MRF234 (siuicon) | The RF Line NPN SILICON RF POWER TRANSISTORS ..- designed for 12.5 Volt, mid-band large-signal amplifier appli- cations in industrial and commercial FM equipment operating in the 40 to 100 MHz range. @ Specified 12.5 Volt, 90 MHz Characteristics Output Power = 25 Watts Minimum Gain = 9.5 dB Efficiency = 55% 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR. @ Characterized with Series Equivalent Large-Signal impedance Parameters @ Characterized with Parallel Equivalent Large-Signal Impedance Parameters 25 W 90 MHz RF POWER TRANSISTOR NPN SILICON MAXIMUM RATINGS Rating Symbol Value Unit Collactor-Emitter Voltage VcEO 18 Vde Collector-Base Voltage VcBo 36 Vde Emitter-Base Voitage VEBO 40 Vde Collector Current Continuous le 4.0 Adc Total Device Dissipation @ Tg = 25C (1) PD 70 Watts Derate above 25C 400 mw/C Storage Temperature Range Tstg -65 to +200 c Stud Torque (2) - 6.5 In. Lb. THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case Resc 2.5 cw (1) These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as Class C RF Amplifiers. (2) For repeated assembly use 5 In. Lb. STYLE) PIN 1. EMITTER 2. BASE 3. EMITTER 4, COLLECTOR NOTE CASE 1454.01 USE 8-32NC2A STUD CASE 1454-01 1303MR F234 (continued) ELECTRICAL CHARACTERISTICS (To = 25C unless otherwise noted.) [ Characteristic I Symbol Min | Typ | Max { Unit ] OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage BVcEO 18 - - Vde (I = 200 mAdc, Ig = 0) Collector-Emitter Breakdown Voltage BVcES 36 ~ - Vde (Ic = 200 mAdc, Vee = 0) Emitter-Base Breakdown Voltage BVEBO 4.0 - - Vde {lg = 5.0 mAde, I = 0} Collector Cutoff Current IcBo - = 1.0 mAdc (Veg = 15 Vdc, Ie = 0) ON CHARACTERISTICS DC Current Gain hee 5.0 - = ~ (Ig = 1.0 Adc, Voge = 5.0 Vide} OYNAMIC CHARACTERISTICS Output Capacitance Cob - 100 120 pF (Vop = 12.5 Vdc, be = 0, f = 1.0 MHz) FUNCTIONAL TESTS (Figure 1) Common-Emitter Amplifier Power Gain Gpe 9.5 - - dB (Voc = 12.5 Vdc, Pout = 25 W, f = 90 MHz) Collector Efficiency n 55 - = % (Vee = 12.5 Vde, Pours = 25 W, f = 90 MHz) Load Mismatch (Voc = 12.5 Vde, Poy: = 25 W, f = 90 MHz, Te <25C VSWR > 30:1 Through Al! Phase Angles in a 3 Second Interval! After Which Devices Will Meet Gpe Test Limits. FIGURE 1 90 MHz TEST CIRCUIT SCHEMATIC RF ci Input 12.5 Vde RF Output c1,C4 5.0-80 pF, ARCO 462 c2,c3 25-280 pF, ARCO 464 cs 1000 pF UNELCO c 0.047 uF, ERIE disc ceramic oc? 10 uF, 15 Vde TANTALUM ut 1 Turn, #16 AWG, 3/8" 1.D., 1/8 Long L2 0.22 #H, 9230-04 MILLER Molded Choke La L4 Ls Rl R2 Input/Output Connector Type BNC 22 wH, 9230-52 MILLER Molded Choke 2 Turns, #14 AWG, 3/8" 1.0., 1/4" Long 10 Turns, #18 AWG, 1/4 1.0., wound on R2 15 Ohrns, 1/2 W, 10% 47 Ohm, 1 W Carbon 1304MRF 234 (continued) FIGURE 2 OUTPUT POWER versus INPUT POWER 40 Voc = 12.8V 30 20 Poye. OUTPUT POWER (WATTS) 8 1.0 20 3.0 40 Pin, INPUT POWER (WATTS) FIGURE 4 OUTPUT POWER versus SUPPLY VOLTAGE 40 Pin= 3.0 W f= 90 MHz 30 20 Pout. OUTPUT POWER (WATTS) 8.0 9.0 10 "W 12 3 14 15 16 Vcc, SUPPLY VOLTAGE (VOLTS) 1305 Pout, OUTPUT POWER (WATTS) 40 FIGURE 3 OUTPUT POWER versus FREQUENCY Vos 125V 50 60 70 80 90 f, FREQUENCY (MHz) FIGURE 5 SERIES EQUIVALENT IMPEDANCE Vde 100MR F234 (continued) FIGURE 6 PARALLEL EQUIVALENT INPUT RESISTANCE versus FREQUENCY Vec= 12.5 Vde Pout = 25 W Rin, PARALLEL EQUIVALENT > a INPUT RESISTANCE (OHMS) n o 40 $0 60 70 80 90 6100 f, FREQUENCY (MHz) FIGURE 8 PARALLEL EQUIVALENT OUTPUT RESISTANCE versus FREQUENCY 10 Vec = 12.5 Vde Pout = 25W e &@ tz 29 Sw 560 at a5 a ee = 4.0 z5 38 * 2 20 40 50 60 70 80 90 6100 f, FREQUENCY (MHz) FIGURE 7 -- PARALLEL EQUIVALENT INPUT CAPACITANCE versus FREQUENCY 2000 Voc = 12.5 Vde Poyt = 25W 1600 Eo oo 32 Sg 1200 az ce = 35 ae ak z> aw e= 400 & 40 50 60 70 80 90 100 f, FREQUENCY (MHz) FIGURE 9 -- PARALLEL EQUIVALENT OUTPUT CAPACITANCE versus FREQUENCY 1000 Vec= 12.5 Vde Pout = 25W e & = B00 tw 28 2 Ss = 600 Z 2 2 22 400 Zz ot s> oo Ss nN S oS 40 50 60 70 80 90-100 f, FREQUENCY (MHz) 1306