XR-T6165
...the analog plus companyTM Codirectional Digital
Data Processor
Rev. 2.02
1990 EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 (510) 668-7000 (510) 668-7010
1
May 1997–3
FEATURES
Low Power CMOS Technology
All Receiver and Transmitter Inputs and Outputs are
TTL Compatible
Transmitter Inhibits Bipolar Violation Insertion for
Transmission of Alarm Conditions
Alarm Output Indicates Loss of Received Bipolar
Violations
Up to 125µs Variance of Data Transfer Timing in
Both Transmit and Receive Paths Allows Operation
in Plesiochronous Networks
Both Receiver and Transmitter Perform Byte
Insertion or Deletion in Response to Local Clock
Slips
APPLICATIONS
CCITT G.703 Compliant 64kbps Codirectional
Interface
Performs the Digital and Analog Functions for a
Complete 64kbps Data Adaption Unit (DAU) When
Used With the XR-T6164
GENERAL DESCRIPTION
The XR-T6165 is a CMOS device which contains the
digital circuitry necessary to interface both directions of a
64kbps data stream to 2.048Mbps transmit and receive
PCM time-slots. The XR-T6165 and the companion
XR-T6164 line interface chip together form a CCITT
G.703 compliant 64kbps codirectional interface.
The XR-T6165 contains separate transmit and receive
sections. The transmitter transforms 8 bit serial data from
a 2.048Mbps time-slot into an encoded 64kbps data
stream. The receiver, which performs the reverse
operation, decodes the 64kbps data, extracts a clock
signal, and then outputs the data to a 2.048Mbps
time-slot. The XR-T6165 provides features which allow
the repetitions and deletions of both received and
transmitted data as clock skews and transients occur.
ORDERING INFORMATION
Part No. Package Operating
Temperature Range
XR-T6165CP 22 Lead 400 Mil PDIP 0°C to +70°C
XR-T6165IP 22 Lead 400 Mil PDIP –40°C to +85°C
XR-T6165CD 24 Lead 300 Mil JEDEC SOIC 0°C to +70°C
XR-T6165ID 24 Lead 300 Mil JEDEC SOIC –40°C to +85°C
XR-T6165
2
Rev. 2.02
21
22
RXCK2MHz
18
ALARMIN
TX256kHz
PCMIN
Byte
Deletion
8 Bit Input Register
D
CLK
15
16
TX2MHz
8
TS1T
9
TS2T
12
TTSEL
8 Bit Latch
8
LOAD
8
8 Bit Output Register QLOAD
CLK
Byte
Insertion
10 T+R
Violation
Insertion Coding
Logic
Octet
Counter
14
Control
Circuitry
13
11 T-R
CLK
CLK
D
D
Q
Q
Figure 1. XR-T6165 Transmit Section Block Diagram
ALARM
Violation
Loss
Alarm
Data
Decoder
CLK
Byte Sync
Detection
CLK
1
S+R
2
S-R
3
BLS
4
RX2MHz
TS1R
8 Bit Reg 0
D
CLK
Q
8 Bit Reg 1
D
CLK
Q
Register
Select
Logic
PCMOUT
REG 0 SEL
REG 1 SEL
T ime Slot
Clock
Recovery
128kHz Recovered CLK
20
RTSEL
19
TS2R
5
BLANK
7
Time
Slot
Mux
Figure 2. XR-T6165 Receiver Section Block Diagram
Time
Slot
Mux
(17)1
(18)1
(14)1
(16)1
(15)1
(20)1
(21)1
(22)1
Note
1
Number in brackets are for SOIC package
Note
1
Number in brackets are for SOIC package
(24)1
(23)1
XR-T6165
3
Rev. 2.02
PIN CONFIGURATION
S+R
ALARM
PCMOUT
RTSEL
TS2R
TS1R
VSS
TX2MHz
PCMIN
S+R
S-R
BLS
RX2MHz
BLANK
VDD
RXCK2MHz
TS1T TX256kHz
TS2T ALARMIN
T+R TTSEL
T-R
22 Lead PDIP (0.400”)
1
2
3
4
5
6
7
8
9
10
22
21
20
19
18
17
16
15
14
13
11 12
24
1
1312
2
3
4
5
6
7
15
14
17
16
8
9
19
18
10
11
23
22
21
20
ALARM
PCMOUT
RTSEL
TS2R
S-R
BLS
RX2MHz TS1R
VSS
TX2MHz
PCMIN
BLANK
VDD
RXCK2MHz
TS1T TX256kHzTS2T ALARMINT+R TTSEL
T-R NCNC
24 Lead SOIC (JEDEC, 0.300”)
PIN DESCRIPTION
ÁÁÁ
ÁÁÁ
DIP
Pin #
ÁÁÁ
ÁÁÁ
SOIC
Pin #
ÁÁÁÁÁ
ÁÁÁÁÁ
Symbol
ÁÁÁÁ
ÁÁÁÁ
Type
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Description
ÁÁÁ
Á
Á
Á
ÁÁÁ
1
ÁÁÁ
Á
Á
Á
ÁÁÁ
1
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
S+R
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Positive AMI Data to Receiver. Positive data from the XR-T6164 receive-side.
Active low.
ÁÁÁ
Á
Á
Á
ÁÁÁ
2
ÁÁÁ
Á
Á
Á
ÁÁÁ
2
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
S-R
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Negative AMI Data to Receiver. Negative data from the XR-T6164 receive-side.
Active low.
ÁÁÁ
ÁÁÁ
3
ÁÁÁ
ÁÁÁ
3
ÁÁÁÁÁ
ÁÁÁÁÁ
BLS
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Byte Locking Supervision. When active, causes blanking of PCMOUT under
received alarm conditions. Active low.
ÁÁÁ
ÁÁÁ
4
ÁÁÁ
ÁÁÁ
4
ÁÁÁÁÁ
ÁÁÁÁÁ
RX2MHz
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Receiver 2.048MHz Clock. Used to clock out PCM data.
ÁÁÁ
Á
Á
Á
ÁÁÁ
5
ÁÁÁ
Á
Á
Á
ÁÁÁ
5
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
BLANK
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
PCMOUT Data Blanking. When active, forces PCMOUT data to all ones (AIS).
Active high.
ÁÁÁ
ÁÁÁ
6
ÁÁÁ
ÁÁÁ
6
ÁÁÁÁÁ
ÁÁÁÁÁ
VDD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
+5V +10% Power Source.
ÁÁÁ
ÁÁÁ
7
ÁÁÁ
ÁÁÁ
7
ÁÁÁÁÁ
ÁÁÁÁÁ
RXCK2MHz
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
2.048MHz Clock. Used by receiver clock recovery circuit.
ÁÁÁ
ÁÁÁ
8
ÁÁÁ
ÁÁÁ
8
ÁÁÁÁÁ
ÁÁÁÁÁ
TS1T
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmitter time-slot 1 Input.
ÁÁÁ
ÁÁÁ
9
ÁÁÁ
ÁÁÁ
9
ÁÁÁÁÁ
ÁÁÁÁÁ
TS2T
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmitter time-slot 2 Input.
ÁÁÁ
Á
Á
Á
ÁÁÁ
10
ÁÁÁ
Á
Á
Á
ÁÁÁ
10
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
T+R
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
O
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmit Positive AMI Data Output. Data to XR-T6164 positive transmitter input.
Active low
ÁÁÁ
Á
Á
Á
ÁÁÁ
11
ÁÁÁ
Á
Á
Á
ÁÁÁ
11
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
T-R
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
O
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmit Negative AMI Data Output. Data to XR-T6164 negative transmitter input.
Active low.
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
12
ÁÁÁÁÁ
ÁÁÁÁÁ
NC
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
No Connect.
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
13
ÁÁÁÁÁ
ÁÁÁÁÁ
NC
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
No Connect.
ÁÁÁ
ÁÁÁ
12
ÁÁÁ
ÁÁÁ
14
ÁÁÁÁÁ
ÁÁÁÁÁ
TTSEL
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmit time-slot Select. When high, TS1T is selected; when low, TS2T is
selected.
ÁÁÁ
Á
Á
Á
ÁÁÁ
13
ÁÁÁ
Á
Á
Á
ÁÁÁ
15
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ALARMIN
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Alarm Input. When active, inhibits insertion of violations used for octet timing in
transmitter output. Active high
ÁÁÁ
ÁÁÁ
14
ÁÁÁ
ÁÁÁ
16
ÁÁÁÁÁ
ÁÁÁÁÁ
TX256kHz
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmitter 256kHz Clock. Used to output 64kbps encoded data.
XR-T6165
4
Rev. 2.02
PIN DESCRIPTION (CONT’D)
ÁÁÁ
ÁÁÁ
DIP
Pin #
ÁÁÁ
ÁÁÁ
SOIC
Pin #
ÁÁÁÁÁ
ÁÁÁÁÁ
Symbol
ÁÁÁÁ
ÁÁÁÁ
Type
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Description
ÁÁÁ
ÁÁÁ
15
ÁÁÁ
ÁÁÁ
17
ÁÁÁÁÁ
ÁÁÁÁÁ
PCMIN
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmit PCM Input. Data read from the system PCM bus.
ÁÁÁ
ÁÁÁ
16
ÁÁÁ
ÁÁÁ
18
ÁÁÁÁÁ
ÁÁÁÁÁ
TX2MHz
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Transmitter 2.048MHz Clock. Clocks PCM data in PCMIN.
ÁÁÁ
ÁÁÁ
17
ÁÁÁ
ÁÁÁ
19
ÁÁÁÁÁ
ÁÁÁÁÁ
VSS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Ground.
ÁÁÁ
ÁÁÁ
18
ÁÁÁ
ÁÁÁ
20
ÁÁÁÁÁ
ÁÁÁÁÁ
TS1R
ÁÁÁÁ
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Receiver time-slot 1 Input.
ÁÁÁ
Á
Á
Á
ÁÁÁ
19
ÁÁÁ
Á
Á
Á
ÁÁÁ
21
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
TS2R
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Receiver time-slot 2 Input.
ÁÁÁ
Á
Á
Á
ÁÁÁ
20
ÁÁÁ
Á
Á
Á
ÁÁÁ
22
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
RTSEL
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
I
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Receive time-slot Select. When high, TS1R is selected; when low, TS2R is se-
lected.
ÁÁÁ
ÁÁÁ
21
ÁÁÁ
ÁÁÁ
23
ÁÁÁÁÁ
ÁÁÁÁÁ
PCMOUT
ÁÁÁÁ
ÁÁÁÁ
O
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Received PCM Output Data. Data sent to the system PCM bus.
ÁÁÁ
Á
Á
Á
ÁÁÁ
22
ÁÁÁ
Á
Á
Á
ÁÁÁ
24
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ALARM
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
O
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Octet Timing Alarm. When active, indicates loss of received bipolar violations that
are used for octet timing. Active high.
XR-T6165
5
Rev. 2.02
ELECTRICAL CHARACTERISTICS
Test Conditions: VDD = 5V + 10%, TA = 25°C, Unless Otherwise Specified
Symbol Parameter Min. Typ. Max. Unit Conditions
DC Electrical Characteristics
VIH Logic 1 2.4 V
VIL Logic 0 0.4 V
VDD Supply 4.5 5.5 V
IDD Supply Current 500 µADynamic Supply Current
IIL Input Leakage 1 µA
VOL 0.4 V At 1.6mA
VOH 2.4 V At 0.4mA
AC Electrical Characteristics
General
tr, tf Output Rise/Fall Time 20 ns All Outputs
Receiver
tRS RX2MHz Rising Edge to TS
Rising Edge Set Up Time 0tRXL -
100 ns
Figure 3
tRH RX2MHz Rising Edge to TS
Falling Edge Hold Time 0tRXL -
100 ns
Figure 3
tDRS TS Rising Edge to Leading Edge
of PCMOUT D0 Bit Delay 10 ns
Figure 3
tDRH TS Falling Edge to Trailing Edge
of PCMOUT D7 Bit Hold Time 0 10 ns
Figure 3
tRXD RX2MHz Rising Edge to
PCMOUT Bits D1 Through D6
Rising Edge Delay
10 ns
Figure 3
tPW PCMOUT Pulse Width 488 ns
Figure 3
tRXH RX2MHz High Time 244 ns
Figure 3
tRXL RX2MHz Low Time 244 ns
Figure 3
tRXCLK RX2MHz Period 488 ns +100ppm
Transmitter
tTS TS Rising Edge to TX2MHz Set
Up Time 20 tTXL -
100 ns
Figure 4
tTH TS Falling Edge to TX2MHz Hold
Time 0tTXL -
100 ns
Figure 4
tDS PCMIN Edge to TX2MHz Set Up
Time 100 ns
Figure 4
tDH PCMIN Edge to TX2MHz Hold
Time 100 ns
Figure 4
tTXH TX2MHz High Time 244 ns
Figure 4
XR-T6165
6
Rev. 2.02
ELECTRICAL CHARACTERISTICS (CONT’D)
Symbol Parameter Min. Typ. Max. Unit Conditions
AC Electrical Characteristics (Cont’d)
Transmitter (Cont’d)
tTXL TX2MHz Low Time 244 ns
Figure 4
tTXCLK TX2MHz Period 488 ns
Figure 4
tKXH TX256kHz High Time 1.95 µs
tKXL TX256kHz Low Time 1.95 µs
tKXCLK TX256kHz Period 3.9063 µs
Specifications are subject to change without notice
ABSOLUTE MAXIMUM RATINGS
Supply Voltage 20V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Temperature 0°C to +70°C. . . . . . . . . . . . . Storage Temperature -65°C to +150°C. . . . . . . . . . . . .
Magnetic Supplier Information:
Pulse
Telecom Product Group
P.O. Box 12235
San Diego, CA 92112
Tel. (619)674-8100
Fax. (619)674-8262
Transpower Technologies, Inc.
24 Highway 28, Suite 202
Crystal Bay, NV 89402-0187
Tel. (702) 831-0140
Fax. (702) 831-3521
XR-T6165
7
Rev. 2.02
tPW
tRXH tRXCLK
tRXL
tRS tRH
tDRS tDRH
D0 D1 D2 D3 D4 D5 D6 D7
RX2MHz
time-slot
PCMOUT
tTXCLK
tTXHtTS tTH
tDS tDH
D0 D1 D2 D3 D4 D5 D6 D7
TX2MHz
time-slot
PCMIN
Figure 3. Receive Time-slot Timing
Figure 4. Transmit Time-slot Timing
tTXL
tKXCLK
tKXH tKXL
Tr Tf
VIH VIH
VIL VIL
50% 50%
Clock
50%
Figure 5. Clock Timing
tRXD
XR-T6165
8
Rev. 2.02
SYSTEM DESCRIPTION
Transmitter
Figure 1
shows the XR-T6165 transmitter section block
diagram. The transmitter converts eight bit bursts or
octets of 2.048Mbps serial data present in a PCM
time-slot to a coded continuous 64kbps data stream.
During operation, data input is controlled by external
clock and time-slot signals, and the 64kbps data output is
timed by an external 256kHz clock. Since the input and
output rates may not be exactly equal because of slight
clock rate differences, periodic slips can occur.
Therefore, circuitry is included to delete or repeat octets, if
necessary. Transmitter operation is as follows. Pin
numbers, refer to the DIP package.
PCM data is applied to PCMIN (pin 15), a 2.048MHz local
clock is applied to TX2MHz (pin 16), and a time-slot signal
is applied through the time-slot multiplexer. This
multiplexer allows the transmitter to be hard wired to two
time-slot positions. A time-slot signal is applied to
multiplexer inputs TS1T (pin 8) or TS2T (pin 9), and a
time-slot select logic level is applied to TTSEL (pin 12). A
high level at TTSEL selects TS1T while a low level
enables TS2T. The time-slot is an envelope derived
externally from TX2MHz that covers eight clock pulses.
The rising edge of the time-slot signal should be made to
coincide with the falling edge of TX2MHz. Eight bits of
PCM data are clocked into the transmitter input register
on the rising edge of TX2MHz while the selected time-slot
signal is high. The input register data is then transferred
to a storage latch.
T ransmission of 64kbps data is controlled by the 256kHz
local clock that is applied to TX256kHz (pin 14). It is not
necessary for this clock to be synchronized with any other
signals that are applied to the transmitter. The output
process begins by transferring data from the storage latch
to the output shift register after transmission of the
previous eight bits of data is complete. Four periods of
TX256kHz are required to encode each data bit. A “logic
0” applied to PCMIN is coded as 0101 while a “logic 1” is
coded as 001 1. This data is output on either T+R (pin 10)
or T-R (pin 11) according to the AMI (alternate mark
inversion) coding rule. Note that the T+R and T-R outputs
as well as the corresponding XR-T6164 transmitter inputs
(TX+I/P, TX-I/P) are all active-low. Therefore, a “logic 0”
is coded as a 1010 and a “logic 1” as a 1 100 at the bipolar
transmitter output as specified by CCITT G.703.
T ransmission of octet timing is performed by feeding the
seventh and eighth data bits in each word to the same
transmitter output. This function may be inhibited by
setting ALARMIN (pin 13) high to transmit an alarm
condition. Should skew occur between the TX2MHz and
TX256kHz clocks signals, or during an adjustment of the
timing of the time-slot signal, circuitry is included to delete
or repeat complete words of data. This could happen, for
example, when changing from one time-slot position to
another. A byte repetition or insertion occurs once if no
new PCM data is received. A byte repetition just occurs
once. If no new PCM data is received, the T+R and T-R
outputs stay high. A byte deletion occurs when the
transmitter receives a new byte of data before the
previous byte is transferred from the storage latch to the
output register. Under this condition, the stored data is
overwritten.
Receiver
Figure 2
shows the block diagram of the XR-T6165
receiver section. The receiver converts coded
continuous 64kbps data to eight bit bursts of 2.048Mbps
serial data suitable for insertion in a PCM time-slot.
During operation, data input is timed by a clock that is
extracted from the input signal, while output is controlled
by external locally supplied clock and time-slot signals.
Since the data input and output rates may not be exactly
equal, circuitry is included to delete or repeat eight bit data
blocks, if necessary. Receiver operation is as follows.
A line interface chip such as the receive section of the
XR-T6164 converts the encoded bipolar 64kbps signal to
dual-rail active-low logic levels. These signals are
applied to the XR-T6165 receiver S+R (pin 1) and S-R
(pin 2) inputs. A 128kHz clock, which is derived from the
received signal, is used to decode this data, and then to
clock it into one of two storage registers. Two registers
are used so that one may be receiving continuous data at
64kbps while the other is sending eight bit bursts at a
2.048Mbps rate to PCMOUT (pin 21) while the receiver
time-slot signal is high. The time-slot is an envelope
derived externally from RX2MHz that covers eight clock
pulses. The rising edge of the time-slot signal should be
made to coincide with the rising edge of RX2MHz. Eight
bits of PCM data are clocked out of the receiver register
on the rising edge of RX2MHz while the time-slot signal is
high. A two input multiplexer at the time-slot input allows
the receiver to be hard wired to two time-slot positions.
XR-T6165
9
Rev. 2.02
time-slot signals are applied to TS1R (pin 18) and TS2R
(pin 19) and the active time-slot is selected by RTSEL (pin
20). A high level applied to RTSEL selects TS1R and a
low level selects TS2R. Data appearing at PCMOUT is
framed by the read time-slot signal and is guaranteed
glitch free.
Recovery of the 128kHz timing signal is performed by a
variable length counter which is clocked by the 2.048 MHz
signal applied to RXCK2MHz (pin 7). This clock is not
required to be synchronized with any other signals that
are applied to the XR-T6165. However, the RX2MHz
clock (pin 4) may also be used for this function. Positive
input data transitions are used to synchronize this counter
with the data. If synchronization is lost, the counter length
is shortened, and the clock recovery circuit enters a seek
mode until a transition is found.
Octet timing ensures that bit grouping is maintained when
the data is converted from a 64kbps continuous stream to
eight bit 2.048Mbps bursts. Bipolar violations are used to
identify the last bit in each eight bit octet. In the absence of
these violations, for example when receiving a
transmitted alarm condition (transmitter ALARMIN is
high), the circuit will continue to operate in
synchronization with respect to the last received violation.
During this time, the data present at PCMOUT is still
correct as long as synchronization based on the last
received violation is still valid, and the BLS input (pin 3) is
held high. However, if BLS is low and an octet timing
violation is not received, receiver output data is blanked
by forcing PCMOUT to a high level. Also, if eight
successive octet timing violations are not received, the
ALARM output (pin 22) goes to a high level. A high level
applied to the BLANK input (pin 5) will also force
PCMOUT to an all-ones state.
Slip control logic is included in the receiver to
accommodate rate differences between input and output
data. The 64kbps input rate is determined by the remote
transmitter, while the PCMOUT rate is set by RX2MHz
which is a local clock. If this clock is slow , an octet will be
deleted periodically, while the last octet will be repeated
under fast conditions. Octet timing is maintained during
these operations.
APPLICATION INFORMATION
64kbps Codirectional Interface
Figure 6
shows a codirectional interface circuit using the
XR-T6165 with the XR-T6164 line interface. The
XR-T6164 first converts the bipolar 64kbps transmit and
receive signals to active-low TTL compatible data
required by the XR-T6165. The XR-T6165 then performs
the digital functions that are necessary to interface this
64kbps continuous data to a 2.048Mbps PCM time-slot.
The 64kbps signals that have been attenuated and
distorted by the twisted pair cable are
transformer-coupled to the line side of the XR-T6164 as
shown on the left side of
Figure 6
. A suggested
transformer for both the input and output applications is
the pulse type PE-65535.
The right side of
Figure 6
shows the XR-T6164 LOS (Loss
of Signal) output and the XR-T6165 digital inputs and
outputs. All of these pins are TTL compatible. Please
refer to the pin description section of this data sheet for
detailed information about each signal.
XR-T6165
10
Rev. 2.02
L
A
7
5
4
18
X
Loss of TX Sync
Blank O/P for Alarm
T6164 LOS Output
Data to PCM BUS
ALARM 22
PCMOUT 21
BLS 3
RX2MHz
TS1R
TS2R 19
RTSEL 20
BLANK
RXCK2MHz
PCMIN 15
TX2MHz 16
TS1T 8
TS2T 9
TTSEL 12
TX256kHz 14
ALARMIN 13
S+R
1
S-R
2
T-R
11
T+R
10
VSS
17
VDD
6 XR-T6165
Receive
Side
Transmit
Side
+5V
0.1µF
+5V
0.1µF
0.1µF
0.1µF
1:2
480
RING
0.1µF
TIP
64kbps Data
from Line RX+I/P
16
RX-I/P
1
I/P BIAS
2
PEAK CAP
14
TX+O/P
10
TX-O/P
8 G
N
D
A47
V
C
C
D
913
S+R 12
S-R
5
R
A
R
M
3
T
C
M
C
O
N
15
TX-I/P
6
TX+I/P 11
XR-T6164
time-slot 1
time-slot 2
time-slot Select
Forces all Ones
2.048MHz Clock
time-slot 1
time-slot 2
time-slot Select
Data from PCM BUS
Inhibit Violations
300
300
1:2 +5V
0.1µF
TIP
RING
64kbs Data
to Line
G
N
D
D
V
C
C
A
Figure 6. Typical Codirectional Application Circuit
2.048MHz Clock
2.048MHz Clock
256kHz Clock
PE-65535
TTI-17147
PE-65535
TTI-17147
XR-T6165
11
Rev. 2.02
Transmitter Code Conversion
Figure 7
shows the transmitter code conversion process
that CCITT G.703 specifies for a 64kbps codirectional
interface.
Step 1 - A 64kbps bit period is divided into four unit
intervals.
Step 2 - A binary 1 is coded as a 1100.
Step 3 - A binary 0 is coded as a 1010.
Step 4 - The binary signal is converted into a three-level
signal by alternating the polarity of consecutive blocks.
Step 5 - The alternation in polarity of the blocks is violated
every eighth block. The violation block marks the last bit
in an octet.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Bit Number
64kbps data
Steps 1-3
Step 4
Step 5
Octet Timing
Violation Violation
10010011101
1178 23 4 5 67 8
Figure 7. Transmitter Code Conversion for a 64kbps Bipolar Line Signal
XR-T6165
12
Rev. 2.02
Codirectional Interface Pulse Masks
Figure 8
and
Figure 9
show the CCITT G.703 64kbps
codirectional interface pulse masks for single and double
pulses respectively of either polarity . Note that this mask
is for the pulse measured at the XR-T6164 transmitter
output (application circuit shown in
Figure 6
) when
terminated with a 120resistor.
3.51µs
(3.9 -0.39)
3.12µs
(3.9 -0.78)
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
V
1.0
0.5
0
7.8µs
(3.9 + 3.9)
6.5µs
(3.9 + 2.6)
4.29µs
(3.9 + 0.39)
3.9µs
11.7µs
(7.8 + 3.9)
10.4µs
(7.8 + 2.6)
8.19µs
(7.8 + 0.39)
7.8µs
7.41µs
(7.8 - 0.39)
7.02µs
(7.8 - 0.78)
0.10.1
2.0 2.0
0.1 0.1
0.10.1
0.2 0.2
Figure 8. Mask for a Single Pulse
Figure 9. Mask for Double Pulse
V
1.0
0.5
0
0.1 0.1
0.2
XR-T6165
13
Rev. 2.02
22 LEAD PLASTIC DUAL-IN-LINE
(400 MIL PDIP)
22
1
12
11
D
eB
1
A
1
E
1
C
E
A
L
B
Seating
Plane
SYMBOL MIN MAX MIN MAX
INCHES
A 0.145 0.210 3.68 5.33
A10.015 0.070 0.38 1.78
B 0.014 0.024 0.36 0.56
B1 0.030 0.070 0.76 1.78
C 0.008 0.016 0.20 0.38
D 1.050 1.120 26.67 28.45
E 0.390 0.425 9.91 10.80
E10.330 0.380 8.38 9.65
e 0.100 BSC 2.54 BSC
L 0.115 0.160 2.92 4.06
α0°15°0°15°
MILLIMETERS
α
XR-T6165
14
Rev. 2.02
SYMBOL MIN MAX MIN MAX
A 0.093 0.104 2.35 2.65
A1 0.004 0.012 0.10 0.30
B 0.013 0.020 0.33 0.51
C 0.009 0.013 0.23 0.32
D 0.598 0.614 15.20 15.60
E 0.291 0.299 7.40 7.60
e 0.050 BSC 1.27 BSC
H 0.394 0.419 10.00 10.65
L 0.016 0.050 0.40 1.27
INCHES MILLIMETERS
24 LEAD SMALL OUTLINE
(300 MIL JEDEC SOIC)
e
D
E H
B
A
L
C
A1
Seating
Plane
24 13
12
XR-T6165
15
Rev. 2.02
Notes
XR-T6165
16
Rev. 2.02
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-
prove design, performance or reliability . EXAR Corporation assumes no responsibility for the use of any circuits de-
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are
free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary
depending upon a user’s specific application. While the information in this publication has been carefully checked;
no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-
stances.
Copyright 1990 EXAR Corporation
Datasheet June 1997
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.