1
CA3080, CA3080A
2MHz, Operational Transconductance
Amplifier (OTA)
The CA3080 and CA3080A types are Gatable-Gain Blocks
which utilize the unique operational-transconductance-
amplifier (OTA) concept described in Application Note
AN6668, “Applications of the CA3080 and CA3080A High-
Performance Operational Transconductance Amplifiers”.
The CA3080 and CA3080A types have diff erential input and a
single-ended, push-pull, class A output. In addition, these types
hav e an amplifier bias input which may be used either for gating
or f or linear gain control. These types also have a high output
impedance and their transconductance (gM) is directly
proportional to the amplifier bias current (IABC).
The CA3080 and CA3080A types are notable for their e xcellent
slew r ate (50V/µs), which mak es them especially useful f or
multiplexer and fast unity-gain v oltage f ollow ers. These types
are especially applicable f or multiple x er applications because
power is consumed only when the devices are in the “ON”
channel state.
The CA3080A’ s char acteristics are specifically controlled f or
applications such as sample-hold, gain-control, multiplexing,
etc.
Features
Slew Rate (Unity Gain, Compensated) . . . . . . . . . 50V/µs
Adjustable Po wer Consumption. . . . . . . . . . . . .10µW to 30µW
Flexib le Supply Voltage Range. . . . . . . . . . . . . ±2V to ±15V
Fully Adjustable Gain. . . . . . . . . . . . . . . . .0 to gMRL Limit
Tight gM Spread:
- CA3080. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1
- CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6:1
Extended gM Linear ity . . . . . . . . . . . . . . . . . . . 3 Decades
Applications
Sample and Hold Multiplier
Multiplexer Comparator
Voltage Follower
Pinouts CA3080
(PDIP, SOIC)
TOP VIEW
Part Number Information
PART NUMBER
(BRAND) TEMP.
RANGE (oC) PACKAGE PKG.
NO.
CA3080AE -55 to 125 8 Ld PDIP E8.3
CA3080AM
(3080A) -55 to 125 8 Ld SOIC M8.15
CA3080AM96
(3080A) -55 to 125 8 Ld SOIC Tape
and Reel M8.15
CA3080E 0 to 70 8 Ld PDIP E8.3
CA3080M
(3080) 0 to 70 8 Ld SOIC M8.15
CA3080M96
(3080) 0 to 70 8 Ld SOIC Tape
and Reel M8.15
1
2
3
4
8
7
6
5
+
V+
NC
INV.
INPUT
V-
NON-INV.
INPUT
NC
OUTPUT
AMPLIFIER
BIAS INPUT
-
D a ta S h e e t August 2004 FN475.6
CAUTION: These devices are sensitive to electrosta tic discharge; follo w proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2001, All Rights Reserved
OBSOLETE PRODUCT
NO RECOMMENDED REPLACEMENT
contact our Technical Support Center at
1-888-INTERSIL or www.intersil.com/tsc
2
Absolute Maximum Ratings Thermal Info rmation
Supply Voltage (Between V+ and V- Terminal) . . . . . . . . . . . . . 36V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to V-
Input Signal Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA
Amplifier Bias Current (IABC). . . . . . . . . . . . . . . . . . . . . . . . . . . 2mA
Output Short Circuit Duration (Note 1). . . . . . . . . . . . . No Limitation
Operating Conditions
Temperature Range
CA3080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A
Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause per manent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions abo ve those indicated in the operational sections of this specification is not implied.
NOTES:
1. Short circuit may be applied to ground or to either supply.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified
PARAMETER TEST CONDITIONS TEMP
CA3080 CA3080A
UNITSMIN TYP MAX MIN TYP MAX
Input Offset Voltage IABC = 5µA25-0.3--0.32mV
IABC = 500µA25-0.45-0.42mV
Full - - 6 - - 5 mV
Input Offset Voltage Change IABC = 500µA to 5µA25-0.2- -0.13mV
Input Offset Voltage Temp. Drift IABC = 100µAFull----3.0-µV/oC
Input Offset Voltage
Sensitivity Positive IABC = 500µA 25 - - 150 - - 150 µV/V
Negative 25 - - 150 - - 150 µV/V
Input Offset Current IABC = 500µA 25 - 0.12 0.6 - 0.12 0.6 µΑ
Input Bias Current IABC = 500µA25-25-25µA
Full - - 7 - - 15 µA
Differential Input Current IABC = 0, VDIFF = 4V 25 - 0.008 - - 0.008 5 nA
Amplifier Bias Voltage IABC = 500µA 25 - 0.71 - - 0.71 - V
Input Resistance IABC = 500µA 25 10 26 - 10 26 - k
Input Capacitance IABC = 500µA, f = 1MHz 25 - 3.6 - - 3.6 - pF
Input-to-Output Capacitance IABC = 500µA, f = 1MHz 25 - 0.024 - - 0.024 - pF
Common-Mode Input-Voltage
Range IABC = 500µA 25 12 to
-12 13.6 to
-14.6 - 12 to
-12 13.6 to
-14.6 -V
F orw a r d Transconductance
(Large Signal) IABC = 500µA 25 6700 9600 13000 7700 9600 12000 µS
Full 5400 - - 4000 - - µS
Output Capacitance IABC = 500µA, f = 1MHz 25 - 5.6 - - 5.6 - pF
Output Resistance IABC = 500µA 25 - 15 - - 15 - M
Peak Output Current IABC = 5µA, RL = 025 - 5 - 3 5 7 µA
IABC = 500µA, RL = 025 350 500 650 350 500 650 µA
Full 300 - - 300 - - µA
CA3080, CA3080A
3
Schematic Diagram
Peak Output
Voltage Positive IABC = 5µA, RL = 25 - 13.8 - 12 13.8 - V
Negative 25 - -14.5 - -12 -14.5 - V
Positive IABC = 500µA, RL = 25 12 13.5 - 12 13.5 - V
Negative 25 -12 -14.4 - -12 -14.4 - V
Amplifier Supply Current IABC = 500µA 25 0.8 1 1.2 0.8 1 1.2 mA
Device Dissipation IABC = 500µA 252430 36 2430 36mW
Magnitude of Leakage Current IABC = 0, VTP = 0 25 - 0.08 - - 0.08 5 nA
IABC = 0, VTP = 36V 25 - 0.3 - - 0.3 5 nA
Propagation Delay IABC = 500µA 25 - 45 - - 45 - ns
Common-Mode Rejection Ratio IABC = 500µA 25 80 110 - 80 110 - dB
Open-Loop Bandwidth IABC = 500µA25-2--2-MHz
Slew Rate Uncompensated 25 - 75 - - 75 - V/µs
Compensated 25 - 50 - - 50 - V/µs
Typical Applications
FIGURE 1. SCHEMATIC DIAG RAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLO WER CONFIGURATION AND
ASSOCIATED WAVEFORM
Electrical Specifications For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified (Continued)
PARAMETER TEST CONDITIONS TEMP
CA3080 CA3080A
UNITSMIN TYP MAX MIN TYP MAX
2OUTPUT
V+
AMPLIFIER
BIAS INPUT
NON-
INVERTING
INPUT
INVERTING
INPUT
3
5
4
6
7
V-
Q4D2
Q5
Q6Q7
Q1Q2
Q3
D1
D4
D3
Q8
Q11 D6
Q10
Q9
D3
5
2
4
7
5pF
1M
LOAD
(SCOPE PROBE)
3
6
CA3080, A
51
0.01µF
0.01µF
390pF
300
V- = -15V
0.001µF
62k
V+ = 15V
+
10k
-
10k
VS = ±15V
TIME (0.1µs/DIV.)
OUTPUT
1V/DIV.
INPUT
5V/DIV.
CA3080, CA3080A
4
FIGURE 2. 1,000,000/1 SINGLE-CONTROL FUNCTION GENERATOR - 1MHz TO 1Hz
NOTE: A Square-Wave Signal Modulates The External Sweeping
Input to Produce 1Hz and 1MHz, showing the 1,000,000/1 frequency
range of the function generator.
NOTE: The bo ttom trace is the s w eep in g signal a nd t he t op t r ace is
the actual generator out put. The center trace displays the 1MHz signal
via dela yed oscilloscope triggering of the upper swept output signal.
FIGURE 3A. TWO-TONE OUTPUT SIGNAL FROM THE
FUNCTION GENERATOR FIGURE 3B. TRIPLE-TRACE OF THE FUNCTION GENERATOR
SWEEPING TO 1MHz
FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS
Typical Applications (Continued)
7
4
7
54
4
7
6
CA3160
3
2
6
8.2k
2
3
2
3
6
5
20pF
VOLTAGE-CONTROLLED
CURRENT SOURCE
+7.5V
CA3080A
1k
1k
2M
100k
7.5V +7.5V
SYMMETRY
MAX FREQ. SET
EXTERNAL
SWEEPING INPUT
+7.5V
10k6.2k500
-7.5V
MIN FREQ. SET
4.7k
-7.5V
0.9 - 7pF
C1
6.2k
10 - 80pF
C2
4 - 60pF
C3
+
-
BUFFER VOLTAGE
FOLLOWER
0.1µF
0.1
µF
-7.5V
+7.5V
2k
10k
CENTERING
100k
+7.5V-7.5V +7.5V
430pF 6.8M
CA3080
+
-
30k
-7.5V
10k
50k
C5
15 - 115
C4
4 - 60
HIGH-FREQ.
LEVEL
ADJUST
2-1N914
HIGH-
FREQ.
SHAPE
THRESHOLD
DETECTOR
+
-
FREQ.
ADJUST
500
CA3080, CA3080A
5
FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION
FIGURE 5. SAMPLE AND HOLD CIRCUIT
Typical Applications (Continued)
7
4
2
6
5
3
CA3080A
+
-
2.0k
2.0k
30k
220
0.01µF 300pF 3k
OUTPUTINPUT
0.01µF
V- = -15V
V+ = +15V
3N138
SAMPLE 0V
HOLD -15V
ST ORAGE AND PHASE
COMPENSATION NETWORK
SLEW RAT E (IN SAMPLE MODE) = 1.3V/µs
ACQUISITION TIME = 3µs(NOTE)
NOTE: Time required for output to settle within ±3mV of a 4V step.
5
2
CA3080A
+
-
7
4
3
6
5
2
CA3140
+
-
4
7
6
INPUT 3
1
STROBE
30k
1N914
1N914
2k
+15V
-15V
2k
200pF 200pF
400
2k
2k
3.6k
30pF
+15V
-15V
2k
100k
0.1µF
0.1
µF
0.1µF
0.1µF
0.1µF
0
-15
SAMPLE
HOLD
SIMULATED LOAD
NOT REQUIRED
CA3080, CA3080A
6
Top Trace: Output Signal
5V/Div., 2µs/Div.
Bottom Trace: Input Signal
5V/Div., 2µs/Div.
Center Trace: Difference of Input and Output Signals Through
Tektronix Amplifier 7A13
5mV/Div., 2µs/Div.
FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 5
Top Trace: System Output; 100mV/Div., 500ns/Div.
Bottom Trace: Sampling Signal; 20V/Div., 500ns/Div. Top Trace: Output; 50mV/Div., 200ns/Div.
Bottom Trace: Input; 50mV/Div., 200ns/Div.
FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN
FIGURE 5 FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 5
FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER
Typical Applications (Continued)
10
2
7
3
CA3080A
+
-
4
6
5
13
2
6
CA3079
8
4
5
7
911
LOAD
120V AC
60Hz
MT2
MT1
5K
4W
50K
6.2K
2K
2K
150K
6.2K
20K
1N914
1N914 RF
100µF
+
-
G
8
NOTE: All resistors 1/2 watt,
unless otherwise specified.
THERMOCOUPLE
CA3080, CA3080A
7
FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER
Top Trace: Output; 5V/Div., 2µs/Div.
Center Trace: Differential Comparison of Input and Output
2mV/Div., 2µs/Div.
Bottom Trace: Input; 5V/Div., 2µs/Div.
Top Trace: Output
20mV/Div., 100ns/Div.
Bottom Trace: Input
200mV/Div., 100ns/Div.
FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 10 FIGURE 12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN
IN FIGURE 10
Typical Applications (Continued)
5
2
CA3080A
+
-
7
4
3
6
5
2
CA3130
+
-
4
7
6
3
8
1
INPUT
R1
2K
+7.5V
-7.5V
R2
2K
C2
R2
15K
0.1µF
STROBE
SAMPLE
CONTROL
AMPLIFIER
C1
200pF
R3
400
STORAGE
AND PHASE
COMPENSATION
-7.5V
NULLING
R4
2K
SAMPLE
READ-OUT
AMPLIFIER
+7.5V
C3
0.1µF
C4
0.1
µF
C5
156
pF R5
2K C6
0.1µF
R7
2K
OUTPUT CL
e.g. 30pF (TYP)
SAMPLE
HOLD
0V
-7.5
(OTA)
R6
100K
0
0
0
0
0
CA3080, CA3080A
8
FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS
Typical Performance Curves
FIGURE 14. INPUT OFFSET V OLT AGE vs AMPLIFIER BIAS
CURRENT FIGURE 15. INPUT OFFSET CURRENT vs AMPLIFIER BIAS
CURRENT
FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT FIGURE 17. PEAK OUTPUT CURRENT vs AMPLIFIER BIAS
CURRENT
Typical Applications (Continued)
INPUT
OUTPUT
tPLH tPHL
7
2
CA3080,A
+
-
4
5
6
3OUT
IN
51
V- = -15V
1N914
1.2M
IABC = 500µA
56k
V+ = 15V
0
0
-50mV
50mV
SUPPLY VOLTS: VS = ±15V
70oC
125oC
90oC
-55oC 25oC
70oC
25oC
125oC
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
-7
-80.1 1 10 100 1000
INPUT OFFSET VOLTAGE (mV)
AMPLIFIER BIAS CURRENT (µA)
90oC
-55oC
SUPPLY VOLTS: VS = ±15V
-55oC
25oC
125oC
103
0.1 1 10 100 1000
INPUT OFFSET CURRENT (nA)
AMPLIFIER BIAS CURRENT (µA)
102
10
1
0.1
0.01
SUPPLY VOLTS: VS = ±15V
-55oC
25oC
125oC
104
0.1 1 10 100 1000
INPUT BIAS CURRENT (nA)
AMPLIFIER BIAS CURRENT (µA)
103
102
10
1
0.1 0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
104
PEAK OUTPUT CURRENT (µA)
103
102
10
1
0.1
SUPPLY VOLTS: VS = ±15V
-55oC
25oC
125oC
LOAD RESISTANCE = 0
CA3080, CA3080A
9
FIGURE 1 8. PEAK OUTPUT VOLTA GE vs AMPLIF IER BIAS
CURRENT FIGURE 19. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER
BIAS CURRENT
FIGURE 20. TO TAL PO WER DISSIPATION vs AMPLIFIER BIAS
CURRENT FIGURE 21. TRANSCONDUCT ANCE vs AMPLIFIER BIAS
CURRENT
FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE
Typical Performance Curves (Continued)
SUPPLY VOLTS: VS = ±15V
TA = 25oC
LOAD RESISTANCE =
15
14.5
14
13.5
13
0
-13
-13.5
-14
-14.5
-15
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
V+OM
V+CMR
V-OM
V-CMR
PEAK OUTPUT VOLTAGE (V)
COMMON MODE INPUT VOLTAGE (V)
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
SUPPLY VOLTS: VS = ±15V
-55oC
25oC
125oC
104
AMPLIFIER SUPPLY CURRENT (µA)
103
102
10
1
0.1
125oC
-55oC, 25oC
TA = 25oC
VS = ±15V
VS = ±6V
VS = ±3V
105
104
103
102
10
1
DEVICE POWER DISSIPATION (µW)
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
SUPPLY VOLTS: VS = ±15V
-55oC
25oC
105
104
103
102
10
1
125oC
FORW ARD TRANSCONDUCTANCE (µS)
2
3
4
6
1
CA3080, A
5
7
36V
0V
TEST POINT
(VTP)
+36V
-50 0 25 75 125
TEMPERATURE (oC)
SUPPLY VOLTS: VS = ±15V
100
10
1
0.1
0.01
V2 = V3 = V6 = 36V
0V
-25 50 100
MAGNITUDE OF LEAKAGE CURRENT (nA)
CA3080, CA3080A
10
FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE
FIGURE 26. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT FIGURE 27. AMPLIFIER BIAS V OLTAGE vs AMPLIFIER BIAS
CURRENT
FIGURE 28. INPUT AND OUTPUT CAP ACIT ANCE vs AMPLIFIER
BIAS CURRENT FIGURE 29. OUTPUT RESIST ANCE vs AMPLIFIER BIAS
CURRENT
Typical Performance Curves (Continued)
5
7
V+ = 15V
CA3080, A
2
3
4
6
1
VDIFF = ±4V
V- = -15V
SUPPLY VOLTS: VS = ±15V
25oC
125oC
01234 567
10
1
102
103
104
DIFFERENTIAL INPUT CURRENT (pA)
INPUT DIFFERENTIAL V OLTAGE (V)
SUPPLY VOLTS: VS = ±15V
TA = 25oC
INPUT RESISTANCE (M)
100
10
1
0.1
0.010.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
SUPPLY VOLTS: VS = ±15V
-55oC
25oC
125oC
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
900
800
700
600
500
400
300
200
100
0
AMPLIFIER BIAS VOLTAGE (mV)
SUPPLY VOLTS: VS = ±15V
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
6
5
4
3
2
1
0
7
f = 1 MHz
TA = 25oC
INPUT AND OUTPUT CAPACITANCE (pF)
CI
CO
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
104
103
102
10
1
105
OUTPUT RESISTANCE (M)
SUPPLY VOLTS: VS = ±15V
TA = 25oC
CA3080, CA3080A
11
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semicondu ctor products are sol d by description onl y. Intersil Corporation rese rves the right to mak e changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reli-
able . Ho w ever, no re spon sibilit y i s assu med by Intersil or its sub sidia ries for its use; nor for any infringement s of pate nts o r o ther rights of thi rd parties which may result from
its use. No li cens e is granted by impl icatio n or ot he rwise und e r any patent or patent rights of Intersil or its subsidiaries.
For inf ormation regarding Intersil Corporation and its products, see web site http://www.intersil.com
FIGURE 30. IN PUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT FIGURE 31. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY
VOLTAGE
Typical Performance Curves (Continued)
5
7
V+
2
3
4
V-
CA3080, A
0.01µF
6
0.01µF
f = 1 MHz
TA = 25oC
0.06
0.05
0.04
0.03
0.02
0.01
02 4 6 8 1012141618
INPUT - TO - OUTPUT CAPACITANCE (pF)
POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V)
CA3080, CA3080A