© Semiconductor Components Industries, LLC, 2006
February, 2006 − Rev. 7 1Publication Order Number:
MJE13009/D
MJE13009
Preferred Device
SWITCHMODEt Series
NPN Silicon Power
Transistors
The MJE13009 is designed for high−voltage, high−speed power
switching inductive circuits where fall time is critical. They are
particularly suited for 115 and 220 V SWITCHMODE applications
such as Switching Regulators, Inverters, Motor Controls,
Solenoid/Relay drivers and Deflection circuits.
Features
VCEO(sus) 400 V and 300 V
Reverse Bias SOA with Inductive Loads @ TC = 100_C
Inductive Switching Matrix 3 to 12 Amp, 25 and 100_C tc @ 8 A,
100_C is 120 ns (Typ)
700 V Blocking Capability
SOA and Switching Applications Information
Pb−Free Package is Available*
MAXIMUM RATINGS
Rating Symbol Value Unit
Collector−Emitter Voltage VCEO(sus) 400 Vdc
Collector−Emitter Voltage VCEV 700 Vdc
Emitter−Base Voltage VEBO 9 Vdc
Collector Current − Continuous
− Peak (Note 1) IC
ICM 12
24 Adc
Base Current − Continuous
− Peak (Note 1) IB
IBM 6
12 Adc
Emitter Current Continuous
− Peak (Note 1) IE
IEM 18
36 Adc
Total Device Dissipation @ TC = 25_C
Derate above 25°CPD2
16 W
W/_C
Total Device Dissipation @ TC = 25_C
Derate above 25°CPD100
800 W
W/_C
Operating and Storage Junction
Temperature Range TJ, Tstg −65 to
+150
_C
THERMAL CHARACTERISTICS
Characteristics Symbol Max Unit
Thermal Resistance, Junction−to−Ambient RqJA 62.5 _C/W
Thermal Resistance, Junction−to−Case RqJC 1.25 _C/W
Maximum Lead Temperature for Soldering
Purposes 1/8 from Case for 5 Seconds TL275 _C
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
12 AMPERE
NPN SILICON
POWER TRANSISTOR
400 VOLTS − 100 WATTS
TO−220AB
CASE 221A−09
STYLE 11
http://onsemi.com
MARKING DIAGRAM
23
MJE13009G
AY WW
A = Assembly Location
Y = Year
WW = Work Week
G = Pb−Free Package
Device Package Shipping
ORDERING INFORMATION
MJE13009 TO−220 50 Units / Rail
MJE13009G TO−220
(Pb−Free) 50 Units / Rail
Preferred devices are recommended choices for future use
and best overall value.
MJE13009
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS (Note 2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector−Emitter Sustaining Voltage
(IC = 10 mA, IB = 0)
ÎÎÎÎ
ÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ICEV
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1
5
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 9 Vdc, IC = 0)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
IEBO
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1
ÎÎÎ
Î
Î
Î
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with base forward biased
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
See Figure 1
See Figure 2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (Note 2)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 5 Adc, VCE = 5 Vdc)
(IC = 8 Adc, VCE = 5 Vdc)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
hFE
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
8
6
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
40
30
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector−Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 12 Adc, IB = 3 Adc)
(IC = 8 Adc, IB = 1.6 Adc, TC = 100_C)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
VCE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1
1.5
3
2
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base−Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 8 Adc, IB = 1.6 Adc, TC = 100_C)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
VBE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1.2
1.6
1.5
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Current−Gain − Bandwidth Product
(IC = 500 mAdc, VCE = 10 Vdc, f = 1 MHz)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
fT
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
4
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
MHz
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Cob
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
180
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 125 Vdc, IC = 8 A,
IB1 = IB2 = 1.6 A, tp = 25 ms,
Duty Cycle v 1%)
ÎÎÎÎ
ÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.06
ÎÎÎÎ
ÎÎÎÎ
0.1
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Rise Time
ÎÎÎÎ
ÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.45
ÎÎÎÎ
ÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎ
ÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1.3
ÎÎÎÎ
ÎÎÎÎ
3
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎ
ÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.2
ÎÎÎÎ
ÎÎÎÎ
0.7
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1, Figure 13)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Voltage Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 8 A, Vclamp = 300 Vdc,
IB1 = 1.6 A, VBE(off) = 5 Vdc, TC = 100_C)
ÎÎÎÎ
ÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.92
ÎÎÎÎ
ÎÎÎÎ
2.3
ÎÎÎ
ÎÎÎ
ms
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎ
ÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.12
ÎÎÎÎ
ÎÎÎÎ
0.7
ÎÎÎ
ÎÎÎ
ms
2. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%.
MJE13009
http://onsemi.com
3
IC, COLLECTOR CURRENT (AMP)
10m
σ
100m
σ
1m
s
dc
100
7
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
0.02
10
20
10
50
0.5
0.1
0.05
30 50 70 100
Figure 1. Forward Bias Safe Operating Area Figure 2. Reverse Bias Switching Safe
Operating Area
0.2
0.01
300 500520
14
0
800
2
100 300
TC 100°C
IB1 = 2.5 A
500 700
VBE(off) = 9 V
0
6
VCEV, COLLECTOR−EMITTER CLAMP VOLTAGE (VOLTS)
10
200 400 600
5 V
2
1
5
TC = 25°C
12
8
4
3 V
1.5
V
IC, COLLECTOR (AMP)
200
THERMAL LIMIT
BONDING WIRE LIMIT
SECOND BREAKDOWN LIM-
IT
CURVES APPLY BELOW RATED
VCEO
The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.
Figure 3. Forward Bias Power Derating
TC, CASE TEMPERATURE (°C)
040 120 160
0.6
POWER DERATING FACTOR
SECOND BREAK-
DOWN DERATING
1
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
20
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC − V CE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 1 is based on TC = 25_C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25_C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 1 may be found at
any case temperature by using the appropriate curve on
Figure 3.
TJ(pk) may be calculated from the data in Figure 4. At high
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations
imposed by second breakdown. Use of reverse biased safe
operating area data (Figure 2) is discussed in the applications
information section.
t, TIME (ms)
1
0.01
0.01
0.7
0.2
0.1
0.05
0.02
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
0.05 1 2 5 10 20 50 100 200 500
ZqJC(t) = r(t) RqJC
RqJC = 1.25°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) ZqJC(t)
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.02
SINGLE PULSE
0.1
0.1 0.50.2 1.0 k
0.5
0.3
0.07
0.03
0.02
Figure 4. Typical Thermal Response [ZqJC(t)]
0.01
0.05
0.2
MJE13009
http://onsemi.com
4
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMP)IC, COLLECTOR CURRENT (AMP)
1.2
1.4
0.8
0.4
Figure 5. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
0.5 1 5 7
10
Figure 6. Collector Saturation Region
0.05
IB, BASE CURRENT (AMP)
0.30.07
1.2
0.4
0
50
hFE, DC CURRENT GAIN
0.1 0.2 0.5 5
Figure 7. Base−Emitter Saturation Voltage Figure 8. Collector−Emitter Saturation
Voltage
Figure 9. Collector Cutoff Region
2
0.8
0.1
VBE, BASE−EMITTER VOLTAGE (VOLTS)
0
TJ = 25°C
0.7 3
Figure 10. Capacitance
4K
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
Cib
Cob
0.1
, COLLECTOR CURRENT (A)μIC
−0.4 −0.2
100
80
500
1.6
0.6
IC = 1 A
5
0.2 2
0.3 1 70.7 100.2 0.5 325
30
20
7
600
400
200
40
60
200100510.5
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
+0.6
3 A
0.7 1 2
1
0.5
0.7
0.4
0
0.2
0.6
0.3
VCE = 5 V
TJ = 150°C
25°C
55°C
20
0.3
+0.4+0.2
1
10
100
1K
10K
800
1K
2K
10 50
REVERSE FORWARD
VCE = 250 V
10 20
5 A 8 A 12 A
3
TJ = −55°C
IC/IB = 3
25°C150°C
0.3 1 70.7 100.2 0.5 325 20
0.1
IC/IB = 3
TJ = 150°C
− 55°C
25°C
TJ = 150°C
125°C
100°C
75°C
50°C
25°C
0.2 2 20
TJ = 25°C
MJE13009
http://onsemi.com
5
t1
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING RESISTIVE
SWITCHING
OUTPUT WAVEFORMS
TEST CIRCUITS
CIRCUIT
VALUES
TEST WAVEFORMS
NOTE
PW and VCC Adjusted for Desired IC
RB Adjusted for Desired IB1
5 V
PW
DUTY CYCLE 10%
tr, tf 10 ns 68
1
k
0.001 mF
0.02 mF
1N4933
270
+5 V
1 k
2N2905
47
1/2 W
100
−VBE(off)
MJE200
D.U.T.
IB
RB
1N4933
1N4933 33
33
2N2222
1
k
MJE210
VCC
+5 V
L
IC
MR826*
Vclamp
*SELECTED FOR 1 kV
VCE
5.1 k
51
+125 V
RC
SCOPE
−4.0
V
D1
RB
TUT
t1 ADJUSTED TO
OBTAIN IC
t1 Lcoil (ICM)
VCC
t2 Lcoil (ICM)
Vclamp
+10 V 25 ms
0
−8 V
Coil Data:
Ferroxcube Core #6656
Full Bobbin (~16 Turns) #16
GAP for 200 mH/20 A
Lcoil = 200 mHVCC = 20 V
Vclamp = 300 Vdc
VCC = 125 V
RC = 15 W
D1 = 1N5820 or Equiv.
RB = W
Test Equipment
Scope−Tektronics
475 or Equivalent
tr, tf < 10 ns
Duty Cycle = 1.0%
RB and RC adjusted
for desired IB and IC
IC
VCE
TIME
ICM
VCEM
t2
t
tf
tf CLAMPED
tf UNCLAMPED t2
Vclamp
Table 1. Test Conditions for Dynamic Performance
MJE13009
http://onsemi.com
6
APPLICATIONS INFORMATION FOR SWITCHMODE SPECIFICATIONS
INTRODUCTION
The primary considerations when selecting a power
transistor for SWITCHMODE applications are voltage and
current ratings, switching speed, and energy handling
capability. In this section, these specifications will be
discussed and related to the circuit examples illustrated in
Table 2. (Note 3)
VOLTAGE REQUIREMENTS
Both blocking voltage and sustaining voltage are
important in SWITCHMODE applications.
Circuits B and C in Table 2 illustrate applications that
require high blocking voltage capability. In both circuits the
switching transistor is subjected to voltages substantially
higher than VCC after the device is completely off (see load
line diagrams at IC = Ileakage 0 in Table 2). The blocking
capability at this point depends on the base to emitter
conditions and the device junction temperature. Since the
highest device capability occurs when the base to emitter
junction is reverse biased (VCEV), this is the recommended
and specified use condition. Maximum ICEV at rated VCEV
is specified at a relatively low reverse bias (1.5 V) both at
25°C and 100_C. Increasing the reverse bias will give some
improvement in device blocking capability.
The sustaining or active region voltage requirements in
switching applications occur during turn−on and turn−of f. If
the load contains a significant capacitive component, high
current and voltage can exist simultaneously during turn−on
and the pulsed forward bias SOA curves (Figure 1) are the
proper design limits.
For inductive loads, high voltage and current must be
sustained simultaneously during turn−off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as a Reverse Bias Safe Operating Area
(Figure 2) which represents voltage−current conditions that
can be sustained during reverse biased turn−off. This rating
is verified under clamped conditions so that the device is
never subjected to an avalanche mode.
In the four application examples (Table 2) load lines are
shown in relation to the pulsed forward and reverse biased
SOA curves.
In circuits A and D, inductive reactance is clamped by the
diodes shown. In circuits B and C the voltage is clamped by
the output rectifiers, however, the voltage induced in the
primary leakage inductance is not clamped by these diodes
and could be large enough to destroy the device. A snubber
network or an additional clamp may be required to keep the
turn−off load line within the Reverse Bias SOA curve.
Load lines that fall within the pulsed forward biased SOA
curve during turn−on and within the reverse bias SOA curve
during turn−off are considered safe, with the following
assumptions:
1. The device thermal limitations are not exceeded.
2. The turn−on time does not exceed 10 ms (see standard
pulsed forward SOA curves in Figure 1).
3. The base drive conditions are within the specified
limits shown on the Reverse Bias SOA curve
(Figure 2 ) .
CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time, high energy
handling capability and low saturation voltage. On this data
sheet, these parameters have been specified at 8 amperes
which re p r e s ents typical design conditions for these devices.
The current drive requirements are usually dictated by the
VCE(sat) specification because the maximum saturation
voltage is specified at a forced gain condition which must be
duplicated or exceeded in the application to control the
saturation voltage.
SWITCHING REQUIREMENTS
In many switching applications, a major portion of the
transistor power dissipation occurs during the fall time (tfi).
For this reason considerable effort is usually devoted to
reducing the fall time. The recommended way to accomplish
this is to reverse bias the base−emitter junction during
turn−off. The reverse biased switching characteristics for
inductive loads are discussed in Figure 11 and Table 3 and
resistive loads in Figures 13 and 14. Usually the inductive
load component will be the dominant factor in
SWITCHMODE applications and the inductive switching
data will more closely represent the device performance in
actual application. The inductive switching characteristics
are derived from the same circuit used to specify the reverse
biased SOA curves, (See Table 1) providing correlation
between test procedures and actual use conditions.
3. For detailed information on specific switching applications, see
ON Semiconductor Application Notes AN−719, AN−767.
MJE13009
http://onsemi.com
7
Figure 11. Turn−On Time
IC, COLLECTOR CURRENT (AMP)
tr
td @ VBE(off) = 5 V
100
50
1K
700
500
IC, COLLECTOR CURRENT (AMP)
0.7 3120.2
VCC = 125 V
IC/IB = 5
TJ = 25°C
0.5
200
300
t, TIME (ns)
0.3
Figure 12. Turn−Off Time
200
100
2K
1K
700 VCC = 125 V
IC/IB = 5
TJ = 25°C
300
500
t, TIME (ns)
70
75 10 20 0.7 1 20.2 0.50.3 751020
ts
tf
Figure 13. Inductive Switching
Measurements
TIME
Figure 14. Typical Inductive Switching Waveforms
(at 300 V and 12 A with IB1 = 2.4 A and VBE(off) = 5 V)
TIME 20 ns/DIV
IC
VCE
IC
VCE
CURRENT 2 A/DIV
VOLTAGE 50 V/DIV
IC
Vclamp
IB90% IB1
10%
VCEM 10%
ICM 2%
IC
Vclamp
90% VCEM 90% IC
tsv trv tfi tti
tc
RESISTIVE SWITCHING PERFORMANCE
MJE13009
http://onsemi.com
8
CIRCUIT LOAD LINE DIAGRAMS TIME DIAGRAMS
SERIES SWITCHING
REGULATOR
RINGING CHOKE
INVERTER
PUSH−PULL
INVERTER/CONVERTER
SOLENOID DRIVER
VCC VO
VCC VO
N
VCC
VO
VCC
SOLENOID
Collector CurrentCollector CurrentCollector CurrentCollector Current
24 A
12 A
TC = 100°C
TURN−
ON TURN−
OFF
VCC 400 V 700 V
COLLECTOR VOLTAGE
350 V
TURN−ON (FORWARD BIAS) SOA
ton 10 ms
DUTY CYCLE 10%
PD = 4000 W
TURN−OFF (REVERSE BIAS)
SOA
1.5 V VBE(off) 9.0 V
DUTY CYCLE 10%
1
2
1
IC
VCE
VCC
TIME
t
t
24 A
TC = 100°C
12 A
TURN−OFF
TURN−ON
VCC 400 V 1
VCC + N(Vo)
350 V
PD = 4000 W 2
TURN−ON (FORWARD BIAS) SOA
TURN−ON ton 10 ms
TURN−ON DUTY CYCLE 10%
TURN−OFF (REVERSE BIAS) SOA
TURN−OFF 1.5 V VBE(off) 9.0 V
TURN−OFF DUTY CYCLE 10%
700 V 1
COLLECTOR VOLTAGE
24 A
12 A
TC = 100°C
TURN−OFF
TURN−ON
VCC 400 V 1700 V 1
2 VCC
350 V
PD = 4000 W 2
TURN−ON (FORWARD BIAS) SOA
TURN−ON ton 10 ms
TURN−ON DUTY CYCLE 10%
TURN−OFF (REVERSE BIAS) SOA
TURN−OFF 1.5 V VBE(off) 9.0 V
TURN−OFF DUTY CYCLE 10%
24 A
12 A
TC = 100°C
TURN−OFF
TURN−ON
VCC 400 V 1700 V 1
COLLECTOR VOLTAGE
COLLECTOR VOLTAGE
TURN−OFF (REVERSE BIAS) SOA
TURN−OFF 1.5 V VBE(off) 9.0 V
TURN−OFF DUTY CYCLE 10%
350 V
PD = 4000 W 2
TURN−ON (FORWARD BIAS) SOA
TURN−ON ton 10 ms
TURN−ON DUTY CYCLE 10%
IC
VCE
VCC
t
t
VCC+
N(Vo)
LEAKAGE
SPIKE
TIME
toff
ton
IC
VCE
ton
toff
t
t
VCC
2 VCC
IC
VCE
ton toff
t
t
VCC
A
B
C
D
Table 2. Applications Examples of Switching Circuits
MJE13009
http://onsemi.com
9
Table 3. Typical Inductive Switching Performance
ÎÎ
IC
AMP
ÎÎ
TC
_C
ÎÎ
tsv
ns
ÎÎ
trv
ns
ÎÎ
tfi
ns
ÎÎ
tti
ns
ÎÎ
tc
ns
3
25
100
770
1000
100
230
150
160
200
200
240
320
ÎÎ
5
ÎÎ
25
100
ÎÎ
630
820
ÎÎ
72
100
ÎÎ
26
55
ÎÎ
10
30
ÎÎ
100
180
ÎÎ
8
ÎÎ
25
100
ÎÎ
720
920
ÎÎ
55
70
ÎÎ
27
50
ÎÎ
2
8
ÎÎ
77
120
12
25
100
640
800
20
32
17
24
2
4
41
54
NOTE: All Data recorded In the Inductive Switching Circuit In Table 1.
SWITCHING TIME NOTES
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However , for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% VCEM
trv = Voltage Rise Time, 1090% VCEM
tfi = Current Fall Time, 9010% ICM
tti = Current Tail, 102% ICM
tc = Crossover Time, 10% VCEM to 10% ICM
An enlarged portion of the turn−off waveforms is shown
in Figure 13 to aid in the visual identity of these terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN222/D:
PSWT = 1/2 VCCIC(tc) f
Typical inductive switching waveforms are shown in
Figure 14. In general, trv + tfi ] tc. However, at lower test
currents this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25_C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100_C.
MJE13009
http://onsemi.com
10
PACKAGE DIMENSIONS
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.570 0.620 14.48 15.75
B0.380 0.405 9.66 10.28
C0.160 0.190 4.07 4.82
D0.025 0.035 0.64 0.88
F0.142 0.147 3.61 3.73
G0.095 0.105 2.42 2.66
H0.110 0.155 2.80 3.93
J0.018 0.025 0.46 0.64
K0.500 0.562 12.70 14.27
L0.045 0.060 1.15 1.52
N0.190 0.210 4.83 5.33
Q0.100 0.120 2.54 3.04
R0.080 0.110 2.04 2.79
S0.045 0.055 1.15 1.39
T0.235 0.255 5.97 6.47
U0.000 0.050 0.00 1.27
V0.045 −−− 1.15 −−−
Z−−− 0.080 −−− 2.04
B
Q
H
Z
L
V
G
N
A
K
F
123
4
D
SEATING
PLANE
−T−
C
S
T
U
R
J
TO−220AB
CASE 221A−09
ISSUE AA
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its of ficers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
MJE13009/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.