17.5 GHz to 24 GHz,
GaAs, MMIC, I/Q Downconverter
Data Sheet
ADMV1012
Rev. A Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
RF input frequency range: 17.5 GHz to 24 GHz
IF output frequency range: 2.5 GHz to 3.5 GHz
LO input frequency range: 7 GHz to 13.5 GHz
Conversion gain (with hybrid): 15 dB typical
SSB noise figure: 2.5 dB typical
Input IP3: 3 dBm typical
Input P1dB: −5 dBm typical
25 dB of image rejection
Single-ended, 50 Ω RF and LO input ports
Exposed pad, 4.9 mm × 4.9 mm, 32-terminal LCC
APPLICATIONS
Point to point microwave radios
Radars and electronic warfare systems
Instrumentation, automatic test equipment (ATE)
Satellite communications
FUNCTIONAL BLOCK DIAGRAM
31
20
10
3
15
22
27
×2 IF2
LOIN
RFIN
VDRF VGRF
VDLO IF1
ADMV1012
16349-001
2
4
GND
GND
11
GND
Figure 1.
GENERAL DESCRIPTION
The ADMV1012 is a compact, gallium arsenide (GaAs)
design, monolithic microwave integrated circuit (MMIC), in
phase/quadrature (I/Q) downconverter in a RoHS compliant
package optimized for point to point microwave radio designs
that operate in the 17.5 GHz to 24 GHz input frequency range.
The ADMV1012 provides 15 dB of conversion gain with 25 dB
of image rejection, and 2.5 dB noise figure. The ADMV1012
uses a radio frequency (RF) low noise amplifier (LNA) followed
by an I/Q, double balanced mixer, where a driver amplifier drives
the local oscillator (LO) with a ×2 multiplier. IF1 and IF2 mixer
quadrature outputs are provided, and an external 90° hybrid is
required to select the required sideband.
The I/Q mixer topology reduces the need for filtering of unwanted
sideband. The ADMV1012 is a much smaller alternative to
hybrid style, double sideband (DSB) downconverter assemblies
and eliminates the need for wire bonding by allowing the use of
surface-mount manufacturing assemblies.
The ADMV1012 downconverter comes in a compact, thermally
enhanced, 4.9 mm × 4.9 mm, 32-terminal LCC. The ADMV1012
operates over the −40°C to +85°C temperature range.
ADMV1012 Data Sheet
Rev. A | Page 2 of 19
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 4
Thermal Resistance ...................................................................... 4
ESD Caution .................................................................................. 4
Pin Configuration and Function Descriptions ............................. 5
Typical Performance Characteristics ............................................. 6
Upper Sideband (Low-Side LO) ................................................. 6
Lower Sideband (High-Side LO) ................................................ 8
IF Bandwidth .............................................................................. 10
Leakage Performance ................................................................. 11
Return Loss Performance .......................................................... 12
Spurious Performance ............................................................... 13
M × N Spurious Performance for LO = 0 dBm ...................... 13
Theory of Operation ...................................................................... 14
LO Driver Amplifier .................................................................. 14
Mixer ............................................................................................ 14
LNA .............................................................................................. 14
Applications Information .............................................................. 15
Typical Application Circuit ....................................................... 15
Evaluation Board Information ................................................. 16
Bill of Materials ........................................................................... 18
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 19
REVISION HISTORY
2/2018—Rev. 0 to Rev. A
Changes to Features Section, General Description Section, and
Figure 1 .............................................................................................. 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Added Thermal Resistance Section and Table 3; Renumbered
Sequentially ....................................................................................... 4
Changes to Figure 2 and Table 4 ..................................................... 5
Changes to Figure 3 and Figure 6 ................................................... 6
Changes to Figure 12 ........................................................................ 7
Changes to Figure 24, Figure 25, and Figure 26 ......................... 10
Changes to Figure 27 through Figure 30 ..................................... 11
Changed M × N Spurious Performance for LO = 4 dBm Section
to M × N Spurious Performance for LO = 0 dBm Section ....... 13
Changes to M × N Spurious Performance for LO = 0 dBm
Sec tion .............................................................................................. 13
Changes to LO Driver Amplifier Section .................................... 14
Changes to Applications Information Section and Figure 34 ........ 15
Changes to Power-On Sequence Section .................................... 16
Changes to Figure 37 ...................................................................... 17
Changes to Table 6 .......................................................................... 18
Changes to Ordering Guide .......................................................... 19
10/2017—Revision 0: Initial Version
Data Sheet ADMV1012
Rev. A | Page 3 of 19
SPECIFICATIONS
Data taken at VDRF = 3 V, V D L O = 3 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with a Mini-Circuits® QCN-45+ power
splitter for both upper sideband (low-side LO) and lower sideband (high-side LO), unless otherwise noted.
Table 1.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
INPUT FREQUENCY RANGE
Radio Frequency RF 17.5 24 GHz
Local Oscillator LO 7 13.5 GHz
LO AMPLITUDE −4 0 +4 dBm
OUTPUT FREQUENCY RANGE
Intermediate Frequency IF 2.5 3.5 GHz
RF PERFORMANCE With hybrid
Conversion Gain 10.5 15 20 dB
Single Sideband (SSB) Noise Figure
SSB NF
Lower Sideband (High-Side LO) 2.1 3.5 dB
Upper Sideband (Low-Side LO) 2.5 4 dB
Input Third-Order Intercept IP3 At −20 dBm/tone 0 3 dBm
Input 1 dB Compression Point P1dB −9 −5 dBm
Image Rejection 20 25 dB
Leakage
LO to RF −37 −25 dBm
LO to IF −40 25 dBm
2× LO to IF −40 25 dBm
IM3 at Input
−20 dBm Input Power 23 dBm per tone 46 52 dBc
−25 dBm Input Power 28 dBm per tone 52 60 dBc
−30 dBm Input Power 33 dBm per tone 56 70 dBc
Return Loss
RF Input −11 10 dB
IF Output −23 10 dB
LO Input
−11
−10
dB
POWER INTERFACE
RF LNA Bias Voltage VDRF 3 3.5 V
LO Amplifier Bias Voltage VDLO 3 3.5 V
RF LNA Gate Voltage VGRF 1.8 −0.4
RF Amplifier Bias Current IDRF Adjust VGRF between −1.8 V to −0.4 V to get IDRF 68 mA
LO Amplifier Bias Current IDLO 170 mA
RF Amplifier Gate Current IGRF <1 mA
Total Power 0.7 0.8 W
ADMV1012 Data Sheet
Rev. A | Page 4 of 19
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Supply Voltage
VDLO 4 V
VGRF 0 V
VDRF − VGRF1 6 V
Input Power
RF 15 dBm
LO 15 dBm
Maximum Junction Temperature 175°C
Maximum Power Dissipation 2 W
Lifetime at Maximum Junction Temperature (TJ) >1 million hours
Operating Temperature Range −40°C to +85°C
Storage Temperature Range −65°C to +150°C
Lead Temperature (Soldering 60 sec) 260°C
Moisture Sensitivity Level (MSL) Rating MSL3
Electrostatic Discharge (ESD) Sensitivity
Human Body Model (HBM) 750 V
Field Induced Charged Device Model
(FICDM)
500 V
1 The maximum VDRF voltage and the minimum VGRF voltage is determined
by this difference. If a maximum VDRF voltage of +4 V is required, then the
minimum VGRF voltage is −2 V.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
θJA is thermal resistance, junction to ambient (°C/W), and θJC is
thermal resistance, junction to case (°C/W).
Table 3. Thermal Resistance
Package Type θJA1 θ
JC Unit
E-32-1 33.4 34 °C/W
1 See JEDEC standard JESD51-2 for additional information on optimizing the
thermal impedance (PCB with 3 × 3 vias).
ESD CAUTION
Data Sheet ADMV1012
Rev. A | Page 5 of 19
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
24 NIC
23 NIC
22 IF1
21 NIC
20 IF2
19 NIC
18 NIC
17 NIC
1
2
3
4
5
6
7
8
NIC
GND
RFIN
GND
NIC
NIC
NIC
NIC
9
10
11
12
13
14
15
16
NIC
LOIN
GND
NIC
NIC
NIC
VDLO
NIC
32
31
30
29
28
27
26
25
NIC
VGRF
NIC
NIC
NIC
VDRF
NIC
NIC
ADMV1012
TOP VIEW
(No t t o Scale)
16349-002
NOTES
1. NIC = NOT INTERNALLY CONNECTED. IT IS
RECOMME NDED TO GRO UND THES E P INS
ON THE PCB.
2. EXPOSED PAD. THE EXPOSED PAD MUST BE
CONNECTED TO GND. GO OD RF AND THERM AL
GRO UNDING IS RE COMM E NDE D.
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1, 5 to 9, 12 to 14, 16 to 19,
21, 23 to 26, 28 to 30, 32
NIC Not Internally Connected. It is recommended to ground these pins on the PCB.
2, 4, 11 GND Ground.
3 RFIN RF Input. This pin is ac-coupled internally and matched to 50single ended.
10 LOIN LO Input. This pin is ac-coupled internally and matched to 50 Ω single ended.
15
VDLO
Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the
required external components and biasing.
20, 22 IF2, IF1 Quadrature IF Outputs. Matched to 50 Ω and ac coupled. No external dc block is required.
27 VDRF Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the
required external components and biasing.
31 VGRF Power Supply Gate Voltage for the RF Amplifier. Refer to the Applications Information section for
the required external components and biasing.
EPAD Exposed Pad. The exposed pad must be connected to GND. Good RF and thermal grounding is
recommended.
ADMV1012 Data Sheet
Rev. A | Page 6 of 19
TYPICAL PERFORMANCE CHARACTERISTICS
UPPER SIDEBAND (LOW-SIDE LO)
Data taken at VDRF = 3 V, V D L O = 3 V, IDRF = 68 mA, LO = −4 dBm LO +4 dBm, −40°C ≤ TA +85°C, with Mini-Circuits QCN-45+,
power splitter as upper sideband (low-side LO), unless otherwise noted.
20
0
2
4
6
8
10
12
14
16
18
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C , 2. 5GHz IF
16349-003
Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures and
Various IF Frequencies
0
10
20
30
40
50
60
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
–40°C, 2.5GHz IF
+25°C, 2.5GHz IF
+85°C, 2.5GHz IF
–40°C, 3.0GHz IF
+25°C, 3.0GHz IF
+85°C, 3.0GHz IF
–40°C, 3.5GHz IF
+25°C, 3.5GHz IF
+85°C, 3.5GHz IF
16349-004
Figure 4. Image Rejection vs. RF Frequency at Various Temperatures and
Various IF Frequencies
12
0
2
4
6
8
10
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
INPUT I P 3 (d Bm)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C, 2. 5GHz IF
16349-005
Figure 5. Input IP3 vs. RF Frequency at Various Temperatures and Various
IF Frequencies
20
18
0
2
4
6
8
10
12
14
16
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
+4° C, 3. 5GHz IF
0°C, 3. 5GHz IF
–4°C, 3. 5GHz IF
+4° C, 3. 0GHz IF
0°C, 3. 0GHz IF
–4°C, 3. 0GHz IF
+4° C, 2. 5GHz IF
0°C, 2. 5GHz IF
–4°C, 2. 5GHz IF
16349-006
Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers and
Various IF Frequencies
0
10
20
30
40
50
60
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
16349-007
–4dB, 2. 5GHz IF
0dB, 2. 5 GHz IF
+4dB, 2.5GHz
IF
–4dB, 3. 0GHz IF
0dB, 3. 0GHz IF
+4dB, 3.0GHz IF
–4dB, 3. 5GHz IF
0dB, 3. 5 GHz IF
+4dB, 3.5GHz IF
Figure 7. Image Rejection vs. RF Frequency at Various LO Powers and
Various IF Frequencies
12
0
2
4
6
8
10
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
INPUT IP3 ( dBm)
RF FREQ UE NCY ( GHz)
+4dB, 3. 5GHz IF
0dB, 3.5G Hz IF
–4dB, 3.5G Hz IF
+4dB, 3. 0GHz IF
0dB, 3.0G Hz IF
–4dB, 3.0G Hz IF
+4dB, 2. 5GHz IF
0dB, 2.5G Hz IF
–4dB, 2.5G Hz IF
16349-008
Figure 8. Input IP3 vs. RF Frequency at Various LO Powers and Various IF
Frequencies
Data Sheet ADMV1012
Rev. A | Page 7 of 19
0
–4.5
–1.0
–0.5
–2.0
–1.5
–3.0
–2.5
–4.0
–3.5
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
INPUT P1dB ( dBm)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C, 2. 5GHz IF
16349-009
Figure 9. Input P1dB vs. RF Frequency at Various Temperatures and
Various IF Frequencies
4.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C, 2. 5GHz IF
16349-010
Figure 10. Noise Figure vs. RF Frequency at Various Temperatures and
Various IF Frequencies
0
–4.0
–1.0
–0.5
–2.0
–1.5
–3.0
–2.5
–3.5
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
INPUT P1dB ( dBm)
RF FREQ UE NCY ( GHz)
+4dB, 3. 5GHz IF
0dB, 3.5G Hz IF
–4dB, 3.5G Hz IF
+4dB, 3. 0GHz IF
0dB, 3.0G Hz IF
–4dB, 3.0G Hz IF
+4dB, 2. 5GHz IF
0dB, 2.5G Hz IF
–4dB, 2.5G Hz IF
16349-011
Figure 11. Input P1dB vs. RF Frequency at Various LO Powers and Various
IF Frequencies
4.5
4.0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
+4° C, 3. 5GHz IF
0°C, 3. 5GHz IF
–4°C, 3. 5GHz IF
+4° C, 3. 0GHz IF
0°C, 3. 0GHz IF
–4°C, 3. 0GHz IF
+4° C, 2. 5GHz IF
0°C, 2. 5GHz IF
–4°C, 2. 5GHz IF
16349-012
Figure 12. Noise Figure vs. RF Frequency at Various LO Powers and
Various IF Frequencies
ADMV1012 Data Sheet
Rev. A | Page 8 of 19
LOWER SIDEBAND (HIGH-SIDE LO)
Data taken at VDRF = 3 V, V D L O = 3 V, IDRF = 68 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with Mini-Circuits QCN-45+,
power splitter as lower sideband (high-side LO), unless otherwise noted.
20
0
2
4
6
8
10
12
14
16
18
17.0 17.5 18.0 18.5 19.0 19.5 20.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C, 2. 5GHz IF
16349-013
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures
and Various IF Frequencies
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
17.0 17.5 18.0 18.5 19.0 19.5 20.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
–40°C, 2.5GHz IF
+25°C, 2.5GHz IF
+85°C, 2.5GHz IF
–40°C, 3.0GHz IF
+25°C, 3.0GHz IF
+85°C, 3.0GHz IF
–40°C, 3.5GHz IF
+25°C, 3.5GHz IF
+85°C, 3.5GHz IF
16349-014
Figure 14. Image Rejection vs. RF Frequency at Various Temperatures and
Various IF Frequencies
7
0
1
2
3
4
5
6
17.0 17.5 18.0 18.5 19.0 19.5 20.0
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C, 2. 5GHz IF
16349-015
Figure 15. Input IP3 vs. RF Frequency at Various Temperatures and
Various IF Frequencies
20
0
2
4
6
8
10
12
14
16
18
17.0 17.5 18.0 18.5 19.0 19.5 20.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
+4dB, 3. 5GHz IF
0dB, 3.5G Hz IF
–4dB, 3.5G Hz IF
+4dB, 3. 0GHz IF
0dB, 3.0G Hz IF
–4dB, 3.0G Hz IF
+4dB, 2. 5GHz IF
0dB, 2.5G Hz IF
–4dB, 2.5G Hz IF
16349-016
Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers and
Various IF Frequencies
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
17.0 17.5 18.0 18.5 19.0 19.5 20.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
16349-017
–4dB, 2. 5GHz IF
0dB, 2. 5 GHz IF
+4dB, 2.5GHz IF
–4dB, 3. 0GHz IF
0dB, 3. 0 GHz IF
+4dB, 3.0GHz IF
–4dB, 3. 5GHz IF
0dB, 3. 5 GHz IF
+4dB, 3.5GHz IF
Figure 17. Image Rejection vs. RF Frequency at Various LO Powers and
Various IF Frequencies
7
0
1
2
3
4
5
6
17.0 17.5 18.0 18.5 19.0 19.5 20.0
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
+4dB, 3. 5GHz IF
0dB, 3.5G Hz IF
–4dB, 3.5G Hz IF
+4dB, 3. 0GHz IF
0dB, 3.0G Hz IF
–4dB, 3.0G Hz IF
+4dB, 2. 5GHz IF
0dB, 2.5G Hz IF
–4dB, 2.5G Hz IF
16349-018
Figure 18. Input IP3 vs. RF Frequency at Various LO Powers and Various IF
Frequencies
Data Sheet ADMV1012
Rev. A | Page 9 of 19
0
–6
–5
–4
–3
–2
–1
17.0 17.5 18.0 18.5 19.0 19.5 20.0
INPUT P1dB ( dBm)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C, 2. 5GHz IF
16349-019
Figure 19. Input P1dB vs. RF Frequency at Various Temperatures and
Various IF Frequencies
4.0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
17.0 17.5 18.0 18.5 19.0 19.5 20.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
+85° C, 3. 5GHz IF
+25° C, 3. 5GHz IF
–40°C, 3. 5GHz IF
+85° C, 3. 0GHz IF
+25° C, 3. 0GHz IF
–40°C, 3. 0GHz IF
+85° C, 2. 5GHz IF
+25° C, 2. 5GHz IF
–40°C, 2. 5GHz IF
16349-020
Figure 20. Noise Figure vs. RF Frequency at Various Temperatures and
Various IF Frequencies
0
–6
–5
–4
–3
–2
–1
17.0 17.5 18.0 18.5 19.0 19.5 20.0
INPUT P1dB ( dBm)
RF FREQ UE NCY ( GHz)
+4dB, 3. 5GHz IF
0dB, 3.5G Hz IF
–4dB, 3.5G Hz IF
+4dB, 3. 0GHz IF
0dB, 3.0G Hz IF
–4dB, 3.0G Hz IF
+4dB, 2. 5GHz IF
0dB, 2.5G Hz IF
–4dB, 2.5G Hz IF
16349-021
Figure 21. Input P1dB vs. RF Frequency at Various LO Powers and Various
IF Frequencies
3.0
0
0.5
1.0
1.5
2.0
2.5
17.0 17.5 18.0 18.5 19.0 19.5 20.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
+4dB, 3. 5GHz IF
0dB, 3.5G Hz IF
–4dB, 3.5G Hz IF
+4dB, 3. 0GHz IF
0dB, 3.0G Hz IF
–4dB, 3.0G Hz IF
+4dB, 2. 5GHz IF
0dB, 2.5G Hz IF
–4dB, 2.5G Hz IF
16349-022
Figure 22. Noise Figure vs. RF Frequency at Various LO Powers and
Various IF Frequencies
ADMV1012 Data Sheet
Rev. A | Page 10 of 19
IF BANDWIDTH
Data taken at VDRF = 3 V, V D L O = 3 V, IDRF = 68 mA, LO = −4 dBm ≤ LO ≤ +4 dBm at 10 GHz, −40°C ≤ TA ≤ +85°C, with
Mini-Circuits QCN-45+, power splitter, unless otherwise noted.
25
0
5
15
10
20
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.63.4 3.8 4.0
CONVE RS IO N GAI N ( dB)
IF FREQUENCY ( GHz)
+85° C, UPP E R
+25° C, UPP E R
–40°C, UPP E R
+85° C, L OW E R
+25° C, L OW E R
–40°C, L OW E R
16349-023
Figure 23. Conversion Gain vs. IF Frequency at Various Temperatures and
Sidebands
10
0
2
6
4
8
9
1
5
3
7
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.63.4 3.8 4.0
INPUT I P 3 ( dBm)
IF FREQUENCY ( GHz)
+85° C, UPP E R
+25° C, UPP E R
–40°C, UPP E R
+85° C, L OW E R
+25° C, L OW E R
–40°C, L OW E R
16349-025
Figure 24. Input IP3 vs. IF Frequency at Various Temperatures and
Sidebands
25
20
0
15
10
5
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.6
3.4 3.8 4.0
CONVE RS IO N GAI N ( dB)
IF FREQUENCY ( GHz)
+4dBm, UPP E R
0dBm, UP P E R
–4dBm, UP P E R
+4dBm, LOWER
0dBm, LOWER
–4dBm, LO WER
16349-026
Figure 25. Conversion Gain vs. IF Frequency at Various LO Powers and
Sidebands
10
9
0
2
6
4
8
1
5
3
7
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.6
3.4 3.8 4.0
INPUT I P 3 ( dBm)
IF FREQUENCY ( GHz)
+4dBm, UPP E R
0dBm, UP P E R
–4dBm, UP P E R
+4dBm, LOWER
0dBm, LOWER
–4dBm, LO WER
16349-028
Figure 26. Input IP3 vs. IF Frequency at Various LO Powers and Sidebands
Data Sheet ADMV1012
Rev. A | Page 11 of 19
LEAKAGE PERFORMANCE
Data taken at VDRF = 3 V, V D L O = 3 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with Mini-Circuits QCN-45+, power
splitter, unless otherwise noted.
0
–80
–60
–40
–20
–70
–50
–30
–10
67 8 910 11 12 13 14
LO L EAKAGE ( dBm)
LO FREQUENCY ( GHz)
+85° C, UPP E R
+25° C, UPP E R
–40°C, UPP E R
+85° C, L OW E R
+25° C, L OW E R
–40°C, L OW E R
16349-034
Figure 27. LO Leakage at IF Output vs. LO Frequency at Various
Temperatures and Sidebands
–30
–55
–50
–45
–40
–35
6 7 8 9 10 11 12 13 14
LO L EAKAGE ( dBm)
LO FREQUENCY ( GHz)
+85°C
+25°C
–40°C
16349-033
Figure 28. LO Leakage at RFIN vs. LO Frequency at Various Temperatures
0
–80
–60
–40
–20
–70
–50
–30
–10
678910 11 12 13 14
LO L EAKAGE ( dBm)
LO FREQUENCY ( GHz)
+4dBm, UPP E R
0dBm, UP P E R
–4dBm, UPPE R
+4dBm, LOWER
0dBm, LOWER
–4dBm, L O WE R
16349-037
Figure 29. LO Leakage at IF Output vs. LO Frequency at Various LO
Powers and Sidebands
–30
–55
–50
–45
–40
–35
6 7 8 9 10 11 12 13 14
LO L EAKAGE ( dBm)
LO FREQUENCY ( GHz)
+4dBm
0dBm
–4dBm
16349-036
Figure 30. LO Leakage at RFIN vs. LO Frequency at Various LO Powers
ADMV1012 Data Sheet
Rev. A | Page 12 of 19
RETURN LOSS PERFORMANCE
Data taken at VDRF = 3 V, V D L O = 3 V, IDRF = 68 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with Mini-Circuits QCN-45+,
power splitter, unless otherwise noted. Measurement reference plane at connector.
0
–30
–25
–20
–15
–10
–5
17.5 18.5 19.5 20.5 21.5 22.5 23.5
RF INPUT RE TURN L OSS ( dB)
RF FREQ UE NCY ( GHz)
+85°C
+25°C
–40°C
16349-043
Figure 31. RF Input Return Loss vs. RF Frequency at Various Temperatures
0
–30
–25
–20
–15
–10
–5
78 9 10 11 12 13
LO INPUT RETURN LOSS (dB)
LO FREQUENCY ( GHz)
+85°C
+25°C
–40°C
16349-044
Figure 32. LO Input Return Loss vs. LO Frequency at Various Temperatures
0
–35
–30
–25
–20
–15
–10
–5
2.5 2.7 2.9 3.1 3.3 3.5
IF OUTPUT RETURN LOSS (dB)
IF FREQUENCY ( GHz)
+85° C, UPP E R
+85° C, L OW E R
+25° C, UPP E R
+25° C, L OW E R
–40°C, UPP E R
–40°C, L OW E R
16349-045
Figure 33. IF Output Return Loss vs. IF Frequency at Various Temperatures
and Sidebands
Data Sheet ADMV1012
Rev. A | Page 13 of 19
SPURIOUS PERFORMANCE
Data taken at VDRF = 3 V, VDLO = 3 V, IDRF = 68 mA, LO =
0 dBm, and −40°C ≤ TA ≤ +85°C with a Mini-Circuits QCN-45+,
power splitter, unless otherwise noted.
Table 5. LO Harmonic Leakage at IF Output
Frequency
LO Frequency (MHz) 1.0 2.0 3.0 4.0
7000 −48 −65 −42 −57
8500 −47 −64 −57 −64
9000 −50 −51 −51 −61
10,000 −49 −40 −52 −61
11,000 −49 −47 −61 N/A
12,000 −58 −46 −56 N/A
13,000 −54 −42 −59 N/A
13,500 −55 −40 N/A N/A
M × N SPURIOUS PERFORMANCE FOR LO = 0 dBm
Mixer spurious products are measured in dBc from the IF
output power level. Spurious values are measured using the
following equation: (M × RF)+ (N × LO). N/A means not
applicable. The frequencies are referred from the frequencies
applied to the pin of the ADMV1012.
Lower Sideband
IF = 2.8 GHz
RF = 18000 MHz at −20 dBm and LO = 10400 MHz at 4 dBm.
All values in dBc below IF power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × RF
−2 N/A N/A N/A N/A −58.6
−1 N/A N/A 0 −68.5 −71.1
0 N/A −42 −38.4 −52.2 −53.2
1 −49.1 −70.2 −65.7 −67.9 N/A
2 −66.5 −74.4 N/A N/A N/A
IF = 3.3 GHz
RF = 18000 MHz at RF power of −20 dBm, and LO = 10650 MHz
at LO power of 4 dBm. All values in dBc below IF power level.
N/A means not applicable.
N × LO
0 1 2 3 4
M × RF
−2 N/A N/A N/A N/A −56
−1 N/A N/A 0 −72.5 −83.9
0 N/A −42.3 −44.7 −54.1 −56.9
1 −48.8 −68.3 −69.5 −63.4 N/A
2 −71.7 −65.8 N/A N/A N/A
IF = 3.5 GHz
RF = 18000 MHz at RF power of −20 dBm, and LO = 10750 MHz
at LO power of 4 dBm. All values in dBc below IF power level.
N/A means not applicable.
N × LO
0 1 2 3 4
M × RF
−2 N/A N/A N/A N/A −57.5
−1 N/A N/A 0 −76.6 −74.2
0 N/A −42.7 −33.4 −47.2 −46.2
1 −48.2 −74.5 −83.8 N/A N/A
2 −77.2 −59.9 N/A N/A N/A
Upper Sideband
IF = 2.8 GHz
RF = 23000 MHz at RF power of −20 dBm, and LO = 10100 MHz
at LO power of 4 dBm. All values in dBc below IF power level.
N/A means not applicable.
N × LO
0 1 2 3 4
M ×RF
−2 N/A N/A N/A N/A −56.4
−1 N/A N/A 0 −62.6 −72.3
0 N/A −39.9 −40.2 −46.9 −47
1 −53.2 −77.8 −64.9 N/A N/A
2 −60.9 N/A N/A N/A N/A
IF = 3.3 GHz
RF = 23000 MHz at RF power of −20 dBm, and LO = 9850 MHz
at LO power of 4 dBm. All values in dBc below IF power level.
N/A means not applicable.
N × LO
0 1 2 3 4
M × RF
−2 N/A N/A N/A N/A −61.5
−1 N/A N/A 0 −53.8 −69
0 N/A −40.6 −42 −44.2 −56.5
1 −52.9 −99.8 −65.3 N/A N/A
2 −74.9 N/A N/A N/A N/A
IF = 3.5 GHz
RF = 23000 MHz at RF power of −20 dBm, and LO = 9750 MHz
at LO power of 4 dBm. All values in dBc below IF power level.
N/A means not applicable.
N × LO
0 1 2 3 4
M × RF
−2 N/A N/A N/A N/A −67.6
−1 N/A N/A 0 −50.1 −63.9
0 N/A −41.5 −40.8 −47.4 −64.8
1 −53.6 −68.7 −72.2 N/A N/A
2 −70.7 N/A N/A N/A N/A
ADMV1012 Data Sheet
Rev. A | Page 14 of 19
THEORY OF OPERATION
The ADMV1012 is a compact GaAs, MMIC, double sideband
(DSB) downconverter in a RoHS compliant package optimized
for both upper sideband and lower sideband point to point
microwave radio applications operating in the 17.5 GHz to
24 GHz input frequency range. The ADMV1012 supports
LO input frequencies of 7 GHz to 13.5 GHz and IF output
frequencies of 2.5 GHz to 3.5 GHz.
The ADMV1012 uses a RF LNA followed by an I/Q double
balanced mixer, where a driver amplifier drives the LO (see
Figure 1). This combination of design, process, and packaging
technology allows the functions of these subsystems to be
integrated into a single die, using mature packaging and
interconnection technologies to provide a high performance,
low cost design with excellent electrical, mechanical, and
thermal properties. In addition, the need for external
components is minimized, optimizing cost and size.
LO DRIVER AMPLIFIER
The LO driver amplifier takes a single LO input and doubles the
frequency and amplifies it to the desired LO signal level for the
mixer to operate optimally. The LO driver amplifier is self
biased, and it requires only a single dc bias voltage (VDLO),
which draws approximately 170 mA at 3 V under the LO drive.
The LO amplitude range of −4 dBm to +4 dBm makes it
compatible with the Analog Devices, Inc., wideband synthesizer
portfolio without the need for an external LO driver amplifier.
MIXER
The mixer is an I/Q double balanced mixer, and this mixer
topology reduces the need for filtering unwanted sideband.
An external 90° hybrid is required to select the upper sideband
of operation. The ADMV1012 has been optimized to work with
the Mini-Circuits QCN-45+ RF 90° hybrid.
LNA
The LNA requires a single dc bias voltage (VDRF) and a single
dc gate bias (VGRF) to operate. Starting at −1.8 V at the gate
supply (VGRF), the LNA is biased at +3 V (VDRF). Then, the
gate bias (VGRF) is varied until the desired LNA bias current
(IDRF) is achieved. The desired LNA bias current is 68 mA at
3 V under small signal conditions.
The typical application circuit (see Figure 34) shows the
necessary external components on the bias lines to eliminate
any undesired stability problems for the RF amplifier and the
LO amplifier.
The ADMV1012 is a much smaller alternative to hybrid style
image reject converter assemblies, and it eliminates the need
for wire bonding by allowing the use of surface-mount
manufacturing assemblies.
The ADMV1012 downconverter comes in a compact, thermally
enhanced, 4.9 mm × 4.9 mm, 32-terminal ceramic leadless chip
carrier (LCC) package. The ADMV1012 operates over the
40°C to +85°C temperature range.
Data Sheet ADMV1012
Rev. A | Page 15 of 19
APPLICATIONS INFORMATION
The evaluation board and typical application circuit are
optimized for low-side LO (upper sideband) performance
with the Mini-Circuit QCN-45+ RF 90° hybrid. Because the
I/Q mixers are double balanced, the ADMV1012 can support IF
frequencies from 3.5 GHz to low frequency.
TYPICAL APPLICATION CIRCUIT
The typical applications circuit is shown in Figure 34. The
application circuit shown has been replicated for the evaluation
board circuit.
16349-049
ADMV1012AEZ
25-146-1000-92
25-146-1000-92
25-146-1000-92
25-146-1000-92
5019
5019 5019
1µF
100pF
0.01µF
100pF
QCN-45+
0.01µF
1µF
100pF
0.01µF
1µF
0Ω
0Ω
DUT
VDLO
VDRF
VGRF
R4 IF_OUTPUT_LSB
C9
C3
LO_INPUT
X1
C7
C10
C5
C13
C12
C11
R1 IF_OUTPUT_USB
RF_INPUT
C8
LO_INPUT
RF_INPUT
VDLO
31
14 27
15
3
PAD
32
30
29
28
26
25
24
23
21
19
18
17
16
13
12
9
8
7
6
5
1
10
22
20
11
4
2
1
11
4 3 2
4 3 2
4 3 2
4 3 2 1
1
1 6
4
2 5
3
1
1
AGND
AGND
AGND
AGND
AGND
AGND
AGND
PORT_1
PORT_2
GND
50Ω _TERM
GND
SUM_PORT
AGND
AGND AGND
AGND
PAD
NIC
VGRF
NIC
NIC
NIC
VDRF
NIC
NIC
NIC
NIC
IF1
NIC
IF2
NIC
NIC
NIC
NIC
VDLO
NIC
NIC
NIC
GND
LOIN
NIC
NIC
NIC
NIC
NIC
GND
RFIN
GND
NIC
Figure 34. Typical Application Circuit
ADMV1012 Data Sheet
Rev. A | Page 16 of 19
EVALUATION BOARD INFORMATION
The circuit board used in the application must use RF circuit
design techniques. Signal lines must have 50 impedance, and
the package ground leads and exposed pad must be connected
directly to the ground plane similarly to that shown in Figure 35
and Figure 36. Use a sufficient number of via holes to connect
the top and bottom ground planes. The evaluation circuit board
shown in Figure 34 is available from Analog Devices upon request.
Layout
Solder the exposed pad on the underside of the ADMV1012 to
a low thermal and electrical impedance ground plane. This pad
is typically soldered to an exposed opening in the solder mask
on the evaluation board. Connect these ground vias to all other
ground layers on the evaluation board to maximize heat
dissipation from the device package. Figure 35 shows the PCB
land pattern footprint for the ADMV1012-EVA L Z , and Figure 36
shows the solder paste stencil for the ADMV1012-E VA L Z
evaluation board.
Power-On Sequence
To set up the ADMV1012-EVA L Z , take the following steps:
1. Power up the VGRF with a −1.8 V supply.
2. Power up the VDRF with a 3 V supply.
3. Power up the VDLO with a 3 V supply.
4. Adjust the VGRF supply between 1.8 V to 0.4 V until
IDRF = 68 mA.
5. Connect LOIN to the LO signal generator with an LO
power of between −4 dBm to +4 dBm.
6. For the upper sideband, add a 50 Ω termination to the
IF_OUTPUT_LSB connector. For the lower sideband, add
a 50 Ω termination to the IF_OUTPUT_USB connector.
7. Apply a RF signal to the RF_INPUT and LO_INPUT ports.
Power-Off Sequence
To turn off the ADMV1012-E VA L Z , take the following steps:
1. Turn off the LO and RF signals.
2. Set VGRF to −1.8 V.
3. Set the VDRF supply to 0 V and then turn off the VDRF
supply.
4. Set the VDLO supply to 0 V and then turn off the VDLO
supply.
5. Turn off the VGRF supply.
0.138" SQUARE M AS K OPE NING
0.02 × 45° CHAM FER FO R P IN 1
0.197"
[0.50]
PAD SI ZE
0.026" × 0.010"
0.217" SQUARE
0.004" MAS K/ME TAL OVE RLAP
0.010" MINI M UM M AS K WI DTH
0.010" REF
0.030"
MASK O P E NING
0.156"
MASK
OPENING
PIN 1
GRO UND P AD
SOLDER MASK
0.146" SQUARE
GRO UND P AD
ø.010"
TYPICAL VIA
ø.034"
TYPICAL
VIA S P ACING
16349-050
Figure 35. PCB Land Pattern Footprint of the ADMV1012-EVALZ
Data Sheet ADMV1012
Rev. A | Page 17 of 19
0.219
SQUARE
0.017
0.017
0.027
TYP
0.010
TYP
0.0197
TYP
R0.0040 TYP
132 PL CS
0.132
SQUARE
16349-051
Figure 36. Solder Paste Stencil of the ADMV1012-EVALZ
16349-052
NOTES
1. NO T ALL COMP ONENTS O R BIAS LI NE S ARE US E D ON T HE E V ALUAT IO N BOARD.
Figure 37. ADMV1012-EVALZ Evaluation Board Top Layer
ADMV1012 Data Sheet
Rev. A | Page 18 of 19
BILL OF MATERIALS
Table 6.
Qty. Component Description Manufacturer/Part No.
1
Evaluation board
PCB
Analog Devices, Supplied/042365
4 C5, C7, C12 100 pF, high temperature, multilayer
ceramic capacitors, NP0, 0402
TDK/C1005NP01H101J050BA
4 C8, C10, C11 0.01 µF ceramic capacitors, X7R, 0402 Murata Manufacturing/GRM155R71E103KA01D
4 C3, C9, C13 1 µF ceramic capacitors, X5R, 0603 Murata Manufacturing/GRM188R61E105KA12D
7 GND, VDLO, VDRF, VGRF CONN-PCB test points, compact mini,
CNKEY5019
Keystone Electronics Corporation/5019.00
4 LO_INPUT, RF_INPUT, IF_OUTPUT_LSB,
IF_OUTPUT_USB
CONN-PCB, SMA K_SRI-NS,
CNSMAL460W295H156
SRI CONNECTOR GAGE/25-146-1000-92
2 R1, R4 0 Ω resistor chips, SMD, JMPR, 0402 Panasonic/ERJ-2GE0R00X
1 X1 XFMR, power splitter/combiner,
2500 MHz to 4500 MHz,
TSML126W63H42
Mini-Circuits/QCN-45+
1 Device under test (DUT) 17.5 GHz to 24 GHz, GaAs, MMIC, I/Q
downconverter
Analog Devices Supplied/ADMV1012AEZ
1 Heatsink Heatsink Analog Devices Supplied/104365
Data Sheet ADMV1012
Rev. A | Page 19 of 19
OUTLINE DIMENSIONS
16
0.50
BSC
3.50 REF 0.20 M I N
BOTTOM VIEW
TOP VIEW
SIDE VIEW
1
32
9
17
24
25
8
FO R P ROPE R CONNECTI ON O F
THE EXPOSED PAD, REFER TO
THE P IN CO NFI GURAT IO N AND
FUNCTI O N DE S CRIPTI ONS
SECTION OF THIS DATA SHEET.
04-24-2017-D
0.36
0.30
0.24
EXPOSED
PAD
PKG-004843
PIN 1
INDICATOR
5.05
4.90 SQ
4.75
4.10 REF
1.10
1.00
0.90
0.38
0.32
0.26
3.60
3.50 SQ
3.40
PIN 1
0.08
REF
SEATING
PLANE
Figure 38. 32-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-32-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Package Body Material Lead Finish Temperature Range Package Description Package Option
ADMV1012AEZ Alumina Ceramic Gold Over Nickel −40°C to +85°C 32-Terminal LCC E-32-1
ADMV1012AEZ-R7 Alumina Ceramic Gold Over Nickel −40°C to +85°C 32-Terminal LCC E-32-1
ADMV1012-EVALZ Evaluation Board
1 Z = RoHS Compliant Part.
©20172018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D16349-0-2/18(A)