10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
flowMNPC 0 1200 V / 80 A
● mixed voltage component topology
● neutral point clamped inverter
● reactive power capability
● low inductance layout
● solar inverter
● UPS
● 10-FZ12NMA080SH01-M260F
● 10-PZ12NMA080SH01-M260FY
T
j
=25°C, unless otherwise specified
Parameter Symbol Value Unit
Half Bridge IGBT
T
h
=80°C 69
T
c
=80°C 88
T
h
=80°C 158
T
c
=80°C 239
t
SC
T
j
≤150°C 10 s
V
CC
V
GE
=15V 800 V
Neutral Point FWD
T
h
=80°C 47
T
c
=80°C 62
I
FSM
600 A
I
2
t1490 A2s
T
h
=80°C 58
T
c
=80°C 88
T
j
=Tjmax
t
p
limited by T
jmax
T
j
=Tjmax
175
V
A
600
240
1200
175
Repetitive peak collector current
DC collector current
V
CE
I
CRM
I
C
I
cmax
160
°C
Power dissipation P
tot
Maximum Junction Temperature T
jmax
Repetitive peak forward current
Collector-emitter break down voltage
Types
Maximum Ratings
Condition
Features
flow0 12mm housing
Target Applications
Schematic
A
V±20
W
°C
V
A
V
RRM
Maximum Junction Temperature
Power dissipation
V
GE
T
jmax
P
tot
Short circuit ratings
Peak Repetitive Reverse Voltage
Gate-emitter peak voltage
Turn off safe operating area (RBSOA)
A
W
I
F
120
I
FRM
T
j
=Tjmax
V
CE
max = 1200V
T
vj
max≤ 150°C
DC forward current
A
T
j
=Tjmax
Square wave, 20 kHz
Surge forward current
I2t-value
t
p
=8,3ms , sin 180° T
c
=25°C
copyright Vincotech 1 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
T
j
=25°C, unless otherwise specified
Parameter Symbol Value Unit
Maximum Ratings
Condition
Neutral Point IGBT
T
h
=80°C 52
T
c
=80°C 68
T
h
=80°C 72
T
c
=80°C 109
t
SC
T
j
≤150°C 6 s
V
CC
V
GE
=15V 360 V
Half Bridge FWD
T
h
=80°C 47
T
c
=80°C 62
I
FSM
335 A
I
2
t560 A2s
T
h
=80°C 79
T
c
=80°C 119
Thermal Properties
Insulation Properties
V
is
t=2s DC voltage 4000 V
min 12,7 mm
8,95 mm
Maximum Junction Temperature
Short circuit ratings
DC collector current
Power dissipation
Repetitive peak collector current
°C
W
A
175
V
A
V
t
p
limited by T
jmax
T
j
=Tjmax
Gate-emitter peak voltage
V
CE
I
CRM
Collector-emitter break down voltage
W
A
V
A
V
RRM
V
GE
T
j
=Tjmax
T
jmax
P
tot
T
vj
max≤ 150°C
T
j
=Tjmax
DC forward current I
F
Repetitive peak forward current I
FRM
t
p
limited by T
jmax
t
p
=10ms , sin 180°
I
C
Peak Repetitive Reverse Voltage 1200
°CMaximum Junction Temperature T
jmax
175
-40…+(Tjmax - 25) °C
Storage temperature T
stg
-40…+125 °C
100
Power dissipation P
tot
T
j
=Tjmax
Clearance
Insulation voltage
Creepage distance
T
op
Operation temperature under switching condition
600
225
±20
150Turn off safe operating area (RBSOA) I
cmax
A
V
CE
max = 600V
T
j
=125°C
Surge forward current
I2t-value
copyright Vincotech 2 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Parameter Symbol Unit
V
GE
[V] or
V
GS
[V]
V
r
[V]
or
V
CE
[V] or
V
DS
[V]
I
C
[A] or
I
F
[A] or
I
D
[A]
T
j
Min Typ Max
Tj=25°C
5,8
6,4
Tj=125°C
Tj=25°C
1,99
2,5
Tj=125°C
2,33
Tj=25°C
0,02
Tj=125°C
Tj=25°C
240
Tj=125°C
Tj=25°C
77
Tj=125°C
78
Tj=25°C
12
Tj=125°C
16
Tj=25°C
173
Tj=125°C
225
Tj=25°C
49
Tj=125°C
67
Tj=25°C
0,46
Tj=125°C
0,96
Tj=25°C
1,34
Tj=125°C
2,24
Thermal resistance chip to heatsink R
th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
0,60 K/W
Tj=25°C
2,27
2,8
Tj=125°C
1,68
Tj=25°C
64
Tj=125°C
83
Tj=25°C
29
Tj=125°C
74
Tj=25°C
1
Tj=125°C
3
Tj=25°C
8651
Tj=125°C
3565
Tj=25°C
0,18
Tj=125°C
0,53
Thermal resistance chip to heatsink R
th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
1,63 K/W
350
960
350
0
600
80
56
25
56
60
80
0,003
20
±15
V
CE
=V
GE
t
f
E
on
C
ies
I
CES
R
gint
I
GES
V
CEsat
V
GE(th)
t
d(on)
t
r
t
d(off)
Q
G
Reverse transfer capacitance
Diode forward voltage
Gate charge
E
rec
Peak reverse recovery current I
r
Peak rate of fall of recovery current
t
rr
V
F
Q
rr
(di
rf
/dt)
max
Rise time
Turn-on energy loss
Fall time
Collector-emitter cut-off current incl. Diode
Turn-off delay time
Turn-on delay time
Turn-off energy loss
C
oss
Input capacitance
C
rss
Neutral Point FWD
Reverse recovery time
Reverse recovered energy
E
off
Characteristic Values
ValueConditions
Tj=25°C
Tj=25°C
300Output capacitance
Gate-emitter leakage current
Integrated Gate resistor
Half Bridge IGBT
Gate emitter threshold voltage
Reverse recovered charge
Collector-emitter saturation voltage
12000
0
Rgon=4 Ω
15
±15
Rgoff=4 Ω
f=1MHz
Rgon=4 Ω
±15
4660
260
C
370
V
nA
mA
V
none
mWs
ns
pF
nC
mWs
ns
A/s
V
A
copyright Vincotech 3 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Parameter Symbol Unit
V
GE
[V] or
V
GS
[V]
V
r
[V]
or
V
CE
[V] or
V
DS
[V]
I
C
[A] or
I
F
[A] or
I
D
[A]
T
j
Min Typ Max
Characteristic Values
ValueConditions
Tj=25°C
5
5,8
6,5
Tj=125°C
Tj=25°C
1,05
1,45
1,85
Tj=125°C
1,59
Tj=25°C
15
Tj=125°C
Tj=25°C
600
Tj=125°C
Tj=25°C
84
Tj=125°C
85
Tj=25°C
11
Tj=125°C
12
Tj=25°C
177
Tj=125°C
205
Tj=25°C
87
Tj=125°C
105
Tj=25°C
0,53
Tj=125°C
0,75
Tj=25°C
1,86
Tj=125°C
2,50
Thermal resistance chip to heatsink R
th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
1,32 K/W
Tj=25°C
1,35
1,73
2,1
Tj=125°C
1,70
Tj=25°C
10
Tj=125°C
Tj=25°C
106
Tj=125°C
118
Tj=25°C
102
Tj=125°C
148
Tj=25°C
5,32
Tj=125°C
8,22
Tj=25°C
6904
Tj=125°C
4951
Tj=25°C
1,55
Tj=125°C
2,42
Thermal resistance chip to heatsink R
th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
1,21 K/W
(di
rf
/dt)
max
A
mWs
nC
%11
Tj=25°C
137
288
Gate emitter threshold voltage
Neutral Point IGBT
I
CES
V
GE(th)
Peak reverse recovery current
Reverse transfer capacitance
Gate-emitter leakage current
Integrated Gate resistor
Turn-off delay time
Turn-off energy loss
Fall time
Turn-on energy loss
V
CE
=V
GE
t
f
Collector-emitter saturation voltage
Q
G
E
off
Gate charge
Input capacitance
Output capacitance
C
rss
C
oss
C
ies
R
gint
t
d(off)
t
r
t
d(on)
Turn-on delay time
Rise time
V
CEsat
I
GES
Collector-emitter cut-off incl diode
4620
1200
350
350
15
R100=1486Ω
56
mWs
C
V
µA
ns
E
on
Rated resistance
ns
none
Half Bridge FWD
Rgon=4 Ω
pF
75
50
±15
I
RRM
f=1MHz 0
V
F
I
r
±15
Rgoff=4 Ω
nA0
±15
20
600
Reverse recovery energy
t
rr
Q
rr
E
rec
Reverse recovery time
Peak rate of fall of recovery current
Reverse recovered charge
Diode forward voltage
Reverse leakage current
0
25
0,0012
75
480
56
V
Tj=100°C -12
Tj=25°C
22000
V
A/s
mA
B
(25/50)
470
Tj=25°C
Power dissipation constant
Tj=25°CRated resistance R
Deviation of R100 Δ
R/R
B-value
200
2
3950Tol. ±3%
Tj=25°C
Tj=25°C
P
Power dissipation mW
mW/K
K
K
B
B-value
Vincotech NTC Reference
Tol. ±3% 3996Tj=25°C
B
(25/100)
copyright Vincotech 4 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 1 IGBT Figure 2 IGBT
Typical output characteristics
I
C
= f(V
CE
) I
C
= f(V
CE
)
At At
t
p
= 250 µs t
p
= 250 µs
T
j
= 25 °C T
j
= 125 °C
V
GE
from 7 V to 17 V in steps of 1 V V
GE
from 7 V to 17 V in steps of 1 V
Figure 3 IGBT Figure 4 FWD
Typical transfer characteristics Typical diode forward current as
I
C
= f(V
GE
) a function of forward voltage
I
F
= f(V
F
)
At At
t
p
= 250 µs t
p
= 250 µs
V
CE
= 10 V
Half Bridge
Typical output characteristics
Half Bridge IGBT and Neutral Point FWD
0
50
100
150
200
250
300
350
0 1 2 3 4 5
V
CE
(V)
I
C
(A)
0
15
30
45
60
75
90
0 2 4 6 8 10 12
V
GE
(V)
I
C
(A)
T
j
= 25°C
T
j
= T
jmax
-25°C
0
50
100
150
200
250
01234
V
F
(V)
I
F
(A)
T
j
= 25°C
T
j
= T
jmax
-25°C
0
50
100
150
200
250
300
350
0 1 2 3 4 5
V
CE
(V)
I
C
(A)
copyright Vincotech 5 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 5 IGBT Figure 6 IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(I
C
)E = f(R
G
)
With an inductive load at With an inductive load at
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
CE
=350 V
V
GE
= ±15 V V
GE
= ±15 V
R
gon
= 4 I
C
= 56 A
R
goff
= 4
Figure 7 FWD Figure 8 FWD
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector current as a function of gate resistor
E
rec
= f(I
c
)E
rec
= f(R
G
)
With an inductive load at With an inductive load at
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
CE
=350 V
V
GE
= ±15 V V
GE
= ±15 V
R
gon
= 4 I
C
= 56 A
Half Bridge
Half Bridge IGBT and Neutral Point FWD
E
on High T
E
off High T
E
on Low T
E
off Low T
0
1
2
3
4
0 20 40 60 80 100
I
C
(A)
E (mWs)
E
off High T
E
on High T
E
on Low T
E
off Low T
0,0
0,5
1,0
1,5
2,0
2,5
0 5 10 15 20
R
G
()
E (mWs)
E
rec High T
E
rec Low T
0,0
0,2
0,4
0,6
0,8
0 20 40 60 80 100
I
C
(A)
E (mWs)
E
rec High T
E
rec Low T
0,0
0,2
0,4
0,6
0,8
0 5 10 15 20
R
G
()
E (mWs)
copyright Vincotech 6 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 9 IGBT Figure 10 IGBT
Typical switching times as a Typical switching times as a
function of collector current function of gate resistor
t = f(I
C
)t = f(R
G
)
With an inductive load at With an inductive load at
T
j
= 125 °C T
j
= 125 °C
V
CE
=350 V V
CE
=350 V
V
GE
= ±15 V V
GE
= ±15 V
R
gon
= 4 I
C
= 56 A
R
goff
= 4
Figure 11 FWD Figure 12 FWD
Typical reverse recovery time as a Typical reverse recovery time as a
function of collector current function of IGBT turn on gate resistor
t
rr
= f(I
c
)t
rr
= f(R
gon
)
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Half Bridge IGBT and Neutral Point FWD
Half Bridge
t
doff
t
f
t
don
t
r
0,00
0,01
0,10
1,00
0 20 40 60 80 100
I
C
(A)
t (
µ
µ
µ
µ
s)
t
rr High T
t
rr Low T
0,00
0,03
0,06
0,09
0,12
0,15
0 5 10 15 20
R
gon
()
t
rr
(
µ
µ
µ
µ
s)
t
doff
t
f
t
don
t
r
0,00
0,01
0,10
1,00
0 5 10 15 20
R
G
()
t (
µ
µ
µ
µ
s)
t
rr High T
t
rr Low T
0,00
0,02
0,04
0,06
0,08
0,10
0 20 40 60 80 100
I
C
(A)
t
rr
(
µ
µ
µ
µ
s)
copyright Vincotech 7 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 13 FWD Figure 14 FWD
Typical reverse recovery charge as a Typical reverse recovery charge as a
function of collector current function of IGBT turn on gate resistor
Q
rr
= f(I
C
)Q
rr
= f(R
gon
)
At
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Figure 15 FWD Figure 16 FWD
Typical reverse recovery current as a Typical reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
I
RRM
= f(I
C
)I
RRM
= f(R
gon
)
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Half Bridge IGBT and Neutral Point FWD
Half Bridge
I
RRM High T
I
RRM Low T
0
20
40
60
80
100
0 5 10 15 20
R
gon
()
I
rrM
(A)
Q
rr High T
Q
rr Low T
0
1
2
3
4
0 5 10 15 20
R
gon
(
)
Q
rr
(
µ
µ
µ
µ
C)
I
RRM High T
I
RRM Low T
0
20
40
60
80
100
0 20 40 60 80 100
I
C
(A)
I
rrM
(A)
Q
rr High T
Q
rr Low T
0
1
2
3
4
0 20 40 60 80 100
I
C
(A)
Q
rr
(
µ
µ
µ
µ
C)
copyright Vincotech 8 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 17 FWD Figure 18 FWD
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI
0
/dt,dI
rec
/dt = f(I
c
) dI
0
/dt,dI
rec
/dt = f(R
gon
)
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Figure 19 IGBT Figure 20 FWD
IGBT transient thermal impedance FWD transient thermal impedance
as a function of pulse width as a function of pulse width
Z
thJH
= f(t
p
)Z
thJH
= f(t
p
)
At At
D = t
p
/ TD = t
p
/ T
R
thJH
= 0,60 K/W R
thJH
= 1,63 K/W
IGBT thermal model values FWD thermal model values
R (K/W) Tau (s) R (K/W) Tau (s)
0,10 1,8E+00 0,07 5,7E+00
0,23 2,9E-01 0,17 1,2E+00
0,21 1,0E-01 0,65 2,0E-01
0,05 1,4E-02 0,51 6,6E-02
0,01 1,7E-03 0,13 9,1E-03
0,11 1,5E-03
Half Bridge IGBT and Neutral Point FWD
Half Bridge
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
dI
0
/dt
T
dI
rec
/dt
T
0
2000
4000
6000
8000
10000
12000
14000
0 5 10 15 20
R
gon
()
di
rec
/ dt (A/ms)
di
0
/dt
T
dI
rec
/dt
T
0
2000
4000
6000
8000
10000
12000
0 20 40 60 80 100
I
C
(A)
di
rec
/ dt (A/ms)
copyright Vincotech 9 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 21 IGBT Figure 22 IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
P
tot
= f(T
h
)I
C
= f(T
h
)
At At
T
j
= 175 °C T
j
= 175 °C
V
GE
=15 V
Figure 23 FWD Figure 24 FWD
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
P
tot
= f(T
h
)I
F
= f(T
h
)
At At
T
j
= 175 °C T
j
= 175 °C
Half Bridge IGBT and Neutral Point FWD
Half Bridge
0
50
100
150
200
250
300
0 50 100 150 200
T
h
(
o
C)
P
tot
(W)
0
20
40
60
80
100
120
0 50 100 150 200
T
h
(
o
C)
I
C
(A)
0
20
40
60
80
100
120
0 50 100 150 200
T
h
(
o
C)
P
tot
(W)
0
20
40
60
80
0 50 100 150 200
T
h
(
o
C)
I
F
(A)
copyright Vincotech 10 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 25 IGBT Figure 26 IGBT
Safe operating area as a function Gate voltage vs Gate charge
of collector-emitter voltage
I
C
= f(V
CE
)V
GE
= f(Q
g
)
At At
D = single pulse I
C
= 80 A
T
h
= 80 ºC
V
GE
= ±15 V
T
j
= T
jmax
ºC
Figure 27 IGBT
Reverse bias safe operating area
I
C
= f(V
CE
)
At
T
j
= T
jmax
-25 ºC
DC link
minus
=DC link plus
Switching mode : 3 level switching
Half Bridge IGBT and Neutral Point FWD
Half Bridge
V
CE
(V)
I
C
(A)
10
3
10
0
10
-1
10
1
10
2
10
1
10
2
100uS
1mS
10mS
100mS
DC
10
0
10
3
0
2
4
6
8
10
12
14
16
0 100 200 300 400
Q
g
(nC)
V
GE
(V)
240V 960V
0
20
40
60
80
100
120
140
160
180
0 200 400 600 800 1000 1200 1400
V
CE
(V)
I
C
(A)
I
C
MAX
V
CE
MAX
I
c
MODULE
I
c
CHIP
copyright Vincotech 11 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 1 IGBT Figure 2 IGBT
Typical output characteristics Typical output characteristics
I
C
= f(V
CE
) I
C
= f(V
CE
)
At At
t
p
= 250 µs t
p
= 250 µs
T
j
= 25 °C T
j
= 125 °C
V
GE
from 7 V to 17 V in steps of 1 V V
GE
from 7 V to 17 V in steps of 1 V
Figure 3 IGBT Figure 4 FWD
Typical transfer characteristics Typical diode forward current as
I
C
= f(V
GE
) a function of forward voltage
I
F
= f(V
F
)
At At
t
p
= 250 µs t
p
= 250 µs
V
CE
= 10 V
Neutral Point IGBT and Half Bridge FWD
Neutral point
0
50
100
150
200
250
300
350
0 1 2 3 4 5
V
CE
(V)
I
C
(A)
0
20
40
60
80
100
0 2 4 6 8 10 12
V
GE
(V)
I
C
(A)
T
j
= 25°C
T
j
= T
jmax
-25°C
0
50
100
150
200
250
0 1 2 3 4
V
F
(V)
I
F
(A)
T
j
= 25°C
T
j
= T
jmax
-25°C
0
50
100
150
200
250
300
350
012345
V
CE
(V)
I
C
(A)
copyright Vincotech 12 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 5 IGBT Figure 6 IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(I
C
)E = f(R
G
)
With an inductive load at With an inductive load at
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
CE
=350 V
V
GE
= ±15 V V
GE
= ±15 V
R
gon
= 4 I
C
= 56 A
R
goff
= 4
Figure 7 FWD Figure 8 FWD
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector current as a function of gate resistor
E
rec
= f(I
c
)E
rec
= f(R
G
)
With an inductive load at With an inductive load at
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
CE
=350 V
V
GE
= ±15 V V
GE
= ±15 V
R
gon
= 4 I
C
= 56 A
Neutral point
Neutral Point IGBT and Half Bridge FWD
E
rec High T
E
rec Low T
0
1
2
3
4
0 20 40 60 80 100
I
C
(A)
E (mWs)
E
rec High T
E
rec Low T
0
1
2
3
4
0 5 10 15 20
R
G
(
)
E (mWs)
E
off High T
E
on High T
E
on Low T
E
off Low T
0
1
2
3
4
0 20 40 60 80 100
I
C
(A)
E (mWs)
E
off High T
E
on High T
E
on Low T
E
off Low T
0
1
2
3
4
0 5 10 15 20
R
G
(
)
E (mWs)
copyright Vincotech 13 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 9 IGBT Figure 10 IGBT
Typical switching times as a Typical switching times as a
function of collector current function of gate resistor
t = f(I
C
)t = f(R
G
)
With an inductive load at With an inductive load at
T
j
= 125 °C T
j
= 125 °C
V
CE
=350 V V
CE
=350 V
V
GE
= ±15 V V
GE
= ±15 V
R
gon
= 4 I
C
= 56 A
R
goff
= 4
Figure 11 FWD Figure 12 FWD
Typical reverse recovery time as a Typical reverse recovery time as a
function of collector current function of IGBT turn on gate resistor
t
rr
= f(I
c
)t
rr
= f(R
gon
)
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Neutral point
Neutral Point IGBT and Half Bridge FWD
t
doff
t
f
t
don
t
r
0,001
0,01
0,1
1
0 20 40 60 80 100
I
C
(A)
t (µs)
t
doff
t
f
t
don
t
r
0,001
0,01
0,1
1
0 5 10 15 20
R
G
(
)
t (µs)
t
rr High T
t
rr Low T
0,0
0,1
0,2
0,3
0,4
0,5
0 5 10 15 20
R
gon
()
t
rr
(
µ
µ
µ
µ
s)
t
rr High T
t
rr Low T
0,00
0,05
0,10
0,15
0,20
0 20 40 60 80 100
I
C
(A)
t
rr
(
µ
µ
µ
µ
s)
copyright Vincotech 14 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 13 FWD Figure 14 FWD
Typical reverse recovery charge as a Typical reverse recovery charge as a
function of collector current function of IGBT turn on gate resistor
Q
rr
= f(I
C
)Q
rr
= f(R
gon
)
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Figure 15 FWD Figure 16 FWD
Typical reverse recovery current as a Typical reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
I
RRM
= f(I
C
)I
RRM
= f(R
gon
)
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Neutral point
Neutral Point IGBT and Half Bridge FWD
I
RRM High T
I
RRM Low T
0
30
60
90
120
150
0 5 10 15 20
R
gon
()
I
rrM
(A)
Q
rr High T
Q
rr Low T
0
2
4
6
8
10
0 4 8 12 16 20
R
gon
(
)
Q
rr
(
µ
µ
µ
µ
C)
I
RRM High T
I
RRM Low T
0
30
60
90
120
150
0 20 40 60 80 100
I
C
(A)
I
rrM
(A)
Q
rr High T
Q
rr Low T
0
2
4
6
8
10
12
0 20 40 60 80 100
I
C
(A)
Q
rr
(
µ
µ
µ
µ
C)
copyright Vincotech 15 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 17 FWD Figure 18 FWD
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI
0
/dt,dI
rec
/dt = f(I
c
) dI
0
/dt,dI
rec
/dt = f(R
gon
)
At At
T
j
= 25/125 °C T
j
= 25/125 °C
V
CE
=350 V V
R
=350 V
V
GE
= ±15 V I
F
=56 A
R
gon
= 4 V
GE
=±15 V
Figure 19 IGBT Figure 20 FWD
IGBT transient thermal impedance FWD transient thermal impedance
as a function of pulse width as a function of pulse width
Z
thJH
= f(t
p
)Z
thJH
= f(t
p
)
At At
D = t
p
/ TD = t
p
/ T
R
thJH
= 1,32 K/W R
thJH
= 1,21 K/W
IGBT thermal model values FWD thermal model values
R (K/W) Tau (s) R (K/W) Tau (s)
0,06 6,4E+00 0,03 6,2E+00
0,17 1,3E+00 0,11 1,1E+00
0,35 2,5E-01 0,34 2,0E-01
0,60 8,5E-02 0,54 6,8E-02
0,13 8,9E-03 0,14 1,2E-02
0,05 2,8E-03
Neutral point
Neutral Point IGBT and Half Bridge FWD
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
dI
0
/dt
T
dI
rec
/dt
T
0
2000
4000
6000
8000
10000
12000
0 5 10 15 20
R
gon
()
di
rec
/ dt (A/ms)
dI
rec
/dt
T
dI
o
/dt
T
0
2000
4000
6000
8000
10000
0 20 40 60 80 100
I
C
(A)
di
rec
/ dt (A/ms)
copyright Vincotech 16 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 21 IGBT Figure 22 IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
P
tot
= f(T
h
)I
C
= f(T
h
)
At At
T
j
= 175 ºC T
j
= 175 ºC
V
GE
=15 V
Figure 23 FWD Figure 24 FWD
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
P
tot
= f(T
h
)I
F
= f(T
h
)
At At
T
j
= 175 ºC T
j
= 175 ºC
Neutral point
Neutral Point IGBT and Half Bridge FWD
0
30
60
90
120
150
0 50 100 150 200
T
h
(
o
C)
P
tot
(W)
0
20
40
60
80
0 50 100 150 200
T
h
(
o
C)
I
C
(A)
0
30
60
90
120
150
0 50 100 150 200
Th
(
o
C)
P
tot
(W)
0
20
40
60
80
0 50 100 150 200
Th
(
o
C)
I
F
(A)
copyright Vincotech 17 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 25 IGBT Figure 26 IGBT
Safe operating area as a function Gate voltage vs Gate charge
of collector-emitter voltage
I
C
= f(V
CE
)V
GE
= f(Q
g
)
At At
D = single pulse I
C
= 75 A
T
h
= 80 ºC
V
GE
= 15 V
T
j
= T
jmax
ºC
Figure 27 IGBT
Reverse bias safe operating area
I
C
= f(V
CE
)
At
T
j
= T
jmax
-25 ºC
DC link
minus
=DC link
plus
Switching mode : 3 level switching
Neutral point
Neutral Point IGBT and Half Bridge FWD
V
CE
(V)
I
C
(A)
10
3
10
0
10
-1
10
1
10
2
10
1
10
2
100uS
1mS
10mS
100mS
DC
10
0
10
3
0
2
4
6
8
10
12
14
16
0 50 100 150 200 250 300 350 400 450 500
Q
g
(nC)
V
GE
(V)
120V
480V
0
20
40
60
80
100
120
140
160
180
0 100 200 300 400 500 600 700
V
CE
(V)
I
C
(A)
I
C
MAX
V
CE
MAX
I
c
MODULE
I
c
CHIP
copyright Vincotech 18 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 1 Thermistor
Typical NTC characteristic
as a function of temperature
R
T
= f(T)
Thermistor
NTC-typical temperature characteristic
0
4000
8000
12000
16000
20000
24000
25 50 75 100 125
T (°C)
R ()
copyright Vincotech 19 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
T
j
125 °C
R
gon
4 Ω
R
goff
4 Ω
Figure 1 Neutral point IGBT Figure 2 Neutral point IGBT
Turn-off Switching Waveforms & definition of t
doff
, t
Eoff
Turn-on Switching Waveforms & definition of t
don
, t
Eon
(t
Eoff
= integrating time for E
off
) (t
Eon
= integrating time for E
on
)
V
GE
(0%) = -15 V V
GE
(0%) = -15 V
V
GE
(100%) = 15 V V
GE
(100%) = 15 V
V
C
(100%) = 350 V V
C
(100%) = 350 V
I
C
(100%) = 56 A I
C
(100%) = 56 A
t
doff
= 0,21 µs t
don
= 0,09 µs
t
Eoff
= 0,58 µs t
Eon
= 0,16 µs
Figure 3 Neutral point IGBT Figure 4 Neutral point IGBT
Turn-off Switching Waveforms & definition of t
f
Turn-on Switching Waveforms & definition of t
r
V
C
(100%) = 350 V V
C
(100%) = 350 V
I
C
(100%) = 56 A I
C
(100%) = 56 A
t
f
= 0,11 µs t
r
= 0,01 µs
Switching Definitions Neutral point IGBT
General conditions
=
=
=
I
C 1%
V
CE 90%
V
GE 90%
-25
0
25
50
75
100
125
-0,2 0 0,2 0,4 0,6 0,8
time (us)
%t
doff
t
Eoff
V
CE
I
C
V
GE
I
C 10%
V
GE 10%
t
don
V
CE 3%
-50
0
50
100
150
200
250
300
350
2,95 3 3,05 3,1 3,15 3,2 3,25
time(us)
%
I
C
V
CE
t
Eon
V
GE
fitted
I
C10%
I
C 90%
I
C 60%
I
C 40%
-25
0
25
50
75
100
125
0 0,1 0,2 0,3 0,4
time (us)
%V
CE
I
C
t
f
I
C 10%
I
C 90%
-50
0
50
100
150
200
250
300
350
3,075 3,1 3,125 3,15 3,175
time(us)
%
t
r
V
CE
I
C
copyright Vincotech 20 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 5 Neutral point IGBT Figure 6 Neutral point IGBT
Turn-off Switching Waveforms & definition of t
Eoff
Turn-on Switching Waveforms & definition of t
Eon
P
off
(100%) = 19,56 kW P
on
(100%) = 19,56 kW
E
off
(100%) = 2,50 mJ E
on
(100%) = 0,75 mJ
t
Eoff
= 0,58 µs t
Eon
= 0,16 µs
Figure 7 Neutral point IGBT Figure 8 Neutral point FWD
Gate voltage vs Gate charge (measured) Turn-off Switching Waveforms & definition of t
rr
V
GEoff
= -15 V V
d
(100%) = 350 V
V
GEon
= 15 V I
d
(100%) = 56 A
V
C
(100%) = 350 V I
RRM
(100%) = -118 A
I
C
(100%) = 56 A t
rr
= 0,15 µs
Q
g
= 775,97 nC
Switching Definitions Neutral point IGBT
I
C 1%
V
GE 90%
-25
0
25
50
75
100
125
-0,2 0 0,2 0,4 0,6 0,8
time (us)
%
P
off
E
off
t
Eoff
V
CE 3%
V
GE 10%
-25
0
25
50
75
100
125
2,9 3 3,1 3,2 3,3
time(us)
%
P
on
E
on
t
Eon
-20
-15
-10
-5
0
5
10
15
20
-200 0 200 400 600 800
Qg (nC)
V
GE
(V)
I
RRM 10%
I
RRM 90%
I
RRM 100%
t
rr
-250
-200
-150
-100
-50
0
50
100
150
3,05 3,1 3,15 3,2 3,25 3,3
time(us)
%
I
d
V
d
fitted
copyright Vincotech 21 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 9 Neutral point IGBT Figure 10 Neutral point IGBT
Turn-on Switching Waveforms & definition of t
Qrr
Turn-on Switching Waveforms & definition of t
Erec
(t
Qrr
= integrating time for Q
rr
) (t
Erec
= integrating time for E
rec
)
I
d
(100%) = 56 A P
rec
(100%) = 19,56 kW
Q
rr
(100%) = 8,22 µC E
rec
(100%) = 2,42 mJ
t
Qrr
= 1,00 µs t
Erec
= 1,00 µs
Figure 11
BOOST stage switching measurement circuit
Switching Definitions Neutral point IGBT
Measurement circuits
t
Qrr
-250
-200
-150
-100
-50
0
50
100
150
3 3,3 3,6 3,9 4,2
time(us)
%
I
d
Q
rr
-50
0
50
100
150
200
250
300
350
3 3,3 3,6 3,9 4,2
time(us)
%
P
rec
E
rec
t
Erec
copyright Vincotech 22 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
T
j
125 °C
R
gon
4 Ω
R
goff
4 Ω
Figure 1 Half Bridge IGBT Figure 2 Half Bridge IGBT
Turn-off Switching Waveforms & definition of t
doff
, t
Eoff
Turn-on Switching Waveforms & definition of t
don
, t
Eon
(t
Eoff
= integrating time for E
off
) (t
Eon
= integrating time for E
on
)
V
GE
(0%) = -15 V V
GE
(0%) = -15 V
V
GE
(100%) = 15 V V
GE
(100%) = 15 V
V
C
(100%) = 700 V V
C
(100%) = 700 V
I
C
(100%) = 56 A I
C
(100%) = 56 A
t
doff
= 0,23 µs t
don
= 0,08 µs
t
Eoff
= 0,60 µs t
Eon
= 0,21 µs
Figure 3 Half Bridge IGBT Figure 4 Half Bridge IGBT
Turn-off Switching Waveforms & definition of t
f
Turn-on Switching Waveforms & definition of t
r
V
C
(100%) = 700 V V
C
(100%) = 700 V
I
C
(100%) = 56 A I
C
(100%) = 56 A
t
f
= 0,07 µs t
r
= 0,02 µs
Switching Definitions Half Bridge IGBT
General conditions
=
=
=
I
C 1%
V
CE 90%
V
GE 90%
-25
0
25
50
75
100
125
-0,2 0 0,2 0,4 0,6 0,8
time (us)
%t
doff
t
Eoff
V
CE
I
C
V
GE
I
C 10%
V
GE 10%
t
don
V
CE 3%
-50
0
50
100
150
200
250
2,9 3 3,1 3,2 3,3
time(us)
%I
C
V
CE
t
Eon
V
GE
fitted
I
C10%
I
C 90%
I
C 60%
I
C 40%
-25
0
25
50
75
100
125
0 0,1 0,2 0,3 0,4
time (us)
%V
CE
I
C
t
f
I
C 10%
I
C 90%
-50
0
50
100
150
200
250
3 3,05 3,1 3,15 3,2
time(us)
%
t
r
V
CE
I
C
copyright Vincotech 23 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 5 Half Bridge IGBT Figure 6 Half Bridge IGBT
Turn-off Switching Waveforms & definition of t
Eoff
Turn-on Switching Waveforms & definition of t
Eon
P
off
(100%) = 39,44 kW P
on
(100%) = 39,44 kW
E
off
(100%) = 2,24 mJ E
on
(100%) = 0,96 mJ
t
Eoff
= 0,60 µs t
Eon
= 0,21 µs
Figure 7 Half Bridge IGBT Figure 8 Half Bridge FWD
Gate voltage vs Gate charge (measured) Turn-off Switching Waveforms & definition of t
rr
V
GEoff
= -15 V V
d
(100%) = 700 V
V
GEon
= 15 V I
d
(100%) = 56 A
V
C
(100%) = 700 V I
RRM
(100%) = -83 A
I
C
(100%) = 56 A t
rr
= 0,07 µs
Q
g
= 596,49 nC
Switching Definitions Half Bridge IGBT
I
C 1%
V
GE 90%
-25
0
25
50
75
100
125
-0,2 0 0,2 0,4 0,6 0,8
time (us)
%
P
off
E
off
t
Eoff
V
CE 3%
V
GE 10%
-25
0
25
50
75
100
125
2,9 3 3,1 3,2 3,3
time(us)
%
P
on
E
on
t
Eon
-20
-15
-10
-5
0
5
10
15
20
-100 0 100 200 300 400 500 600
Qg (nC)
V
GE
(V)
I
RRM 10%
I
RRM 90%
I
RRM 100%
t
rr
-150
-100
-50
0
50
100
150
3 3,05 3,1 3,15 3,2 3,25
time(us)
%
I
d
V
d
fitted
copyright Vincotech 24 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Figure 9 Half Bridge IGBT Figure 10 Half Bridge IGBT
Turn-on Switching Waveforms & definition of t
Qrr
Turn-on Switching Waveforms & definition of t
Erec
(t
Qrr
= integrating time for Q
rr
) (t
Erec
= integrating time for E
rec
)
I
d
(100%) = 56 A P
rec
(100%) = 39,44 kW
Q
rr
(100%) = 2,74 µC E
rec
(100%) = 0,53 mJ
t
Qrr
= 0,16 µs t
Erec
= 0,16 µs
Figure 11
BUCK stage switching measurement circuit
Measurement circuits
Switching Definitions Half Bridge IGBT
t
Qrr
-150
-100
-50
0
50
100
150
3,05 3,1 3,15 3,2 3,25 3,3
time(us)
%
I
d
Q
rr
-25
0
25
50
75
100
125
3,05 3,1 3,15 3,2 3,25 3,3 3,35
time(us)
%
P
rec
E
rec
t
Erec
copyright Vincotech 25 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Version Ordering Code in DataMatrix as in packaging barcode as
without thermal paste 12mm housing 10-FZ12NMA080SH01-M260F M260F M260F
without thermal paste 12mm housing 10-PZ12NMA080SH01-M260FY M260FY M260FY
Outline
Pinout
Ordering Code & Marking
Ordering Code and Marking - Outline - Pinout
copyright Vincotech 26 13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
DISCLAIMER
LIFE SUPPORT POLICY
As used herein:
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
copyright Vincotech 27 13 May. 2015 / Revision 10