HEXFET® Power MOSFET
Dual PQFN 5X6 mm
Absolute Maximum Ratings
Parameter
Q1 Max.
Q2 Max.
Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 13 28
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 10 23 A
IDM
Pulsed Drain Current
c
100 230
PD @TA = 25°C Power Dissipation 2.4 3.4 W
PD @TA = 70°C Power Dissipation 1.5 2.2
Linear Derating Factor
g
0.019 0.027 W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Thermal Resistance
Parameter Q1 Max. Q2 Max. Units
RθJC
Junction-to-Case
f
7.7 2.5 °C/W
RθJA
Junction-to-Ambient
g
53 37
± 20
30
-55 to + 150
Applications
Control and synchronous MOSFET for buck converters
Features and Benefits
Features Benefits
Q1 Q2
VDS 30 30 V
RDS(on) max
(@V
= 10V) 8.6 3.0 m
:
Qg (typical) 8.3 34 nC
ID
(@T
A
= 25°C) 13 28 A
Increased power density
(50% vs two PQFN 5x6)
Low charge control MOSFET (8.3 nC typical) Lower switching losses
Low R
DSon
synchronous MOSFET (< 3.0 mΩ)results in
Lower conduction losses
100% Rg tested
Increased reliability
Low Profile ( 0.9 mm) Increased power density
Compatible with Existing Surface Mount Techniques Easier manufacturing
RoHS Compliant Containing no Lead, no Bromide and no Halogen Environmentally Friendlier
MSL2, Consumer Qualification Increased reliability
Control and synchronous FET in one package
*
1&
' 6
*
  






6'
IRFH7911PbF
Form Quantity
IRFH7911TRPbF PQFN 5mm x 6mm Tape and Reel 4000
IRFH7911TR2PbF PQFN 5mm x 6mm Tape and Reel 400 EOL notice # 259
Orderable part number Package Type Standard Pack Note
1 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
2 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage Q1&Q2 30 ––– ––– V
ΔΒ
V
DSS
/
Δ
T
J
Breakdown Voltage Temp. Coefficient Q1 ––– 0.021 –– V/°C
Q2 ––– 0.022 ––
Q1 ––– 7.2 8.6
R
DS(on)
Static Drain-to-Source On-Resistance –– 11.1 14.5
m
Ω
Q2 ––– 2.4 3.0
––– 3.4 4.0
V
GS(th)
Gate Threshold Voltage Q1&Q2 1.35 –– 2.35 V
Δ
V
GS(th)
/
Δ
T
J
Gate Threshold Voltage Coefficient Q1 ––– -6.8 –– mV/°C
Q2 ––– -6.4 ––
I
DSS
Drain-to-Source Leakage Current Q1&Q2 ––– –– 1.0 μA
Q1&Q2 –– ––– 150
I
GSS
Gate-to-Source Forward Leakage Q1&Q2 ––– ––– 100 nA
Gate-to-Source Reverse Leakage Q1&Q2 ––– ––– -100
gfs Forward Transconductance Q1 17 –– ––– S
Q2 106 ––– ––
Q
g
Total Gate Charge Q1 –– 8.3 12
Q2 ––– 34 51
Q
gs1
Pre-Vth Gate-to-Source Charge Q1 ––– 2.0 ––– Q1
Q2 ––– 7.9 ––– V
DS
= 15V
Q
gs2
Post-Vth Gate-to-Source Charge Q1 –– 1.0 –– nC V
GS
= 4.5V, I
D
= 10A
Q2 ––– 3.6 –––
Q
gd
Gate-to-Drain Charge Q1 ––– 3.2 ––– Q2
Q2 ––– 11 ––– V
DS
= 15V
Q
godr
Gate Charge Overdrive Q1 ––– 2.1 ––– V
GS
= 4.5V, I
D
= 21A
Q2 ––– 12 –––
Q
sw
Switch Charge (Q
gs2
+ Q
gd
) Q1 ––– 4.2 –––
Q2 ––– 15 –––
Q
oss
Output Charge Q1 ––– 5.0 ––– nC
Q2 ––– 19 –––
R
G
Gate Resistance Q1 ––– 1.8 –––
Ω
Q2 ––– 0.7 –––
t
d(on)
Turn-On Delay Time Q1 –– 12 ––
Q2 ––– 22 –––
t
r
Rise Time Q1 –– 15 –– I
D
= 10A
Q2 ––– 35 ––– ns
t
d(off)
Turn-Off Delay Time Q1 ––– 12 –––
Q2 ––– 28 –––
t
f
Fall Time Q1 –– 5.9 ––– I
D
= 21A
Q2 ––– 14 –––
C
iss
Input Capacitance Q1 ––– 1060 –––
Q2 ––– 4450 ––
C
oss
Output Capacitance Q1 ––– 230 ––– pF
Q2 ––– 850 ––
C
rss
Reverse Transfer Capacitance Q1 ––– 110 –––
Q2 ––– 440 ––
Avalanche Characteristics
Parameter
Q1 Max.
Q2 Max.
Units
E
AS
Single Pulse Avalanche Energy
d
12 32 mJ
I
AR
Avalanche Current
c
10 21 A
Diode Characteristics
Parameter
Min.
Typ.
Max.
Units
I
S
Continuous Source Current Q1 ––– ––– 3.0 A
(Body Diode) Q2 ––– ––– 3.0
I
SM
Pulsed Source Current Q1 –– ––– 100 A
(Body Diode)
c
Q2 ––– ––– 230
V
SD
Diode Forward Voltage Q1 ––– ––– 1.0 V
Q2 ––– –– 1.0
t
rr
Reverse Recovery Time Q1 ––– 13 20 ns
Q2 ––– 20 29
Q
rr
Reverse Recovery Charge Q1 ––– 13 20 nC
Q2 ––– 24 36
V
GS
= 4.5V, I
D
= 10A
e
V
GS
= 4.5V, I
D
= 21A
e
VDS = 15V, ID = 21A
VDD = 15V, VGS = 4.5V
VGS = 10V, ID = 26A
e
Q1: VDS = VGS, ID = 25μA
V
DS
= 15V, I
D
= 10A
VDS = 24V, VGS = 0V, TJ = 125°C
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 12A
e
MOSFET symbol
Q2: V
DS
= V
GS
, I
D
= 100μA
V
DS
= 16V, V
GS
= 0V
Q1
V
GS
= 20V
VGS = -20V
V
DS
= 24V, V
GS
= 0V
Conditions
Q2
–––
Q1 TJ = 25°C, IF = 10A,
V
DD
= 15V, di/dt = 280A/μs
e
TJ = 25°C, IS = 10A, VGS = 0V
e
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 21A, V
GS
= 0V
e
Q2 TJ = 25°C, IF = 21A,
V
DD
= 15V, di/dt = 300A/μs
e
VDD = 15V, VGS = 4.5V
RG=1.8
Ω
–––
V
DS
= 15V
RG=1.8
Ω
VGS = 0V
ƒ = 1.0MHz
Typ.
3 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics
Fig 5. Typical Transfer Characteristics Fig 6. Typical Transfer Characteristics
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
60μs PULSE WIDTH
Tj = 150°C
2.3V
2 3 4 5 6
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current
(A)
TJ = 25°C
TJ = 150°C
VDS = 15V
60μs PULSE WIDTH
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
60μs PULSE WIDTH
Tj = 25°C
2.3V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
60μs PULSE WIDTH
Tj = 150°C
2.3V
1234
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current
(A)
TJ = 25°C
TJ = 150°C
VDS = 15V
60μs PULSE WIDTH
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
60μs PULSE WIDTH
Tj = 25°C
2.3V
4 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage Fig 10. Typical Gate Charge vs. Gate-to-Source
Voltage
Fig 11. Maximum Safe Operating Area Fig 12. Maximum Safe Operating Area
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 5 10 15 20 25
Qg, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 10A
0.01 0.1 1 10 100
VDS , Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20406080100
Qg, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 21A
0.01 0.1 1 10 100
VDS , Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
5 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Fig 17. Typical On-Resistance vs.Gate Voltage
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 13. Normalized On-Resistance vs. Temperature Fig 14. Normalized On-Resistance vs. Temperature
Fig 15. Typical Source-Drain Diode Forward Voltage Fig 16. Typical Source-Drain Diode Forward Voltage
Fig 18. Typical On-Resistance vs.Gate Voltage
0.4 0.6 0.8 1.0 1.2 1.4 1.6
VSD, Source-to-Drain Voltage (V)
0.10
1.00
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
2 4 6 8 10 12 14 16
VGS, Gate-to-Source Voltage (V)
5
10
15
20
25
RDS(on), Drain-to -Source On Resistance (
mΩ)
TJ = 25°C
TJ = 125°C
ID = 13A
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
VSD, Source-to-Drain Voltage (V)
0.10
1.00
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
2 4 6 8 10 12 14 16
VGS, Gate-to-Source Voltage (V)
2
4
6
8
10
12
RDS(on), Drain-to -Source On Resistance (
mΩ)
TJ = 25°C
TJ = 125°C
ID = 26A
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 26A
VGS = 10V
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 12A
VGS = 10V
6 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 19. Maximum Drain Current vs. Ambient Temp. Fig 20. Maximum Drain Current vs. Ambient Temp.
Fig 21. Threshold Voltage vs. Temperature Fig 22. Threshold Voltage vs. Temperature
Fig 23. Maximum Avalanche Energy vs. Drain Current Fig 24. Maximum Avalanche Energy vs. Drain Current
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
VGS(th) Gate threshold Voltage (V)
ID = 25μA
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
0
10
20
30
40
50
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 2.3A
3.1A
BOTTOM 10A
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
VGS(th) Gate threshold Voltage (V)
ID = 250μA
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
0
50
100
150
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 5.4A
6.6A
BOTTOM 21A
25 50 75 100 125 150
TA , Ambient Temperature (°C)
0
2
4
6
8
10
12
14
ID , Drain Current (A)
25 50 75 100 125 150
TA , Ambient Temperature (°C)
0
5
10
15
20
25
30
ID , Drain Current (A)
7 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1)
Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.01
0.1
1
10
100
Thermal Response ( Z
thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.01
0.1
1
10
100
Thermal Response ( Z
thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
8 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Fig 30a. Switching Time Test Circuit Fig 30b. Switching Time Waveforms
Fig 29b. Unclamped Inductive Waveforms
Fig 29a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 31a. Gate Charge Test Circuit Fig 31b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3μF
50KΩ
.2μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
PQFN 5x6 Outline "C" Part Marking
PQFN 5x6 Outline "C" Package Details
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
XXXX
XYWWX
XXXXX
INTERNATIONAL
RECTIFIER LOGO
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
DATE CODE
PIN 1
IDENTIFIER LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
For footprint and stencil design recommendations, please refer to application note AN-1136 at
http://www.irf.com/technical-info/appnotes/an-1136.pdf
10 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
PQFN 5x6 Outline "C" Tape and Reel
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
11 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 9, 2014
IRFH7911PbF
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C,
Q1: L = 0.23mH, RG = 25Ω, IAS = 10A;
Q2: L = 0.15mH, RG = 25Ω, IAS = 21A.
Pulse width 400μs; duty cycle 2%.
When mounted on 1 inch square copper board.
Rθ is measured at TJ approximately 90°C.
† Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
†† Higher qualification ratings may be available should the user have such requirements. Please contact
your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
†††† Higher MSL ratings may be available for the specific package types listed here. Please contact your
International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
MS L2 ††††
(per J E D E C
J-S TD-020D
††
)
R oHS compliant Yes
PQFN 5mm x 6mm
Qualification information
M oistu re Sensit ivity L evel
Qualification level
Cons umer
††
(per J E DE C JE S D47 F
††
guidelines )
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
Revision History
Date Comment
1/8/2010 Pin number on front page drawing has been corrected
7/15/2010 MSL2 Consumer Qualification on page1 has been corrected
10/25/2011 Link from AN-1152 to AN-1136 on page 9 has been corrected
Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #259)
Updated data sheet based on corporate template.
5/9/2014