SFH615A / SFH6156
Document Number 83671
Rev. 1.9, 11-May-05
Vishay Semiconductors
www.vishay.com
1
1
2
4
3E
C
A
C
17448
1
1
Optocoupler, High Reliability, 5300 VRMS
Features
Excellent CTR Linearity Depending on
Forward Current
Isolation Test Voltage, 5300 VRMS
Fast Switching Times
Low CTR Degradation
Low Coupling Capacitance
Lead (Pb)-free component
Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Agency Approvals
UL1577, File No. E52744 System Code H or J,
Double Protection
DIN EN 60747-5-2 (VDE0884)
DIN EN 60747-5-5 pending
Available with Option 1
Applications
Switchmode power supply
Telecom
Battery powered equipment
Description
The SFH615A (DIP) and SFH6156 (SMD) feature a
variety of transfer ratios, low coupling capacitance
and high isolation voltage. These couplers have a
GaAs infrared diode emitter, which is optically cou-
pled to a silicon planar phototransistor detector, and
is incorporated in a plastic DIP-4 or SMD package.
The coupling devices are designed for signal trans-
mission between two electrically separated circuits.
The couplers are end-stackable with 2.54 mm lead
spacing.
Creepage and clearance distances of > 8.0 mm are
achieved with option 6. This version complies with
IEC 60950 (DIN VDE 0805) for reinforced insulation
up to an operation voltage of 400 VRMS or DC.
Specifications subject to change.
Order Information
For additional information on the available options refer to
Option Information.
See TAPE AND REEL Section for 4-pin optocouplers T0 with 90 °
rotation.
Part Remarks
SFH615A-1 CTR 40 - 80 %, DIP-4
SFH615A-2 CTR 63 - 125 %, DIP-4
SFH615A-3 CTR 100 - 200 %, DIP-4
SFH615A-4 CTR 160 - 320 %, DIP-4
SFH6156-1 CTR 40 - 80 %, SMD-4
SFH6156-2 CTR 63 - 125 %, SMD-4
SFH6156-3 CTR 100 - 200 %, SMD-4
SFH6156-4 CTR 160 - 320 %, SMD-4
SFH615A-1X006 CTR 40 - 80 %, DIP-4 400 mil (option 6)
SFH615A-1X007 CTR 40 - 80 %, SMD-4 (option 7)
SFH615A-2X006 CTR 63 - 125 %, DIP-4 400 mil (option 6)
SFH615A-2X007 CTR 63 - 125 %, SMD-4 (option 7)
SFH615A-2X009 CTR 63 - 125 %, SMD-4 (option 9)
SFH615A-3X006 CTR 100 - 200 %, DIP-4 400 mil (option 6)
SFH615A-3X007 CTR 100 - 200 %, SMD-4 (option 7)
SFH615A-3X008 CTR 100 - 200 %, SMD-4 (option 8)
SFH615A-3X009 CTR 100 - 200 %, SMD-4 (option 9)
SFH615A-4X006 CTR 160 - 320 %, DIP-4 400 mil (option 6)
SFH615A-4X007 CTR 160 - 320 %, SMD-4 (option 7)
SFH615A-4X008 CTR 160 - 320 %, SMD-4 (option 8)
SFH615A-4X009 CTR 160 - 320 %, SMD-4 (option 9)
e3
www.vishay.com
2
Document Number 83671
Rev. 1.9, 11-May-05
SFH615A / SFH6156
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Output
Coupler
Parameter Test condition Symbol Value Unit
Reverse voltage VR6.0 V
DC Forward current IF60 mA
Surge forward current tp 10 µsI
FSM 2.5 A
Power dissipation Pdiss 100 mW
Parameter Test condition Symbol Value Unit
Collector-emitter voltage VCE 70 V
Emitter-collector voltage VCEO 7.0 V
Collector current IC50 mA
tp 1.0 ms IC100 mA
Power dissipation Pdiss 150 mW
Parameter Test condition Symbol Value Unit
Isolation test voltage (between
emitter and detector, refered to
climate DIN 40046, part 2,
Nov. 74
t = 1.0 s VISO 5300 VRMS
Creepage 7.0 mm
Clearance 7.0 mm
Insulation thickness between
emitter and detector
0.4 mm
Comparative tracking index per
DIN IEC 112/VDE 0303, part 1
175
Isolation resistance VIO = 500 V, Tamb = 25 °C RIO 1012
VIO = 500 V, Tamb = 100 °C RIO 1011
Storage temperature range Tstg - 55 to + 150 °C
Ambient temperature range Tamb - 55 to + 100 °C
Soldering temperature max. 10 s, Dip soldering
distance to seating plane
1.5 mm
Tsld 260 °C
SFH615A / SFH6156
Document Number 83671
Rev. 1.9, 11-May-05
Vishay Semiconductors
www.vishay.com
3
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Output
Coupler
0
50
100
150
200
0 25 50 75 100 125 150
18483
P –Power Dissipation (mW)
tot
Phototransistor
Diode
Tamb – Ambient Temperature ( qC )
Figure 1. Permissible Power Dissipation vs. Ambient Temperature
Parameter Test condition Symbol Min Ty p. Max Unit
Forward voltage IF = 60mA VF1.25 1.65 V
Reverse current VR = 6.0 V IR0.01 10 µA
Capacitance VR = 0 V, f = 1.0 MHz CO13 pF
Thermal resistance Rthja 750 K/W
Parameter Test condition Part Symbol Min Ty p. Max Unit
Collector-emitter capacitance VCE = 5.0 V, f = 1.0 MHz CCE 5.2 pF
Thermal resistance Rthja 500 K/W
Collector-emitter leakage
current
VCE = 10 V SFH615A-1
SFH6156-1
ICEO 2.0 50 nA
SFH615A-2
SFH6156-2
ICEO 2.0 50 nA
SFH615A-3
SFH6156-3
ICEO 5.0 100 nA
SFH615A-4
SFH6156-4
ICEO 5.0 100 nA
Parameter Test condition Symbol Min Ty p. Max Unit
Collector-emitter saturation
voltage
IF = 10 mA, IC = 2.5 mA VCEsat 0.25 0.4 V
Coupling capacitance CC0.4 pF
www.vishay.com
4
Document Number 83671
Rev. 1.9, 11-May-05
SFH615A / SFH6156
Vishay Semiconductors
Current Transfer Ratio
Switching Characteristics
Switching Non-saturated
Switching Saturated
Parameter Te st c on ditio n Part Symbol Min Ty p. Max Unit
IC/IFIF = 10 mA, VCE = 5.0 V SFH615A-1
SFH6156-1
CTR 40 80 %
SFH615A-2
SFH6156-2
CTR 63 125 %
SFH615A-3
SFH6156-3
CTR 100 200 %
SFH615A-4
SFH6156-4
CTR 160 320 %
IF = 1.0 mA, VCE = 5.0 V SFH615A-1
SFH6156-1
CTR 13 30 %
SFH615A-2
SFH6156-2
CTR 22 45 %
SFH615A-3
SFH6156-3
CTR 34 70 %
SFH615A-4
SFH6156-4
CTR 56 90 %
Parameter Test condition Symbol Min Typ. Max Unit
Rise Time IF = 10 mA, VCC = 5.0 V, TA = 25 °C, RL = 75 tr2.0 µs
Fall Time IF = 10 mA, VCC = 5.0 V, TA = 25 °C, RL = 75 tf2.0 µs
Turn-on time IF = 10 mA, VCC = 5.0 V, TA = 25 °C, RL = 75 ton 3.0 µs
Turn-off time IF = 10 mA, VCC = 5.0 V, TA = 25 °C, RL = 75 toff 2.3 µs
Cut-off
frequency
IF = 10 mA, VCC = 5.0 V, TA = 25 °C, RL = 75 fctr 250 kHz
Parameter Test condition Part Symbol Min Ty p. Max Unit
Rise time VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 20 mA SFH615A-1
SFH6156-1
tr2.0 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 10 mA SFH615A-2
SFH6156-2
tr3.0 µs
SFH615A-3
SFH6156-3
tr3.0 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 5.0 mA SFH615A-4
SFH6156-4
tr4.6 µs
Fall time VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 20 mA SFH615A-1
SFH6156-1
tf11 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 10 mA SFH615A-2
SFH6156-2
tf14 µs
SFH615A-3
SFH6156-3
tf14 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 5.0 mA SFH615A-4
SFH6156-4
tf15 µs
Turn-on time VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 20 mA SFH615A-1
SFH6156-1
ton 3.0 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 10 mA SFH615A-2
SFH6156-2
ton 4.2 µs
SFH615A-3
SFH6156-3
ton 4.2 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 5.0 mA SFH615A-4
SFH6156-4
ton 6.0 µs
SFH615A / SFH6156
Document Number 83671
Rev. 1.9, 11-May-05
Vishay Semiconductors
www.vishay.com
5
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
Turn-off time VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 20 mA SFH615A-1
SFH6156-1
toff 18 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 10 mA SFH615A-2
SFH6156-2
toff 23 µs
SFH615A-3
SFH6156-3
toff 23 µs
VCC = 5.0 V, TA = 25 °C, RL = 1 k, IF = 5.0 mA SFH615A-4
SFH6156-4
toff 25 µs
Parameter Test condition Part Symbol Min Ty p. Max Unit
Figure 2. Linear Operation (without Saturation)
Figure 3. Switching Operation (with Saturation)
isfh615a_01
R
L
=75
V
CC
=5V
I
C
47
I
F
isfh615a_02
1
V
CC
=5V
47
I
F
Figure 4. Current Transfer Ratio (typical) vs. Temperature
Figure 5. Output Characteristics (typ.) Collector Current vs.
Collector-Emitter Voltage
isfh615a_01
–25 0 25 50 °C 75
10
3
10
2
10
1
5
5
%
IC
IF
TA
4
3
2
1
IF=10mA,V
CE = 5.0 V
isfh615a_04
30
20
10
0
0 5 10 V 15
IF=14 mA
2.0 mA
4.0 mA
6.0 mA
8.0 mA
10 mA
12 mA
1.0 mA
mA
IC
VCE
www.vishay.com
6
Document Number 83671
Rev. 1.9, 11-May-05
SFH615A / SFH6156
Vishay Semiconductors
Figure 6. Diode Forward Voltage (typ.) vs. Forward Current
Figure 7. Transistor Capacitance (typ.) vs. Collector-Emitter
Voltage
Figure 8. Permissible Pulse Handling Capability Forward Current
vs. Pulse Width
isfh615a_05
VF
IF
25°
50°
75°
1.2
1.1
1.0
0.9
10
–1
10
0
10
1
mA 10
2
V
isfh615a_06
20
15
10
5
0
pF
C
Ve
10
–2
10
–1
10
–0
10
1
V10
2
CCE
f = 1.0 MHz
isfh615a_07
IF
tp
10
–5
10
–4
10
–3
10
–2
10
–1
10
0
s10
1
10
4
10
3
10
2
10
1
5
5
5
mA
D= t
p
T
t
p
I
F
T
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
DC Pulse cycle D = parameter
SFH615A / SFH6156
Document Number 83671
Rev. 1.9, 11-May-05
Vishay Semiconductors
www.vishay.com
7
Package Dimensions in Inches (mm)
Package Dimensions in Inches (mm)
i178027
.255 (6.48)
.268 (6.81)
1
2
4
3
.179 (4.55)
.190 (4.83)
pin one ID
.030 (.76)
.045 (1.14)
typ.
.100 (2.54)
.130 (3.30)
.150 (3.81)
.020 (.508 )
.035 (.89)
10°
–9°
.018 (.46)
.022 (.56)
.008 (.20)
.012 (.30)
.031 (.79) typ.
.050 (1.27) typ.
.300 (7.62) typ.
.110 (2.79)
.130 (3.30)
.230 (5.84)
.250 (6.35)
.050 (1.27)
ISO Method A
i178029
.255 (6.48)
.268(6.81)
34
.179 (4.55)
.190 (4.83)
pin one ID
.030 (.76)
.045 (1.14)
typ.
1.00 (2.54)typ.
.130 (3.30)
.150 (3.81)
.0098(.249)
.035 (.102)
.020 (.508)
.040 (1.02)
.031 (.79)
typ.
.050 (1.27)
typ.
.010 (.25)
typ.
10°
3°–7°
.375 (9.52)
.395 (10.03)
.296 (7.52)
.312 (7.90)
.315 (8.00)
min.
Lead
coplanarity
.004 max.
SMD
ISO Method A
.100 (2.54) R .010 (.25)
.070 (1.78)
.030 (.76)
.315 (8.00) min.060 (1.52)
.435 (11.05)
www.vishay.com
8
Document Number 83671
Rev. 1.9, 11-May-05
SFH615A / SFH6156
Vishay Semiconductors
min.
.315 (8.00)
.020 (.51)
.040 (1.02)
.300 (7.62)ref.
.375 (9.53)
.395 (10.03)
.012 (.30) typ.
0040 (.102)
0098(.249)
15° max.
Option 9
18486
SFH615A / SFH6156
Document Number 83671
Rev. 1.9, 11-May-05
Vishay Semiconductors
www.vishay.com
9
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Legal Disclaimer Notice
Vishay
Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1
Notice
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc.,
or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.
Information contained herein is intended to provide a product description only. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.
Customers using or selling these products for use in such applications do so at their own risk and agree to fully
indemnify Vishay for any damages resulting from such improper use or sale.