2007-04-20
BFP620F
1
12
43
NPN Silicon Germanium RF Transistor*
High gain low noise RF transistor
Small package 1.4 x 0.8 x 0.59 mm
Outstanding noise figure F = 0.7 dB at 1.8 GHz
Outstanding noise figure F = 1.3 dB at 6 GHz
Maximum stable gain
Gms = 21 dB at 1.8 GHz
Gma = 10 dB at 6 GHz
Gold metallization for extra high reliability
Pb-free (RoHS compliant) package1)
Qualified according AEC Q101
* Short term description
1
34
2
Direction of Unreeling
Top View
XYs
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type Marking Pin Configuration Package
BFP620F R2s 1=B 2=E 3=C 4=E - - TSFP-4
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage
TA > 0 °C
T
A
0 °C
VCEO
2.3
2.1
V
Collector-emitter voltage VCES 7.5
Collector-base voltage VCBO 7.5
Emitter-base voltage VEBO 1.2
Collector current IC80 mA
Base current IB3
Total power dissipation2)
TS 96°C Ptot 185 mW
Junction temperature T
j
150 °C
Ambient temperature T
A
-65 ... 150
Storage temperature Tst
g
-65 ... 150
1Pb-containing package may be available upon special request
2TS is measured on the collector lead at the soldering point to the pcb
2007-04-20
BFP620F
2
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point1) RthJS 290 K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0 V(BR)CEO 2.3 2.8 - V
Collector-emitter cutoff current
VCE = 7.5 V, VBE = 0 ICES - - 10 µA
Collector-base cutoff current
VCB = 5 V, IE = 0 ICBO - - 100 nA
Emitter-base cutoff current
VEB = 0.5 V, IC = 0 IEBO - - 3 µA
DC current gain
IC = 50 mA, VCE = 1.5 V, pulse measured hFE 110 180 270 -
1For calculation of RthJA please refer to Application Note Thermal Resistance
2007-04-20
BFP620F
3
Electrical Characteristics at T
A
= 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
IC = 50 mA, VCE = 1.5 V, f = 1 GHz fT- 65 - GHz
Collector-base capacitance
VCB = 2 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Ccb - 0.12 0.2 pF
Collector emitter capacitance
VCE = 2 V, f = 1 MHz, VBE = 0 ,
base grounded
Cce - 0.2 -
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Ceb - 0.45 -
Noise figure
IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt
IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt
F
-
-
0.7
1.3
-
-
dB
Power gain, maximum stable1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Gms - 21 - dB
Power gain, maximum available1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
Gma - 10 - dB
Transducer gain
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 ,
f = 1.8 GHz
f = 6 GHz
|S21e|2
-
-
19.5
9.5
-
-
dB
Third order intercept point at output2)
VCE = 2 V, IC = 50 mA, ZS=ZL=50 , f = 1.8 GHz IP3- 25 - dBm
1dB Compression point at output
IC = 50 mA, VCE = 2 V, ZS=ZL=50 , f = 1.8 GHz P-1dB - 14 -
1Gma = |S21e / S12e| (k-(k²-1)1/2), Gms = |S21e / S12e|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50 from 0.1 MHz to 6 GHz
2007-04-20
BFP620F
4
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transistor Chip Data:
IS = 0.22 fA
VAF = 1000 V
NE = 2-
VAR = 2V
NC = 2-
RBM = 2.707
CJE = 250.7 fF
TF = 1.43 ps
ITF = 2.4 A
VJC = 0.6 V
TR = 0.2 ns
MJS = 0.5 -
XTI = 3-
AF = 2 -
TITF1 -0.0065 -
BF = 425 -
IKF = 0.25 A
BR = 50 -
IKR = 10 mA
RB = 3.129
RE = 0.6 -
VJE = 0.75 V
XTF = 10 -
PTF = 0 deg
MJC = 0.5 -
CJS = 128.1 fF
NK = -1.42 -
FC = 0.8
KF = 7.291E-11
TITF2 1.0E-5
NF = 1.025 -
ISE = 21 fA
NR = 1-
ISC = 18 pA
IRB = 1.522 mA
RC = 2.364
MJE = 0.3 -
VTF = 1.5 V
CJC = 124.9 fF
XCJC = 1-
VJS = 0.52 V
EG = 1.078 eV
TNOM 298 K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit: LB0 = 0.22 nH
LE0 = 0.28 nH
LC0 = 0.22 nH
KB0-E0 = 0.1 -
KB0-C0 = 0.01 -
KE0-C0 = 0.11 -
CBE = 34 fF
CBC = 2fF
CCE = 33 fF
LBI =0.42 nH
RLBI = 0.15
LEI = 0.26 nH
RLEI = 0.11
LCI = 0.35 nH
RLI = 0.13
KBI-EI = -0.05 -
KBI-CI = -0.08 -
KEI-
C
I = 0.2 -
Valid up to 6GHz
To avoid high complexity of the package equivalent circuit,
both emitter leads of TSFP-4 are combined in one electrical
connection.RLxI are series resistors for the inductances LxI
and Kxa-yb are the coupling coefficients between the
inductances Lxa and Lyb.
2007-04-20
BFP620F
5
Total power dissipation Ptot = ƒ(TS)
0 15 30 45 60 75 90 105 120 °C 150
TS
0
20
40
60
80
100
120
140
160
mW
200
Ptot
Permissible Pulse Load RthJS = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
1
10
2
10
3
10
K/W
RthJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D = 0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
Ptotmax/ PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Collector-base capacitance Ccb= ƒ(VCB)
f = 1MHz
0123456V8
VCB
0
0.05
0.1
0.15
0.2
0.25
0.3
pF
0.4
CCB
2007-04-20
BFP620F
6
Third order Intercept Point IP3=ƒ(IC)
(Output, ZS=ZL=50)
VCE = parameter, f =1.8GHz
0 10 20 30 40 50 60 70 mA 90
IC
-5
0
5
10
15
20
dBm
30
IP3
0.8V 1.1V
1.4V
1.7V
2.3V
Transition frequency fT= ƒ(IC)
f = 1GHz
VCE = Parameter in V
0 10 20 30 40 50 60 70 80 mA 100
IC
0
5
10
15
20
25
30
35
40
45
50
55
60
GHz
70
fT
1 to 2.3
0.8
0.5
0.3
Power gain Gma, Gms = ƒ(IC)
VCE = 1.5V
f = Parameter in GHz
0 10 20 30 40 50 60 70 mA 90
IC
6
8
10
12
14
16
18
20
22
24
26
dB
30
G
0.9
1.8
2.4
3
4
5
6
Power Gain Gma, Gms = ƒ(f),
|S21|² = f (f)
VCE = 1.5V, IC = 50mA
01234GHz 6
f
5
10
15
20
25
30
35
40
dB
50
G
Gms
Gma
|S21|²
2007-04-20
BFP620F
7
Power gain Gma, Gms = ƒ (VCE)
IC = 50mA
f = Parameter in GHz
0.2 0.6 1 1.4 1.8 V2.6
VCE
-4
0
4
8
12
16
20
24
dB
30
G
0.9
1.8
2.4
3
4
5
6
Noise figure F = ƒ(IC)
VCE = 1.5V, ZS = ZSopt
0 10 20 30 40 50 60 70 80
0
0.5
1
1.5
2
2.5
3
f = 4GHz
f = 2.4GHz
f = 5GHz
f = 0.9GHz
f = 1.8GHz
f = 6GHz
f = 3GHz
I
c
[mA]
F [dB]
Noise figure F = ƒ(IC)
VCE = 1.5V, f = 1.8 GHz
0 10 20 30 40 50 60 70 80
0
0.5
1
1.5
2
2.5
3
I
c
[mA]
F [dB]
Z
S
= 50
Z
S
= Z
Sopt
Noise figure F = ƒ(f)
VCE = 1.5V, ZS = ZSopt
1 2 3 4 5 6 7
0
0.5
1
1.5
2
2.5
F [dB]
f [GHz]
I
C
= 50mA
I
C
= 5.0mA
2007-04-20
BFP620F
8
Source impedance for min.
noise figure vs. frequency
VCE = 1.5V, IC = 5.0mA/50.0mA
10.1 0.2 0.3 0.40.5 21.5 3 4 5
0
5
1
−5
−1
10
0.5
1.5
−0.5
−1.5
0.1
−0.1
0.2
2
−0.2
−2
0.3
−0.3
0.4 3
−0.4 −3
4
−4
−10
I
c
= 5.0mA
2.4GHz
3GHz
4GHz
1.8GHz
I
c
= 50mA
6GHz
5GHz
2007-04-20
BFP620F
9
Package TSFP-4
Package Outline
Foot Print
Marking Layout (Example)
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
BFP420F
Type code
Pin 1
0.35
0.45
0.9
0.5 0.5
40.2
1.55 0.7
1.4
8
Pin 1
±0.05
0.2
±0.05
1.4
12
10˚ MAX.
±0.05
0.8
1.2
±0.05
±0.04
0.55
±0.05
0.2
±0.05
0.15
±0.05
0.2
0.5
±0.05
0.5
±0.05
43
Manufacturer
2007-04-20
BFP620F
10
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.