and returns “L” at next alarm set time.
Writing “1” makes no change. When both WALE and DALE bits are “0”, alarm function is disabled
and the reading values of WAFG and DAFG bits are “0”. See the below diagram for relation of
WAFG/ DAFG and IRQB output.
CTFG Constant cycle interrupt flag bit
1 Constant cycle interrupt output on (L)
0 Constant cycle interrupt output off (H)
WAFG Alarm_W flag bit DAFG Alarm_D flag bit
1 Alarm set time detected 1 Alarm set time detected
0 Alarm set time not detected 0 Alarm set time detected
WAFG(DAFG) Bit
IRQB Bit
61us approx 61us approx
Write "0" to
WAFG(DAFG) Write "0" to
WAFG(DAFG)
(Alarm set time detect) (Alarm set time detect) (Alarm set time detect)
92
6329A–PMAAC–12-Aug-07
AT73C206
6.9 Audio Registers
6.9.1 PWRCNT: Power Control Register (Address 20h)
6.9.2 VMODE: Voice Mode Setting Register (Address 21h)
IFEN: Interface enable bit
1: Enable interface
0: Disable interface
Note: LRCKIO and BCKIO are “L” fixed. (But, only when Master mode)
VFS: Setting sample rate of Voice Codec
VFORMAT : Setting Voice interface format
Bit Symbol R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5 SMICPON R/W SMICBIAS Power-On ON OFF 0
4 MICPON R/W MICBIAS Power- On ON OFF 0
3-2 ----- ----- Reserved ----- ----- -----
1 DAUON R/W Audio digital block enable bit ON OFF 0
0 DVOON R/W Voice digital block enable bit ON OFF 0
Bit Symbol R/W Function 10Initial value
7 VASEL R/W Voice/Audio mode select of audio serial interface Voice Audio 0
6 MSSEL R/W Setting Slave/Master mode of Audio interface Slave Master 1
5 IFEN R/W Interface enable bit As below 0
4 VFS R/W Setting sampling rate of Voice Codec As below 0
3-1 ----- ----- Reserved ----- ----- -----
0 VFORMAT R/W Setting Voice interface format As below 0 0
VFS Sampling rate
1 16KHz
08KHz
VFORMAT Format
1 Left Justify
0 IIS
93
6329A–PMAAC–12-Aug-07
AT73C206
6.9.3 AMODE: Audio Mode Setting Register (Address 22h)
AFS [2:0]: Setting sample rate of Audio DAC
AFORMAT [1:0]: Setting Audio interface format
Bit Symbol R/W Function 1 0 Initial value
7 ----- ----- Reserved ----- ----- -----
6-4 AFS [2:0] R/W Setting sampling rate of Audio DAC As below 000
3-2 ----- ----- Reserved ----- -----
1-0 AFORMAT
[1:0] R/W Setting Audio interface format As below 00
AFS [2:0] Sampling rate AFS [2:0] Sampling rate
111 8KHz 011 24KHz
110 11.025KHz 010 32KHz
101 16KHz 001 44.1KHz
100 22.05KHz 000 48KHz
AFORMAT [1:0] Format AFORMAT [1:0] Format
11 Don’t use 01 Left Justify
10 Right Justify 00 IIS
94
6329A–PMAAC–12-Aug-07
AT73C206
6.9.4 OMODE: CODEC Output Mode Control Register (Address 23h)
MODECO [3:0]: Controlling CODEC output mode
Bit Symbol R/W Function 10Initial value
7-4 ----- ----- Reserved ----- ----- -----
3-0 MODECO [3:0] R/W Controlling CODEC output mode As below 0000
MODECO[3:0]
Driver Amplifier Function
Receiver Speaker Headphone Receiver Speaker
1111 to 1001 - - - Reserved Reserved
1000 OFF OFF ON Audio Mono
0111 OFF OFF ON Audio Stereo
0110 OFF ON OFF Audio Mono
0101 ON OFF OFF Audio Mono
0100 OFF OFF ON Voice -
0011 OFF ON OFF Voice -
0010 ON OFF OFF Voice -
0001 OFF OFF OFF Standby mode
0000 OFF OFF OFF Power down mode
95
6329A–PMAAC–12-Aug-07
AT73C206
6.9.5 MUTE: MUTE Setting Register (Address 24h)
Note: When set MUTE(only for MUTEDA and MUTESIDE), the gain changes to MUTE(gain=0) with 1dB
decrement per fs. When cancel MUTE, the gain returns back to former gain value with 1dB incre-
ment per fs as the former gain value is maintained during mute mode.
Bit Symbol R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5 MUTEDA R/W AUDIO DAC MUTE ON OFF 1
4 MUTESIDE R/W SIDETONE MUTE ON OFF 1
3 ----- ----- Reserved ----- ----- -----
2 MUTEDRV R/W Driver AMP MUTE ON OFF 1
1 MUTESMIC R/W SMIC MUTE ON OFF 1
0 MUTEMIC R/W MIC MUTE ON OFF 1
96
6329A–PMAAC–12-Aug-07
AT73C206
6.9.6 DRVAG: Analog Driver Gain Setting Register (Address 25h)
Bit Symbol R/W Function 1 0 Initial value
7-5 ----- ----- Reserved ----- ----- -----
4-0 DRVAG [4:0] R/W Analog Driver Gain As below 0000
DRVAG [4:0] Gain (dB) DRVAG [4:0] Gain (dB)
11111 6 01111 -18
11110 4.5 01110 -19.5
11101 3 01101 -21
11100 1.5 01100 -22.5
11011 0 01011 -24
11010 -1.5 01010 -25.5
11001 -3 01001 -27
11000 -4.5 01000 -28.5
10111 -6 00111 -30
10110 -7.5 00110 -31.5
10101 -9 00101 -33
10100 -10.5 00100 -34.5
10011 -12 00011 -36
10010 -13.5 00010 -37.5
10001 -15 00001 -39
10000 -16.5 00000 -40.5
97
6329A–PMAAC–12-Aug-07
AT73C206
6.9.7 MICAG: Analog MIC Gain Setting Register (Address 26h)
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3-0 MICAG [3:0] R/W Analog MIC Gain As below 0000
MICAG [3:0] Gain (dB) MICAG [3:0] Gain (dB)
1111 30 0111 14
1110 28 0110 12
1101 26 0101 10
1100 24 0100 8
1011 22 0011 6
1010 20 0010 4
1001 18 0001 2
1000 16 0000 0
98
6329A–PMAAC–12-Aug-07
AT73C206
6.9.8 MICDG: Voice CODEC TX-DATA1(MIC Path) Digital Gain Setting Register (Address 27h)
Note: Gain changes to the current set value by Smoothing Gain control at 1dB/fs.
Bit Symbol R/W Function 1 0 Initial value
7-5 ----- ----- Reserved ----- ----- -----
4-0 MICDG [4:0] R/W Voice CODEC TX-DATA1 Digital Gain As below 00000
MICDG [4:0] Gain (dB)
11111 20
11110 19
11101 18
11100 17
--
(-1dB Step)
--
00011 -8
00010 -9
00001 -10
00000 MUTE
99
6329A–PMAAC–12-Aug-07
AT73C206
6.9.9 SIDEDG: Voice CODEC SIDETONE-DATA Digital Gain Setting Register (Address 2Ah)
Note: Gain changes to the current set value by Smoothing Gain control at 1dB/fs.
Bit Symbol R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5-0 SIDEDG [5:0] R/W Voice CODEC SIDETONEDATA Digital Gain As below 111111
SIDEDG [5:0] Gain (dB)
111111 MUTE
111110 -62
111101 -61
111100 -60
--
(-1dB Step)
--
000011 -3
000010 -2
000001 -1
000000 0
100
6329A–PMAAC–12-Aug-07
AT73C206
6.9.10 RECDG: Voice CODEC RX-DATA Digital Gain Setting Register (Address 2Bh)
Note: Gain changes to the current set value by Smoothing Gain control at 1dB/fs.
Bit Symbol R/W Function 1 0 Initial value
7-5 ----- ----- Reserved ----- ----- -----
4-0 RECDG [4:0] R/W Voice CODEC RX-DATA Digital Gain As below 00000
RECDG [4:0] Gain (dB)
11111 0
11110 -1
11101 -2
11100 -3
--
(-1dB Step)
--
00011 -28
00010 -29
00001 -30
00000 MUTE
101
6329A–PMAAC–12-Aug-07
AT73C206
6.9.11 DATTL: Audio DAC L-channel Digital Gain Setting Register (Address 2Ch)
6.9.12 DATTR: Audio DAC R-channel Digital Gain Setting Register (Address 2Dh)
Gain changes to the current set value by Smoothing Gain control at 1dB/fs.
Bit Symbol R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5-0 DATTL [5:0] R/W Audio DAC L-channel Digital Gain As below 111111
Bit Symbol R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5-0 DATTR [5:0] R/W Audio DAC R-channel Digital Gain As below 111111
DATTL [5:0]
DATTR [5:0] Gain (dB)
111111 MUTE
111110 -62
111101 -61
111100 -60
--
(-1dB Step)
--
000011 -3
000010 -2
000001 -1
000000 0
102
6329A–PMAAC–12-Aug-07
AT73C206
6.9.13 TNCNT: Tone Control Register (Address 2Fh)
Note: Setting TNCON bit lets the Tone Generator generate tone for the time set by TNTIME bits. After
timer overflows, it stops tone and clears TNCON bit automatically. Setting TNCON is available
when Voice block and PLL block for voice are powered-on.
Bit Symbol R/W Function 10Initial value
7 TNCON R/W Controlling Tone Generator ON OFF 0
6 VRTNSW R/W Mixing RX voice data and Tone data Mix Not Mix 0
5 VTTNSW R/W Mixing TX voice data and Tone data Mix Not Mix 0
4 ----- ----- Reserved ----- ----- -----
3-0 TNTIME [3:0] R/W Setting time of hardware tone timer As below 0010
TNTIME [3:0] Time (mS) TNTIME [3:0] Time (mS)
1111 Continuous
output 0111 150
1110 Don’t use (100) 0110 140
1101 Don’t use (100) 0101 130
1100 200 0100 120
1011 190 0011 110
1010 180 0010 100
1001 170 0001 90
1000 160 0000 80
103
6329A–PMAAC–12-Aug-07
AT73C206
6.9.14 TNSET: Type of Generated Tone& Tone Gain Setting Register (Address 30h)
TNG3: Setting Tone3 gain
FREQSEL: Setting type of generated tone
Bit Symbol R/W Function 1 0 Initial value
7-5 TNG3 [2:0] R/W Setting TONE3 gain As below 111
4-0 FREQSEL
[4:0] R/W Setting type of generated tone As below 00000
TNG3 [2:0] Gain (dB) TNG3 [2:0] Gain (dB)
111 -42 011 -18
110 -36 010 -12
101 -30 001 -6
100 -24 000 0
FREQSEL [4:0] DTMF
TONE1
Frequency
TONE2
Frequency
0 0000 DTMF “1” 1209 Hz
697 Hz
0 0001 DTMF“2 1336 Hz
0 0010 DTMF“3 1477 Hz
0 0011 DTMF“A” 1633 Hz
0 0100 DTMF“4 1209 Hz
770 Hz
0 0101 DTMF“5 1336 Hz
0 0110 DTMF“6 1477 Hz
0 0111 DTMF“B” 1633 Hz
0 1000 DTMF“7 1209 Hz
852 Hz
0 1001 DTMF“8 1336 Hz
0 1010 DTMF“9 1477 Hz
0 1011 DTMF“C 1633 Hz
0 1100 DTMF”* 1209 Hz
941 Hz
0 1101 DTMF“0 1336 Hz
0 1110 DTMF“# 1477 Hz
0 1111 DTMF“D 1633 Hz
1 xxxx - Programmable
Tone1
Programmable
Tone2
104
6329A–PMAAC–12-Aug-07
AT73C206
6.9.15 TNGAIN: Tone Gain Setting Register (Address 31h)
Bit Symbol R/W Function 1 0 Initial value
7-4 TNG2 [3:0] R/W Setting TONE2 gain As below 1111
3-0 TNG1 [3:0] R/W Setting TONE1 gain As below 1111
TNG1, 2 [3:0] Gain (dB) TNG1, 2 [3:0] Gain (dB)
1111 -15 0111 -7
1110 -14 0110 -6
1101 -13 0101 -5
1100 -12 0100 -4
1011 -11 0011 -3
1010 -10 0010 -2
1001 -9 0001 -1
1000 -8 0000 0
105
6329A–PMAAC–12-Aug-07
AT73C206
6.9.16 PTN1SETL: Programmable Tone 1 Frequency Setting Register L (Address 32h)
6.9.17 PTN1SETH: Programmable Tone 1 Frequency Setting Register H (Address 33h)
6.9.18 PTN2SETL: Programmable Tone 2 Frequency Setting Register L (Address 34h)
6.9.19 PTN2SETH: Programmable Tone 2 Frequency Setting Register H (Address 35Fh)
Frequency of programmable tone1 = 7.8125Hz x PTONE1 from 0Hz to 3992.1875Hz
Frequency of programmable tone2 = 7.8125Hz x PTONE2 from 0Hz to 3992.1875Hz
Bit Symbol R/W Function 1 0 Initial value
7-0 PTN1 [7:0] R/W Setting frequency of Programmable Tone1 As below 00000000
Bit Symbol R/W Function 1 0 Initial value
7-1 ----- ----- Reserved ----- -----
0 PTN1 [8] R/W Setting frequency of Programmable Tone1 As below 0
Bit Symbol R/W Function 1 0 Initial value
7-0 PTN2 [7:0] R/W Setting frequency of Programmable Tone2 As below 00000000
Bit Symbol R/W Function 1 0 Initial value
7-1 ----- ----- Reserved ----- -----
0 PTN2 [8] R/W Setting frequency of Programmable Tone2 As below 0
106
6329A–PMAAC–12-Aug-07
AT73C206
6.9.20 APLLCNT: Audio PLL Control Register (Address 36h)
CKOSEL: Output Clock select
APLLSRC: Setting input clock to PLL for Audio
Note: Use this mode with setting ADIVN and ADIVM.
Bit Symbol R/W Function 1 0 Initial value
7 APLLPON R/W Audio PLL Power-On ON OFF 0
6-4 CKOSEL [2:0] R/W Output Clock Select As below 000
3-1 ----- ----- Reserved ----- ----- -----
0 APLLSRC R/W Setting input clock to PLL for Audio As below 0
CKOSEL [2:0 CKOUT Pin Output Clock
000 “L” fixed.
001 32.768kHz
010 fA
011 fA / 2
100 fA / 4
101 fA / 8
110 -
111 -
APLLSRC Mode
1External clock input and programmable mode
(Note)
0 Internal X’tal (32.768KHz) mode
107
6329A–PMAAC–12-Aug-07
AT73C206
6.9.21 VPLLCNT: Voice VPLL Control Register (Address 37h)
Note: Use this mode with setting VDIVN and VDIVM.
Bit Symbol R/W Function 1 0 Initial value
7 VPLLPON R/W Voice PLL Power-On ON OFF 0
6-1 ----- ----- Reserved ----- ----- -----
0 VPLLSRC R/W Setting input clock to PLL for voice As below 0
VPLLSRC Mode
1External clock input and programmable mode
(Note)
0 Internal X’tal (32.768KHz) mode
108
6329A–PMAAC–12-Aug-07
AT73C206
6.9.22 ADIVNL: Divide factor-N for Audio Setting Register L (Address 38h)
6.9.23 ADIVNH: Divide factor-N for Audio Setting Register H (Address 39h)
NA= ADIVN + 1
6.9.24 ADIVML: Divide factor-M for Audio Setting Register L (Address 3Ah)
6.9.25 ADIVMH: Divide factor-M for Audio Setting Register H (Address 3Bh)
MA= ADIVM + 1
Bit Symbol R/W Function 1 0 Initial value
7-0 ADIVN[7:0] R/W Setting divide factor-N for Audio As below 00000000
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3-0 ADIVN[11:8] R/W Setting divide factor-N for Audio As below 0000
Bit Symbol R/W Function 1 0 Initial value
7-0 ADIVM[7:0] R/W Setting divide factor-M for Audio As below 00000000
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3-0 ADIVM[11:8] R/W Setting divide factor-M for Audio As below 0000
109
6329A–PMAAC–12-Aug-07
AT73C206
6.9.26 VDIVNL: Divide factor-N for Voice Setting Register L (Address 3Ch)
6.9.27 VDIVNH: Divide factor-N for Voice Setting Register H (Address 3Dh)
NV= VDIVN + 1
6.9.28 VDIVML: Divide factor-M for Voice Setting Register L (Address 3Eh)
6.9.29 VDIVMH : Divide factor-M for Voice Setting Register H (Address 3Fh)
MV= VDIVM + 1
Bit Symbol R/W Function 10Initial value
7-0 VDIVN[7:0] R/W Setting divide factor-N for voice As below 00000000
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3-0 VDIVN[11:8] R/W Setting divide factor-N for voice As below 0000
Bit Symbol R/W Function 1 0 Initial value
7-0 VDIVM[7:0] R/W Setting divide factor-M for voice As below 00000000
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3-0 VDIVM[11:8] R/W Setting divide factor-M for voice As below 0000
110
6329A–PMAAC–12-Aug-07
AT73C206
6.10 Status Monitor Register
6.10.1 STMON: Status Monitor Register (Address 40h)
Bit Symbol R/W Function 1 0 Initial value
7-3 ----- ----- Reserved ----- ----- -----
2 JACKMON R JACK detector monitor bit Inserted Removed -----
1 CLKSTPMON R 32KHz OSC stop detection monitor bit Stop Oscillate -----
0 ONSWMON R ONSW pin input monitor bit H L -----
111
6329A–PMAAC–12-Aug-07
AT73C206
6.11 General Purpose I/O Registers
6.11.1 GPIODIR: GPIO Direction Control Register (Address 41h)
Note: GPIODIR becomes invalid by selecting analog input mode.
6.11.2 GPOSET: GPIO Output Setting Register (Address 42h)
6.11.3 GPIMON: GPIO Input Status Register (Address 43h)
Note: When analog input mode is selected, this register will be set to “0”.
Bit Symbol R/W Function 1 0 Initial value
7-6 ----- ----- Reserved ----- ----- -----
5 GPAIN1 R/W Input signal mode Digital Analog 0
4 GPAIN0 R/W Input signal mode Digital Analog 0
3 GPIODIR3 R/W GPIO3 direction control bit Out In 0
2 GPIODIR2 R/W GPIO2 direction control bit Out In 0
1 GPIODIR1 R/W GPIO1 direction control bit Out In 0
0 GPIODIR0 R/W GPIO0 direction control bit Out In 0
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3 GPOSET3 R/W GPIO3output logic setting bit H L 0
2 GPOSET2 R/W GPIO2 output logic setting bit H L 0
1 GPOSET1 R/W GPIO1 output logic setting bit H L 0
0 GPOSET0 R/W GPIO0 output logic setting bit H L 0
Bit Symbol R/W Function 1 0 Initial value
7-4 ----- ----- Reserved ----- ----- -----
3 GPIMON3 R GPIO3 input status bit H L -
2 GPIMON2 R GPIO2 input status bit H L -
1 GPIMON1 R GPIO1 input status bit H L -
0 GPIMON0 R GPIO0 input status bit H L -
112
6329A–PMAAC–12-Aug-07
AT73C206
6.12 Jackdet Control Register
6.12.1 JACKCNT : Jackdet control register (Address 44h)
Bit Symbol R/W Function 10Initial value
7-4 ----- ----- Reserved ----- ----- -----
3 JKBIREN R/W Jack disconnection interrupt enable Enable Disable 0
2 JKIREN R/W Jack connection interrupt enable Enable Disable 0
1 JACKBIR R Jack disconnection interrupt flag Generate
dNone -----
0 JACKIR R Jack connection interrupt flag Generate
dNone -----
113
6329A–PMAAC–12-Aug-07
AT73C206
7. DC Electrical Characteristics
7.1 Absolute Maximum Ratings
The operation exceeding the below “Absolute Maximum Ratings” may cause permanent damage to the device.
The operation of the device within the below stated ratings is not guaranteed.
VCC = VBAT,VDD
Note: 1. Derating 36[mW/°C] above +70°C.
7.2 Recommendation Operating Conditions
Table 7-1. Absolute Maximum Ratings
Symbol Parameter Condition Rated value Units
VBAT VBAT Power Pin Voltage VIN1 to 6, VBSP -0.3 to 6.0 V
VCHG AC-Adaptor Voltage Input Pins VCHGADP -0.3 to 7.0 V
VDD VDD Power Pin Voltage VDDPLL, VDD, VDDHP,
VDDANA, VDDIO -0.3 to 4.5 V
VSB Backup Part (RTC) VSB -0.3 to 4.5 V
VDC LDO1 Power Pin Voltage VDC1 -0.3 to 3.6 V
VDIN DIN Pin Input Voltage DIN1 to 4 -0.3 to 7.0 V
VPIN Input Voltage Range All Input Pins -0.3 to VCC + 0.3 V
PD Package Allowable Dissipation(1) Mounted on Board, Ta = 70°C 1500 mW
Tstg Storage Temperature ----- -55 to +125 °C
Table 7-2. Recommended Operating Conditions
Symbol Parameter Condition Min Typ Max Units
VBAT VBAT Power Pin Voltage VIN16, VBSP 3.1 3.6 4.2 V
VCHG AC-Adaptor Voltage Input Pins VCHGADP 4.5 5.0 5.5 V
VDD VDD Power Pin Voltage VDDPLL, VDD, VDDHP, VDDANA -3% 2.8 +3% V
VDD2 VDD Power Pin Voltage VDDIO -3% 2.5 +3% V
VSB Backup Part (RTC) VSB 1.6 3.0 V
VDC LDO1 Power Pin Voltage VDC1 -3% 1.8 +3% V
TaTemperature of Operation -30 +85
114
6329A–PMAAC–12-Aug-07
AT73C206
7.3 VBAT CMOS Input Pin
Application: LDO1SEL, GSP
7.4 VBAT CMOS Schmitt Input Pin with Pull-down
Application: ONSW
7.5 VBAT CMOS Schmitt Input Pin with Pull-down
Application: SMPL
Table 7-3. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
ILI Input Leakage Current VIN =0VIN -1 1 uA
VIH Input Voltage “H” level VIN x 0.7 V
VIL Input Voltage “L” level VIN x 0.3 V
Table 7-4. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
IIL “L” Input Leakage Current VIN =0 -1 1 uA
Rpd Pull-down Resistance 1 M
VT+ Input Rise
Threshold Voltage VIN x 0.5 VIN x 0.8 V
VT- Input Fall
Threshold Voltage VIN x 0.2 VIN x 0.5 V
VT Hysteresis VIN x 0.15 V
Table 7-5. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
IIL “L” Input Leakage Current VIN =0 -1 1 uA
Rpd Pull-down Resistance 1 M
VT+ Input Rise
Threshold Voltage 1.4 V
VT- Input Fall
Threshold Voltage 0.6 V
VT Hysteresis 0.8 V
115
6329A–PMAAC–12-Aug-07
AT73C206
7.6 VDDIO CMOS Input Pin
Application: PSHOLD, SDI, SEN, SCLK
7.7 VDDIO CMOS Output Pin
Application: SDO, ADPINB, IRQB, OUT32K, RSTB, ONOB
7.8 VDDIO CMOS I/O Pin
Application: P3, P2, P1/AN1, P0/AN0
Table 7-6. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
ILI Input Leakage Current VIN =0VDDIO -1 1 uA
VIH Input Voltage “H” level VDDIOÞ0.7 V
VIL Input Voltage “L” level VDDIOÞ0.3 V
Table 7-7. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
VOH Output Voltage “H” level Iout=-2mA VDDIO - 0.4 V
VOL Output Voltage “L” level Iout=2mA 0.4 V
Table 7-8. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
ILI Input Leakage Current VIN =0VDDIO -1 1 uA
VIH Input Voltage “H” level VDDIO x 0.7 V
VIL Input Voltage “L” level VDDIO x 0.3 V
VOH Output Voltage “H” level Iout=-2mA VDDIO - 0.4 V
VOL Output Voltage “L” level Iout=2mA 0.4 V
116
6329A–PMAAC–12-Aug-07
AT73C206
7.9 VDD CMOS Input Pin
Application: DIN, CKIN
7.10 VDD CMOS Schmitt Input Pin with Pull-up
Application: JKDETI
7.11 VDD CMOS Output Pin
Application: JKDETO, DOUT, CKOUT
7.12 VDD CMOS I/O Pin
Application: LRCKIO, BCKIO
Table 7-9. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
ILI Input Leakage Current VIN =VDD -1 1 uA
VIH Input Voltage “H” level VDD x 0.7 V
VIL Input Voltage “L” level VDD x 0.3 V
Table 7-10. Electrical Characteristic
Symbol Parameter Condition Min Typ Max Unit
IIH “H” Input Leakage Current VIN =VDD -1 1 uA
Rpu Pull-up Resistance 200 k
VT+ Input Rise
Threshold Voltage VDD x 0.5 VDD x 0.8 V
VT- Input Fall
Threshold Voltage VDD x 0.2 VDD x 0.5 V
VT Hysteresis VDD x 0.1 V
Table 7-11. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
VOH Output Voltage “H” level Iout=-2mA VDD – 0.4 V
VOL Output Voltage “L” level Iout=2mA 0.4 V
Table 7-12. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
ILI Input Leakage Current VIN =0VDD -1 1 uA
VIH Input Voltage “H” level VDD x 0.7 V
VIL Input Voltage “L” level VDD x 0.3 V
VOH Output Voltage “H” level Iout=-2mA VDD – 0.4 V
VOL Output Voltage “L” level Iout=2mA 0.4 V
117
6329A–PMAAC–12-Aug-07
AT73C206
8. Revision History
Table 8-1.
Document Ref. Comments Change Request Ref.
6329A First issue
6329A–PMAAC–12-Aug-07
Headquarters International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Product Contact
Web Site
www.atmel.com
www.atmel.com/PowerMgmt
Technical Support
pmaac@atmel.com
Sales Contacts
www.atmel.com/contacts/
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.