MAX2634
315MHz/433MHz Low-Noise
Amplifier for Automotive RKE
6 _______________________________________________________________________________________
RF Input Coupling Capacitor
Input IP3 vs. Enable Time
The value of the coupling capacitor affects input IP3
and turn-on time. A larger coupling capacitor results in
higher input IP3 at the expense of longer turn-on time.
See Table 3 for the typical amount of trade-off.
Integrated Output Matching
Network and DC-Block
The MAX2634 integrates the output matching network
and DC-block, eliminating the need for external match-
ing components while providing a broadband match.
See the
Functional Diagram/Typical Operating Circuit
for component values.
Shutdown
The MAX2634 features a shutdown pin to disable the
entire chip. Apply a logic-high to the SHDN pin to place
the part in the active mode, and a logic-low to place the
part in the shutdown mode.
Power-Supply Bypassing
Bypassing the VCC line is necessary for optimum
gain/linearity performance. See the
Functional
Diagram/Typical Operating Circuit
for bypassing
capacitor values.
Layout Information
A properly designed PCB is essential to any RF/
microwave circuit. Use controlled-impedance lines on
all high-frequency inputs and outputs. Bypass with
decoupling capacitors located close to the device’s
VCC pin. For long VCC lines, it may be necessary to add
additional decoupling capacitors. These additional
capacitors can be located farther away from the device
package. Proper grounding of the GND pins is essen-
tial. If the PCB uses a topside RF ground, connect it
directly to all GND pins. For a board where the ground
plane is not on the component layer, the best technique
is to connect the GND pins to the board with a plated
through-hole located close to the package.