©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
HUF76107P3
20A, 30V, 0.052 Ohm, N-Channel, Logic
Level UltraFET Power MOSFETs
These N- C hann el power
MOSFETs are manuf actured using
the innovative UltraFET™ process.
This advanced process technology
achiev es the lowest possible on-resistance per silicon area,
resulting in outstan ding per formance. This device is
capable of withstanding high energy in the av alanche mode
and the diode exhibits very low r everse recover y time and
stored charge. It was designed fo r use in app lications
where power efficiency is important, such as switching
regulator s, switchi ng converter s, motor dr ivers, relay
drivers, low-volt age bus switches, and power manag eme nt
in por t able and batt ery-operat ed produ cts.
Formerly deve lopmental ty pe TA76 107.
Features
Logic Level Gate Driv e
20A, 30V
Ultr a Low On-Resi stance, rDS(ON) = 0.052
Tem peratur e Com pensating PSPI CE® Model
Tem peratur e Com pensating SABER© Model
Thermal Impedanc e SPICE Model
Thermal Impedanc e SABER Model
Peak Current vs Pulse Widt h Curve
UIS Rating Curve
Related Literature
- TB334, “G uidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76107P3 TO-220AB 76107P
D
G
S
JEDEC TO-220AB
DRAIN
SOURCE
GATE
DRAIN
(FLANGE)
Data Sheet Januar y 2003
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specif ied UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
20
10.5
10
Figu re 4
A
A
A
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figur es 6, 17, 18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
0.30 W
W/oC
Oper ating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -40 to 150 oC
Maximu m Temperature for S oldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUT ION: St ress es above those list ed in “Abs olute Maximum Rati ngs” may cause per mane nt damage to the device. This is a str ess only rating and operati on of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Speci fications TA = 25oC, Unless Otherwise Specified
PARAMETE R SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Dr ain t o Sou rce Breakdown Voltag e BVDSS ID = 25 0µA, VGS = 0V (Fig ure 1 2) 30 - - V
Z ero Gat e V ol tag e D rain C urrent IDSS VDS = 25V, VGS = 0V - - 1 µA
VDS = 25V, VGS = 0V, TC = 1 50 oC--250µA
Ga te t o Sour c e Le ak ag e C urr e nt IGSS VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V
Drain t o Source On Resistance rDS(ON) ID = 20A , VGS = 10V (Figure 9, 10) - 0.042 0.052
ID = 10.5A, VGS = 5V (Figure 9) - 0.058 0.080
ID = 10A, VGS = 4.5V (Figure 9) - 0.065 0.085
THERMAL SPECIFICATIONS
T her m al Res ista nc e Ju ncti on to Case R θJC (F i gu re 3) - - 3. 3 oC/W
Thermal Resistance Junction to Ambient RθJA TO-220 62 oC/W
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn -On Time tON VDD = 15V, ID 10A, RL = 1. 50,
VGS =4.5V, RGS = 33
(Figure s 15, 21 , 22)
--120ns
Turn-O n Delay Time td(ON) -14-ns
Rise Time tr-66-ns
Turn-O ff Delay Time td(OFF) -16-ns
Fa ll Time tf-22-ns
Turn -Off Time tOFF --57ns
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
SWITCHING SPECIFICATIONS (VGS = 1 0V )
Turn -On Time tON VDD = 15V, ID 20A, RL =0.75 ,
VGS =10V, RGS = 3 3
(Figure s 16, 21 , 22)
--75ns
Turn-O n Delay Time td(ON) -18-ns
Rise Time tr-30-ns
Turn-O ff Delay Time td(OFF) -62-ns
Fa ll Time tf-20 -ns
Turn -Off Time tOFF --125ns
GATE CHARGE SPECIFICATIONS
T otal G ate Charg e Qg(TOT) VGS = 0 V to 10V VDD = 15V, ID
10.5A,
RL = 1.4 3
Ig(REF) = 1.0mA
(Figures 14, 19 , 20)
- 8.6 10.3 nC
Gat e Charg e at 5V Qg(5) VGS = 0 V to 5V - 4.7 5. 7 nC
T hresh ol d G at e Ch arg e Qg(TH) VGS = 0V to 1V - 0.35 0 .42 nC
Ga te to Sourc e Gate Charg e Qgs -1.00- nC
Ga te t o Drai n “M iller” Charge Qgd -2.40- nC
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V, f = 1MHz
(Fi gu r e 13 ) -315- pF
Output Capacitance COSS -170- pF
Reverse Transfer Capacitance CRSS -30-pF
Electrical Speci fications TA = 25oC, Unless Otherwise Specified
PARAMETE R SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specific ations
PARAMETER SYM BOL TEST CONDITIONS M IN TYP MAX UNITS
Source to Drain Diode Volta ge VSD ISD = 10.5A - - 1.25 V
Reverse Recovery Time trr ISD = 10.5A, dISD/dt = 100A/µs--39ns
Reverse Recovered Charge QRR ISD = 10.5A, dISD/dt = 100A/µs--49nC
Typical Performance Curves U nl es s oth erw is e sp ec ifi ed
FIGURE 1. NORMALIZED PO WER DISSIPATI ON vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPER ATURE
TA, AMBIENT TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00 25 50 75 100 150
0.2
0.4
0.6
0.8
1.0
1.2
125
10
025 50 75 100 125
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
25
150
5
20
VGS=4.5V
VGS=10V
15
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATI NG AREA
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
Typical Performance Curves U nl es s oth erw is e sp ec ifi ed (Continued)
t, RECTANGULAR PULSE DURATION (s)
10-5 10-1 100
2
0.1
1
10-2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
0.01 10-4 10-3
SINGLE PULSE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
101
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
TC = 25oC
I = I25 150 - TC
125
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
IDM, PEAK CURRENT (A)
500
10
10-5 10-4 10-3 10-2 10-1 100101
t, PULSE WIDTH (s)
100
VGS = 5V
TJ = MAX RATED
TC = 25oC
10ms
1ms
BVDSS MAX = 30VLIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
1001VDS, DRAIN TO SOURCE VOLTAGE (V)
1
100
200
10
ID, DRAIN CURRENT (A)
10
100µs
1 10 100
100
0.01
200
1
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
STARTING TJ = 150oC
0.1
10
0.001
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED GATE THRESHOL D V OLTA GE v s
JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN T O S OURCE BREAKDOW N
VOLTAGE vs JUNCTION TEMPERATURE
Typical Performance Curves U nl es s oth erw is e sp ec ifi ed (Continued)
012 6
0
10
20
25
ID, DRAIN CURRENT (A)
VGS, GATE T O SOURCE VOLTAGE (V)
150oC
-40oC
25oC
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15 V
30
453
15
5VGS = 3.5V
VGS = 4V
01 3456
ID, DRAIN CURRENT (A)
VDS, DRAIN T O SOURCE VOLTAGE (V)
VGS = 5V
VGS = 10V
VGS = 3V
VGS = 4.5V
2
0
10
20
25
30
15
5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
50
60
70
90
30 4
VGS, GATE TO SOURCE V OLTAGE (V)
26108
ID = 20A
ID = 12A
ID = 5A
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (m)
40
80
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0.50
0.75
1.00
1.25
1.75
-60 0 60 120
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
180
1.50
2.00
120
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 20A
-60 0 60 120
0.6
0.8
0.9
1.1
1.2
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
180
1.0
0.7
0.6
1.15
1.10
1.00
0.95
0.90
-60 0 60 120
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
180
1.05
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
Typical Performance Curves U nl es s oth erw is e sp ec ifi ed (Continued)
COSS
600
400
00 5 15 25
C, CAPACITANCE (pF)
300
VDS, DRAIN TO SOURCE VOLTA GE (V)
200
30
100
CISS
CRSS
10 20
500
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
10
8
6
4
0
VGS, GATE TO SOURCE VOLTAGE (V)
VDD = 15V
2
8100
Qg, GATE CHARGE (nC)
2
ID = 20A
ID = 12A
ID = 5A
WAVEFORMS IN
DESCENDING ORDER:
6
4
20
20 30 40 500
100
80
40
010
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
td(OFF)
td(ON)
tr
tf
VGS = 4.5V, VDD = 15V, ID = 10A, RL= 1.50Ω
60
40
20 30 40 500
100
80
60
010
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
td(OFF)
td(ON)
tf
tr
VGS = 1 0V, VDD = 15V, ID = 20A, RL= 0.75
20
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
FIGURE 21. SWI TCHING TIME TEST CIRCUI T FIGURE 22. SWITCHING TIME WAVEFORMS
Test Circuits and Waveforms (Continued)
RL
VGS +
-
VDS
VDD
DUT
Ig(REF)
VDD
Qg(TH)
VGS = 1V
Qg(5)
VGS = 5V
Qg(TOT)
VGS = 10
VDS
VGS
Ig(REF)
0
0
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%50%
10% PULSE WIDTH
VGS
0
0
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
PSPICE Electrical Mode l
SUBCKT HUF76107 2 1 3 ; REV June 1998
C A 12 8 4. 2e- 10
CB 15 14 4. 9e-10
CIN 6 8 2.85e- 10
D BODY 7 5 DBODYM O D
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 35.7
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTH RES 6 21 19 8 1
EVTEM P 20 6 18 22 1
IT 8 1 7 1
LDRAIN 2 5 1e-9
LGATE 1 9 3.61e-9
LSOU RCE 3 7 3.61e-9
MMED 16 6 8 8 M M EDMOD
MSTR O 16 6 8 8 M ST ROMOD
MWEAK 16 21 8 8 M WE A KMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 3.7e-3
R G A T E 9 20 3.39
RL DRAIN 2 5 10
RLGATE 1 9 36.1
RLSOURCE 3 7 36.1
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e 3
RSOURCE 8 7 RSOURCEMOD 30e-3
RVT HRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1A M OD
S1B 13 12 13 8 S1BMO D
S2A 6 15 14 13 S2AMO D
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*50),7))}
.MO DE L DB ODYM OD D (IS = 2.8 e-13 IKF = 5 RS = 1.37e- 2 TRS 1 = 2e-4 TRS 2 = 2e-6 CJO = 4.9e- 10 TT = 2.8 8e-8 M = 3.9e-1 XTI = 4. 75 )
.MO DE L DB REAKMOD D (RS = 2.5e- 1 TRS 1 = 9.94e -4 TRS 2 = 9.12 e-7)
.MODEL DPLCAPMOD D (CJO = 3.2e-10 IS = 1e-30 N = 10 M = 7.4e-1)
.MODEL MMEDMOD NMOS (VTO = 2.07 KP = 1.25 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.39)
.MODE L M STROMOD NMOS (VTO = 2.4 KP = 19.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.8 KP =1e-1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.9 RS=.1)
.MO DE L RB REAKMOD RE S (TC1 = 9.94e-4 TC 2 = 9.84e-8)
.MODEL RDRAINMOD RES (TC1 = 3.9e-2 TC2 = 5.5e-5)
.MO DE L RS LCMOD RES (TC1 = 1e-4 T C2 = 3.2e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-12 TC2 = 6e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -5.96e-6)
.MO DEL RVT EMP M O D RES (TC1 = -1.4e-3 T C2 = 1e-10)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.2 VOFF= -0.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= -4.2)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.8 VOFF= 0.0)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.0 VOFF= -0.8)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperat ure O ptions; IEEE Power Electronics Specialist Conf e rence Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
SABER Electrical Model
nom tem p=25 deg c 30v LL Ultrafet
REV Junel 1998
templ ate hu f76107 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodym od = (i s=2.8e-13, xt i =4.75, cjo=4. 9e-10 ,t t =2.88e -8, m=3. 9e-1)
d..model dbreakmod = ()
d..model dplcap m od = (cjo=3.2e-10, i s =1e-30, n=10, m =7.4e-1)
m..model mmedmod = (type=_n,vto=2.07,kp=1.25,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.4,kp=19.5,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.8,kp=1e-1,is=1e-30, tox=1)
sw_v cs p..mo del s1amod = (ron= 1e-5,roff=0.1,von=-4.2,vof f = -0.5)
sw_v cs p..mo del s1bmod = (ron= 1e-5,roff=0.1,von=-0.5,vof f = -4.2)
sw_v cs p..mo del s2amod = (ron= 1e-5,roff=0.1,vo n=-0. 8, vof f=0.0)
sw_v cs p..mo del s2bmod = (ron= 1e-5,roff=0.1,vo n=0.0 ,v of f=-0.8)
c . ca n1 2 n8 = 4.2e -10
c.cb n15 n14 = 4. 9e-10
c.cin n6 n8 = 2.85 e-10
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreak m od
d.dplcap n10 n5 = m odel=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lg ate n1 n9 = 3.61e-9
l.lsource n3 n7 = 3.61e -9
m.mmed n16 n6 n8 n8 = m odel=m m edmod, l=1u, w=1u
m.ms t rong n16 n6 n8 n8 = mod el =m strongmod, l=1u, w=1u
m.mw eak n16 n21 n8 n8 = model=m wea kmod, l=1u, w=1u
res. rbreak n17 n18 = 1, tc1=9.94e-4,tc2= -9.84e-8
res. rdbody n71 n5 =1. 37e-2, tc 1=2e-4 , t c2=2e -6
res. rdbreak n72 n5 =2. 5e-1, tc 1=9.94e-4, tc 2=9.1 2e-7
res. rdrain n50 n16 = 3.7e-3, tc 1=3. 9e-2, tc2=5.5e -5
res.rgate n9 n20 = 3.39
res. rl drain n2 n5 = 10
res. rl gate n1 n9 = 36. 1
res. rl sour ce n3 n7 = 36.1
res. rslc1 n5 n51 = 1e-6, tc1 =1e-4, t c2=3. 2e-6
res. rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 30e-3, tc1=1e-12,tc2=6e-6
res.rvtemp n18 n19 = 1, tc1=-1.4e-3,tc2=1e-10
res. rvthres n22 n8 = 1, tc1=-1. 9e-3,tc 2=-5. 96e-6
spe. ebreak n11 n7 n17 n1 8 = 35.7
spe. eds n14 n8 n5 n8 = 1
spe. egs n13 n8 n6 n8 = 1
spe. esg n6 n10 n6 n8 = 1
spe. evtemp n20 n6 n18 n2 2 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_v cs p.s1a n6 n12 n13 n8 = mo del =s1a m od
sw_v cs p.s1b n13 n12 n13 n8 = model=s1 bm od
sw_v cs p.s2a n6 n15 n14 n13 = model=s2 am od
sw_v cs p.s2b n13 n15 n14 n13 = mod el= s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl : v (n51, n50) = ((v(n5, n51)/ (1e-9+a bs(v(n5,n 51)))) * ((abs(v(n5 ,n51) *1e6/ 50))**7 ))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF76107P3
©2003 Fairchild Semiconductor Corporation HUF76107P3 Rev. B1
SPICE Thermal Model
REV June1998
HUF76107
CTHERM1 th 6 5.0e-5
CTHERM2 6 5 9.0e -4
CTHERM3 5 4 1.3e -3
CTHERM4 4 3 1.3e -3
CTHERM5 3 2 2.2e -2
CTHERM6 2 tl 7.9e-3
RTHERM1 th 6 2.0e-4
RTHERM2 6 5 6.0e -3
RTHERM3 5 4 3.5e -2
RTHERM4 4 3 8.5e -1
RTHERM5 3 2 5.1e -1
RTHERM6 2 tl 1
SABER Thermal Mod el
SABER thermal model HUF76107
template thermal_model th tl
thermal_c th, tl
{
c therm.ctherm1 th 6 = 5.0e-5
c therm.cther m2 6 5 = 9.0e-4
c therm.cther m3 5 4 = 1.3e-3
c therm.cther m4 4 3 = 1.3e-3
c therm.cther m5 3 2 = 2.2e-2
ctherm.ctherm6 2 tl = 7.9e-3
rtherm.rtherm1 th 6 = 2 .0e-4
rtherm.rtherm2 6 5 = 6.0e-3
rtherm.rtherm3 5 4 = 3.5e-2
rtherm.rtherm4 4 3 = 8.5e-1
rtherm.rtherm5 3 2 = 5.1e-1
rtherm.rtherm6 2 tl = 1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF76107P3
Rev. I2
TRADEMARKS
The following are registe red and unregistered tradem arks Fairchild Semicond ucto r owns or is author ized to use and is not
intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
wh ich, (a) ar e int ende d fo r s urgic al i mpla nt into the body ,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A c r it ic al c om pon en t i s an y c om po nen t o f a l ife s u pp or t
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Defini ti on of Terms
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
FACT Quiet Series™
FAST®
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
ImpliedDisconnect™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench®
QFET™
QS
QT Optoelectronics™
Quiet Serie s
RapidConfigure
RapidConnect™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic®
TruTranslation
UHC™
UltraFET®
VCX™
A cross the board. Around the world.™
T he Power Franchi se™
P rogramma ble Acti ve Droop™
Datasheet Identification Product Status Definition
Advance Information Format ive or In
Design This datasheet contains the design specificat ions for
product development. Specifications ma y change in
any manner without notice.
Preliminary First Production This datasheet co ntains preliminary data , and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any t ime without notice in order to impr ove
design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make chan ges at
any time without notice in order to improve design.
Obsolete Not In Producti on This dat asheet cont ains spec if ications on a product
that has been discontinu ed by Fairchild semiconducto r.
The datasheet is printed for reference information only.