Copyright © Cirrus Logic, Inc. 2007
(All Rights Reserved)
http://www.cirrus.com NOVEMBER '07
DS773F1
Ultra Low Power, Stereo CODEC w/Class H Headphone Amp
DIGITAL to ANALOG FEATURES
5 mW Stereo Playback Power Consumption
99 dB Dynamic Range (A-wtd)
-86 dB THD+N
Digital Signal Processing Engine
Bass & Treble Tone Control, De -Emphasis
Master Volume Control (+12 to -102 dB in
0.5 dB steps)
Soft-Ramp & Zero-Cross Transitions
Programmable Peak-Detect and Limiter
Beep Generator w/Full Tone Control
Stereo Headphone and Line Amplifiers
Step-Down/Inverting Charge Pump
Class H Amplifier - Automatic Supply Adj.
High Efficiency
Low EMI
Pseudo-Differential Ground-Centered Outputs
High HP Power Output at -75 dB THD+N
2 x 20 mW Into 32 Ω @1.8 V
2 x 20 mW Into 16 Ω @1.8 V
1 VRMS Line Output @1.8 V
Analog Vol. Ctl. (+12 to -55 dB in 1 dB steps)
Analog In to Analog Out Passthrough
Pop and Click Suppression
ANALOG to DIGITAL FEATURES
3.5 mW Stereo Record Power Consumption
95 dB Dynamic Range (A-wtd)
-87 dB THD+N
2:1 Stereo Input MUX
Analog Programmable Gain Amplifier (PGA)
(+12 to -6 dB in 0.5 dB steps)
+20 dB Boost
Programmable Automatic Level Control (ALC)
Noise Gate for Noise Suppression
Programmable Threshold &
Attack/Release Rates
Independent ADC Channel Control
Digital Vol. Ctl. (0 to -96 dB in 1 dB steps)
High-Pass Filter Disable for DC Measurements
Pseudo Differential Inputs
SYSTEM FEATURES
12 MHz USB Master Clock Input
Low Power Operation
Stereo Anlg. Passthrough: 3.3 mW @1.8 V
Stereo Rec. and Playback: 8.3 mW @1.8 V
Headphone Detect Input
(SYSTEM FEATURES continued on page 2)
I²S Serial Audio
Input/Output
I2C Control
HPF
+1.65 V to +3.47 V
Interface Supply
Control Port Serial Audio Port
Level Shifter
Multi-bit
ΔΣ ADC
Beep
+1.65 V to +2.71 V
Analog/Digital Supply
Multi-bit
ΔΣ ADC
ALC
ALC
Left HP
Output
Left 1
Pseudo Diff.
Input Multi-bit
ΔΣ DAC
LDO Regulator
Ground-Centered
Amplifiers
Inverting
Mono mix,
Limiter, Bass,
Treble Adjust
Step-Down
Attenuator,
Boost, Mix
+VHP -VHP
Right HP
Output
Left Line
Output
Right Line
Output
Left 2
Right 1
Right 2
Pseudo Diff.
Input
Pseudo Diff.
Input
Pseudo Diff.
Input
+1.65 V to +2.71 V
Charge Pump Supply
Headphone Detect
CS42L55
2DS773F1
CS42L55
SYSTEM FEATURES
High Performance 24-bit Converters
Multi-bit Delta Sigma Architecture
Integrated High Efficient Power Management
Reduces Power Consumption
Step-Down Charge Pump Improves
Efficiency
Inverting Charge Pump Accommodates
Low System Voltage by Providing Negative
Rail for HP/Line Amp
LDO Reg. Provides Low Digital Supply
Voltage
Digital Power Reduction
Very Low Oversampling Rate for
Converters
Bursted Serial Clock Providing 24 Bits per
Sample
Power Down Management
ADC, DAC, CODEC, PGA, DSP
Analog & Digital Routing/Mixes
Line/Headphone Out = Analog In (ADC
Bypassed)
Line/Headphone Out = ADC Out
Internal Digital Loopback
Mono Mixes
I²C® Control Port
I²S Digital Interface Format
Flexible Clocking Options
Master or Slave Operation
High-Impedance Digital Output Select
(used for easy MUXing between CODEC
and other data sources)
8.000, 11.029, 12.000, 16.000, 22.059,
24.000, 32.000, 44.118 and 48.000 kHz
Sample Rates
APPLICATIONS
HDD & Flash-Based Portable Audio Players
MD Players/Recorders
PDAs
Personal Media Players
Portable Game Consoles
Digital Voice Recorders
Digital Camcorders
Digital Cameras
Smart Phones
GENERAL DESCRIPTION
The CS42L55 is a highly integrated, 24-bit, ultra-low
power stereo CODEC based on multi-bit delta-sigma
modulation. Both the ADC and DAC offer many features
suitable for low power portable sys te m ap plications.
The analog input path allows independent channel
control of a variety of features. The Programmable Gain
Amplifier (PGA) provides analog gain with zero cross
transitions. The ADC path includes a digital volume at-
tenuator with soft ramp transitio ns and a progra mmable
ALC and noise gate monitor the input signals and adjust
the volume appropriately. An analog passthrough also
exists, accommodating a lower noise, lowe r power ana-
log in to analog out path to the headphone and line
amplifiers, bypassing the ADC and DAC.
The DAC output path includes a fixed-function digital
signal processing engine. Tone control provides bass
and treble adjustment at fo ur selectable corner freque n-
cies. The digital mixer provides independent volume
control for both the ADC output and PCM input signal
paths, as well as a master volume control. Digital vol-
ume controls may be conf igured to change on soft ramp
transitions while the analog controls can be configured
to occur on every zero crossing. Th e DAC pa th a lso in-
cludes de-emphasis, limiting functions and a beep
generator delivering tones selectable across a range of
two full octaves.
The Class H stereo headphone amplifier combines the
efficiency of an integrated step-down and inverting
charge pump with the linearity and low EMI of a Class
AB amplifier. A step-down/inv erting char ge pum p oper-
ates in two modes: +/-VCP mode or +/-(VCP/2) mode.
Based on the amplifier’s output sig nal, internal logic au-
tomatically adjusts the output of the charge pump,
+VHPFILT and –VHPFILT, to optimize efficiency. With
these features, the amplifier delivers a ground- centered
output with a large signal swing even at low voltages
and eliminates the need for external DC-blocking
capacitors.
These features make the CS42L55 the ideal solution for
portable applications that require extremely low power
consumption in a minimal amount of space.
The CS42L55 is available in a 36-pin QFN package for
the Commercial (-40°C to +85°C) grade. The
CDB42L55 Customer Demonstration board is also
available for device eval uation and implementation sug-
gestions. Please see “Ordering Information” on page 73
for complete details.
DS773F1 3
CS42L55
TABLE OF CONTENTS
1. PIN DESCRIPTIONS .............................................................................................................................. 8
1.1 I/O Pin Characteristics ................. ... ... ... ... ................. ... ... ... .... ... ... ... ... .... ... ... ................ ..................... 9
2. TYPICAL CONNECTION DIAGRAM ................................................................................................... 10
3. CHARACTERISTIC AND SPECIFICATION TABLES ......... ................................................................ 11
RECOMMENDED OPERATING CONDITIONS ................................................................................... 11
ABSOLUTE MAXIMUM RATINGS .......................................................................................................11
ANALOG INPUT CHARACTERISTICS ................................................................................................ 12
ADC DIGITAL FILTER CHAR ACTERI S TI CS ................. ... ... ................ ... .... ... ... ... .... ... ... ................ ... ... 13
HP OUTPUT CHARACTERISTICS ......................................................................................................14
LINE OUTPUT CHARACTERISTICS ................................................................................................... 15
ANALOG PASSTHROUGH CHARACTERISTICS ............................................................................... 16
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .............................. 16
SWITCHING SPECIFICATIONS - SERIAL PORT ............................................................................... 17
SWITCHING SPECIFICATIONS - CONTROL PORT .......................................................................... 18
POWER SUPPLY REJECTION (PSRR) CHARACTERISTICS ........................................................... 19
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS ..................................................... 19
POWER CONSUMPTION - ALL SUPPLIES = 1.8 V ............................................................................ 20
POWER CONSUMPTION - ALL SUPPLIES = 2.5 V ............................................................................ 21
4. APPLICATIONS ................................................................................................................................... 22
4.1 Overview ......................................................................................................................................... 22
4.1.1 Basic Architecture ................................................................................................................. 22
4.1.2 Line Inputs ............................................................................................................................. 22
4.1.3 Line and Headphone Outputs (Class H, Ground-Centered Amplifiers) ..... ... ... ...... .... ... ... ... ... 22
4.1.4 Fixed-Function DSP Engine .................................................................................................. 22
4.1.5 Beep Generator ..................................................................................................................... 22
4.1.6 Power Management .............................................................................................................. 22
4.2 Analog Inputs ................................................................................................................................. 23
4.2.1 Pseudo-Differential Inputs ..................................................................................................... 24
4.2.2 Automatic Level Control (ALC) .............................................................................................. 24
4.3 Analog In to Analog Out Passthrough ............................................................................................ 25
4.4 Analog Outputs .............................................................................................................................. 26
4.5 Class H Amplifier ............................................................................................................................ 27
4.5.1 Power Control Options ....... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ... .... ... ......... 27
4.5.1.1 Standard Class AB Operation (Mode 01 and 10) ...................................................... 28
4.5.1.2 Adapted to Volume Settings (Mode 00) ..... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ...... 28
4.5.1.3 Adapted to Output Signal (Mode 11) ......................................................................... 29
4.5.2 Power Supply Transitions ...................................................................................................... 29
4.5.3 Efficiency ............................................................................................................................... 31
4.6 Beep Generator .............................................................................................................................. 31
4.7 Limiter ............................................................................................................................................. 32
4.8 Serial Port Clocking ........................................................................................................................ 34
4.9 Digital Interface Format .................................................................................................................. 34
4.10 Initialization .. .... ... ... ................ .... ... ... ... ... .... ... ... ................ .... ... ... ... ... .... ... ... ................................... 34
4.11 Recommended DAC to HP or Line Power-Up Sequence (Playback) .......................... .... ... ... ... ... 35
4.11.1 Recommended Power-Down Sequence ............................................................................. 36
4.12 Recommended PGA to HP or Line Power-Up Sequence (Analog Passthrough) ...... ................... 36
4.12.1 Recommended Power-Down Sequence ............................................................................. 36
4.13 Required Initialization Settings ..................................................................................................... 37
4.14 Control Port Operation ........ ... .... ... ... ... ... ....................................................................................... 38
4.14.1 I²C Control . ... ... .... ... ... ... .... ... ... ... ... .... ................ ... ... .... ... ... ... ... .... ... ... ... ................ ................ 38
4.14.2 Memory Address Pointer (MAP) .......... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 39
4.14.2.1 Map Increment (INCR) ............................................................................................. 39
4DS773F1
CS42L55
5. REGISTER QUICK REFERENCE ........................................................................................................ 40
6. REGISTER DESCRIPTION .................................................................................................................. 42
6.1 Fab I.D. and Revision Register (Address 01h) (Read Only) ........................................................... 42
6.1.1 Chip Revision (Read Only) .................................................................................................... 42
6.2 Power Control 1 (Address 02h) ...................................................................................................... 42
6.2.1 Power Down ADC Charge Pump .......................................................................................... 42
6.2.2 Power Down ADC x ............................................................................................................... 42
6.2.3 Power Down .......... ... ... ... .... ... ... ... ... ................. ... ... ... .... ... ................ ... ... .... ... ... ... ................... 42
6.3 Power Control 2 (Address 03h) ...................................................................................................... 43
6.3.1 Headphone Power Control .......... ................ .... ... ... ... .... ... ... ... ... .... ... ................ ... ... .... ... ... ... ... 43
6.3.2 Line Power Control ............. ... ... ... ... .... ... ... ... .... ................ ... ... ... .... ... ... ... .... ... ... ... ................... 43
6.4 Clocking Control 1 (Address 04h) ................................................................................................... 43
6.4.1 Master/Slave Mode ............ ... ................................................................................................ 43
6.4.2 SCLK Polarity ........... ... ... .... ... ... ... ... .... ................ ... ... .... ... ... ................ ... .... ... ... ... ... ................ 43
6.4.3 SCLK Equals MCLK ....... .... ... ... ... ... ................. ... ... ... .... ... ... ................ ... .... ... ... ... ... ................ 44
6.4.4 MCLK Divide By 2 .............. ... ... ... ... .... ... ................ ... .... ... ... ... ... ................. ... ... ... ... .... ............ 44
6.4.5 MCLK Disable ... ................. ... ... ... ... ................. ... ... ... .... ... ................ ... ... .... ... ......................... 44
6.5 Clocking Control 2 (Address 05h) ................................................................................................... 44
6.5.1 Speed Mode .......... ... ... ... .... ... ... ... ... ................. ... ... ... .... ... ................ ... ... .... ... ... ... ................... 44
6.5.2 32 kHz Sample Rate Group ..................................................................................................45
6.5.3 Internal MCLK/LRCK Ratio ................................................................................................... 45
6.6 Class H Power Control (Address 06h) ............................................................................................ 45
6.6.1 Adaptive Power Adjustment ..... ................ ... .... ... ... ... .... ... ... ... ... .... ................ ... ... ... .... ... ... ... ... 45
6.7 Miscellaneous Control (Address 07h) ............................................................................................. 45
6.7.1 Digital MU X ................. ... .... ... ... ................ ... .... ... ... ... ................ .... ... ... ... ................ ................ 45
6.7.2 Analog Zero Cross ...... ... .... ... ................ ... ... .... ... ... ... ................ .... ... ... ... .... ... ......................... 46
6.7.3 Digital Soft R amp ..... ... ................ ... .... ... ... ................ .... ... ... ... ................ .... ... ... ... ... ................ 46
6.7.4 Freeze Registers ......................... ... .... ... ... ... .... ... ... ................ ... .... ... ... ... .... ... ... ...................... 46
6.8 ADC, Line, HP MUX (Address 08h) ................................................................................................ 46
6.8.1 ADC x Input Select ...................... ... .... ... ... ... .... ................ ... ... ... .... ... ... ................ ... .... ............ 46
6.8.2 Line Input Select ....... ... ................ ... .... ... ... ... .... ................ ... ... ... .... ... ... ................ ... ................ 47
6.8.3 Headphone Input Select ........................................................................................................ 47
6.9 HPF Control (Address 09h) ............................................................................................................ 47
6.9.1 ADCx High-Pass Filter .......................................................................................................... 47
6.9.2 ADCx High-Pass Filter Freeze .............................................................................................. 47
6.9.3 HPF x Corner Frequency ......... ... ... .... ... ... ... ................. ... ... ... ... .... ... ... ... .... ... ... ................ ...... 47
6.10 Misc. ADC Control (Address 0Ah) ................................................................................................ 48
6.10.1 ADC Channel B=A .............................................................................................................. 48
6.10.2 PGA Channel B=A .............................................................................................................. 48
6.10.3 Digital Sum .......................................................................................................................... 48
6.10.4 Invert ADC Signal Polarity ................................................................................................... 48
6.10.5 ADC Mute ............................................................................................................................ 48
6.11 PGA x MUX, Volume:
PGA A (Address 0Bh) & PGA B (Address 0Ch) ................................................................................... 49
6.11.1 Boostx ................................................................................................................................. 49
6.11.2 PGA x Input Select .............................................................................................................. 49
6.11.3 PGAx Volume ...................................................................................................................... 49
6.12 ADCx Attenuator Control:
ADCAATT (Address 0Dh) & ADCBATT (Address 0Eh) ....................................................................... 50
6.12.1 ADCx Volume ...................................................................................................................... 50
6.13 Playback Control 1 (Address 0Fh) ................................................................................................ 50
6.13.1 Power Down DSP ......... ....................................................................................................... 50
6.13.2 HP/Line De-Emphasis ......................................................................................................... 50
6.13.3 Playback Channels B=A ...................................................................................................... 50
DS773F1 5
CS42L55
6.13.4 Invert PCM Signal Polarity .................. ................................................................................ 51
6.13.5 Master Playback Mute ......................................................................................................... 51
6.14 ADCx Mixer Volume:
ADCA (Address 10h) & ADCB (Address 11h) ...................................................................................... 51
6.14.1 ADC Mixer Channel x Mute ................................................................................................. 51
6.14.2 ADC Mixer Channel x Volume ............................................................................................. 51
6.15 PCMx Mixer Volume:
PCMA (Address 12h) & PCMB (Address 13h) ..................................................................................... 52
6.15.1 PCM Mixer Channel x Mute ................................................................................................52
6.15.2 PCM Mixer Channel x Volume ............................................................................................ 52
6.16 Beep Frequency & On Time (Address 14h) ................................................................................. 53
6.16.1 Beep Frequency ............... ... ... ... ... .... ... ... ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... .... ............ 53
6.16.2 Beep On Time ........... ... .... ... ... ................ ... .... ... ... ... .... ... ... ... ... .... ................ ... ... ... .... ............ 54
6.17 Beep Volume & Off Time (Address 15h) ......................................................................................54
6.17.1 Beep Off Time ........... ................ ... .... ... ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ... ... .... ............ 54
6.17.2 Beep Volume .................... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ... ... .... ............ 55
6.18 Beep & Tone Configuration (Address 16h) ...................................................................................55
6.18.1 Beep Configuration ................. ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ...................................... 55
6.18.2 Treble Corner Frequency ....... ................... .................... ................... ................... ................ 55
6.18.3 Bass Corner Frequency ...... ... ... ... .... ................ ... ... .... ... ... ... ... .... ... ... ... ................ .... ... ... ...... 56
6.18.4 Tone Control Enable ........... ... ... ... .... ... ... ... .... ................ ... ... ... .... ... ... ... .... ... ... ... ................... 56
6.19 Tone Control (Address 17h) .................. .... ... ... ................ .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ............ 56
6.19.1 Treble Gain ............. ... ... .... ... ... ... ... .... ................ ... ... .... ... ... ... ... .... ... ... ... ................ ................ 56
6.19.2 Bass Gain ........ .... ... ... ... ................ .... ... ... ... .... ................ ... ... ... .... ... ... ................ ... ................ 56
6.20 Master Volume Control:
MSTA (Address 18h) & MSTB (Address 19h) ...................................................................................... 57
6.20.1 Master Volume Control ........................................................................................................ 57
6.21 Headphone Volume Control:
HPA (Address 1Ah) & HPB (Address 1Bh) ..........................................................................................57
6.21.1 Headphone Channel x Mute ................................................................................................57
6.21.2 Headphone Volume Control ................................................................................................57
6.22 Line Volume Control:
LINEA (Address 1Ch) & LINEB (Address 1Dh) .................................................................................... 58
6.22.1 Line Channel x Mute ................. ... .... ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ... .... ... ......... 58
6.22.2 Line Volume Control ............................................................................................................ 58
6.23 Analog Input Advisory Volume (Address 1Eh) ............................................................................. 59
6.23.1 Analog Input Advisory Volume .................. .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ................ ...59
6.24 Digital Input Advisory Volume (Address 1Fh) ...............................................................................59
6.24.1 Digital Input Advisory Volume ............. ................................................................................ 59
6.25 ADC & PCM Channel Mixer (Address 20h) .................................................................................. 60
6.25.1 PCM Mix Channel Swap .............. .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .................... ............ 60
6.25.2 ADC Mix Channel Swap ............ ... .... ... ... ... .... ................ ... ... ... .... ... ... ... .... ... ... ... ................... 60
6.26 Limiter Min/Max Thresholds (Address 21h) ..................................................................................60
6.26.1 Limiter Maximum Threshold ................ ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 60
6.26.2 Limiter Cushion Threshold .................................................................................................. 61
6.27 Limiter Control, Release Rate (Address 22h) ...............................................................................61
6.27.1 Peak Detect and Limiter ................... ... ... ................ .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ...... 61
6.27.2 Peak Signal Limit All Channels ........................................................................................... 61
6.27.3 Limiter Release Rate ................. ... .... ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ... .... ... ......... 62
6.28 Limiter Attack Rate (Address 23h) ................................................................................................ 62
6.28.1 Limiter Attack Rate .............. ... ... ... ................. ... ... ... .... ... ... ... ... .... ... ... ................ ... .... ............ 62
6.29 ALC Enable & Attack Rate (Address 24h) ....................................................................................62
6.29.1 ALCx ....... ... ... ... .... ... ... ... ................ .... ... ... ... .... ... ................ ... ... .... ... ... ... ................................ 62
6.29.2 ALC Attack Rate .................................................................................................................. 63
6DS773F1
CS42L55
6.30 ALC Release Rate (Address 25h) ................................................................................................ 63
6.30.1 ALC Release Rate ............................................................................................................... 63
6.31 ALC Threshold (Address 26h) ...................................................................................................... 64
6.31.1 ALC Maximum Threshold .................................................................................................... 64
6.31.2 ALC Minimum Threshold ..................................................................................................... 64
6.32 Noise Gate Control (Address 27h) ............................................................................................... 64
6.32.1 Noise Gate All Channels ..................................................................................................... 64
6.32.2 Noise Gate Enable .............................................................................................................. 65
6.32.3 Noise Gate Threshold and Boost ........................................................................................ 65
6.32.4 Noise Gate Delay Timing .................................................................................................... 65
6.33 ALC and Limiter Soft Ramp, Zero Cross Disables (Address 28h) ................................................ 65
6.33.1 ALCx Soft Ramp Dis able .. ...... ...... ....... ...... ....... ...... ....... ...... ....... ...... ... ....... ...... ....... ...... ...... 65
6.33.2 ALCx Zero Cross Disable .................................................................................................... 65
6.33.3 Limiter Soft Ramp Disable ... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... .... ...... ...... ....... ......... 66
6.34 Status (Address 29h) (Read Only) ............................................................................................... 66
6.34.1 HPDETECT Pin Status (Read Only) ................ ... ... .... ... ... ... ................ .... ... ... ... ... .... ... ... ... ... 66
6.34.2 Serial Port Clock Error (Read Only) .................................................................................... 66
6.34.3 DSP Engine Overflow (Read Only) ..................................................................................... 66
6.34.4 MIXx Overflow (Read Only) ................................................................................................. 66
6.34.5 ADCx Overflow (Read Only) ...............................................................................................67
6.35 Charge Pump Frequency (Address 2Ah) ..................................................................................... 67
6.35.1 Charge Pump Frequency .................................................................................................... 67
7. PCB LAYOUT CONSIDERATIONS ..................................................................................................... 68
7.1 Power Supply ................................................................................................................................. 68
7.2 Grounding ....................................................................................................................................... 68
7.3 QFN Thermal Pad .......................................................................................................................... 68
8. ANALOG VOLUME NON-LINEARITY (DN L & INL) ...... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 69
9. ADC & DAC DIGITAL FILTERS .......................................................................................................... 70
10. PARAMETER DEFINITIONS .............................................................................................................. 71
11. PACKAGE DIMENSIONS .................................................................................................................. 72
THERMAL CHARACTERISTICS .......................................................................................................... 72
12. ORDERING INFORMATION .............................................................................................................. 73
13. REFERENCES .................................................................................................................................... 73
14. REVISION HISTORY .......................................................................................................................... 73
LIST OF FIGURES
Figure 1.Typical Connection Diagram ....................................................................................................... 10
Figure 2.CMRR Test Configuration .... .... ... ... ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ... .... ... ... ... ... ................ 12
Figure 3.HP Output Test Configuration ..... ... ... ... .... ... ... ................ .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ............ 15
Figure 4.Line Output Test Configuration ...... ... ... ................. ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ................... 15
Figure 5.Serial Port Timing (Slave Mode) .............. ... ... ... .... ... ... ................... .................... .............. ........... 17
Figure 6.Serial Port Timing (Master Mode) ............................................................................................... 17
Figure 7.I²C Control Port Timing ............................................................................................................... 18
Figure 8.Power Consumption Test Configuration ..................................................................................... 19
Figure 9.Analog Input Signal Flow ............................................................................................................ 23
Figure 10.Stereo Pseudo-Differential Input ............................................................................................... 24
Figure 11.ALC Operation ................ ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... .... ... ................ ...................... 25
Figure 12.DSP Engine Signal Flow ........................................................................................................... 26
Figure 13.Analog Output Stage ................................................................................................................. 27
Figure 14.Adaptive Mode 00 ........... ... ................ .... ... ... ... .... ... ... ... .... ... ... ................ ... .... ... ... ... ................... 28
Figure 15.VHPFILT Transitions ................................................................................................................. 30
Figure 16.VHPFILT Hysteres is .... ... ... .... ... ... ... ... .... ... ................ ... .... ... ... ... ... .... ... ................ ... ... ................ 30
Figure 17.Class H Power to Load vs. Power from VCP Supply ................................................................ 31
DS773F1 7
CS42L55
Figure 18.Beep Configuration Options ...................................................................................................... 32
Figure 19.Peak Detect & Limiter ............................................................................................................... 33
Figure 20.I²S Format ................................................................................................................................. 34
Figure 21.Control Port Timing, I²C Write ................................................................................................... 38
Figure 22.Control Port Timing, I²C Read ................................................................................................... 38
Figure 23.PGA Step Size vs. Volume Setting ........................................................................................... 69
Figure 24.PGA Output Volume vs. Volume Setting .................................................................................. 69
Figure 25.HP/Line Step Size vs. Volume Setting ...................................................................................... 69
Figure 26.HP/Line Output Volume vs. Volume Setting .............................................................................69
Figure 27.ADC Passband Ripple .............. ... ... ... .... ... ... ... .... ... ... ... .... ... ... ................ ... .... ... ... ... ... ................ 70
Figure 28.ADC Stopband Rejection .......................................................................................................... 70
Figure 29.ADC Transition Band ................................................................................................................ 70
Figure 30.ADC Transition Band Detail ...................................................................................................... 70
Figure 31.DAC Passband Ripple .............................. ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ............................ 70
Figure 32.DAC Stopband .......................................................................................................................... 70
Figure 33.DAC Transition Band ................................................................................................................ 70
Figure 34.DAC Transition Band (Detail) .................................................................................................... 70
8DS773F1
CS42L55
1. PIN DESCRIPTIONS
Pin Name # Pin Description
SDIN 1 Serial Audio Da ta Input (Input) - Input for two’s complement serial audio data.
LRCK 2 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the
serial audio data lines.
SDA 3 Serial Control Data (Input/Output) - Serial data for the I²C serial control port.
SCL 4 Serial Control Port Clock (Input) - Serial clock for the I²C serial control port.
VCP 5 Step-Down Charge Pump Power (Input) - Power supply for the step-down charge pump.
FLYP 6 Charge Pump Cap Positive Node (Output) - Positive node for the step-down charge pump’s flying
capacitor.
+VHPFILT 7 Step-Down Charge Pump Filter Connection (Output) - Power supply from the step-down charge
pump that provides the positive rail for the headphone and line amplifiers
FLYC 8 Charge Pump Cap Common Node (Output) - Common positive node for the step-down and inverting
charge pumps’ flying capacitors.
FLYN 9 Charge Pump Cap Negative Node (Output) - Negative node for the inverting charge pump’s flying
capacitor.
-VHPFILT 10 Inverting Charge Pump Filter Connection (Output) - Power supply from the inverting charge pump
that provides the negative rail for the headphone and line amplifiers.
HPOUTA
HPOUTB 11
13 Headphone Audio Output (Output) - The full-scale output level is specified in the HP Output Charac-
teristics specification table
HPREF 12 Pseudo Diff. Headphone Outpu t Referenc e (Input) - Ground reference for the head phone amplifiers
LINEOUTA
LINEOUTB 14
16 Line Audio Output (Output) - The full-scale output level is specified in the Line Output Characteristics
specification table
LINEREF 15 Pseudo Diff. Line Output Reference (Input) - Ground reference for the line amplifiers.
8
7
6
3
1
9
2
4
5
10 11 12 13 14 15 181716
19
26
20
21
22
23
24
25
27
35 28
293031
32
333436
VLDO
VDFILT
VL
MCLK
SDOUT
HPOUTA
HPREF
HPOUTB
LINEOUTA
LINEREF
VA
LINEOUTB
LRCK
SDA
SCL
FLYP
HPDETECT
RESET
+VHPFILT
AIN2A
AIN2B
AFILTA
AFILTB
FILT+
VQ
AIN2REF
VCP
SDIN
AGND
SCLK
FLYN
AIN1A
AIN1REF
AIN1B
FLYC Top-Down (Through Package)
View
-VHPFILT
GND/Thermal Pad
DS773F1 9
CS42L55
1.1 I/O Pin Characteristics
Input and output levels and associated power supply voltage are shown in the table below. Logic levels
should not exceed the corresponding power supply voltage.
VA 17 Analog Power (Input) - Power supply for the internal analog section.
AGND 18 Analog Ground (Input) - Ground reference for the internal analog section.
FILT+ 19 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VQ 20 Quiescent Volta ge (Output) - Filter connection for the internal quiesce nt voltage.
AFILTA
AFILTB 21
22 Antialias Filter Connection (Output) - Antialias filter connection for the ADC inputs.
AIN2A
AIN2B
AIN1A
AIN1B
23
25
26
28
Analog Input (Input) - The full-scale level is specified in the Analog Input Characteristics specification
table.
AIN2REF
AIN1REF 24
27 Pseudo Diff. Analog Input Reference (Input) - Ground reference for the programmable gain amplifi-
ers (PGA).
HPDETECT 29 Headphone Detect (Input) - Powers down the left and/or right channel of the line and/or headphone
outputs as described in “Headphone Power Control” on page 43 and “Line Power Control” on page 43.
RESET 30 Reset (Input) - The device enters a low power mode when this pin is driven low.
VLDO 31 Low Dropout Regulator (LDO) Power (Input) - Power supply for the LDO regulator.
VDFILT 32 Low Dropout Regu lator (LDO) Filter Connection (Output) - Power supply from the LDO regulator
that provides the low voltage power to the digital section.
VL 33 Digital Interface Power (Input) - Determines the requi red signal level for the serial au dio interface
and I²C control port.
SDOUT 34 Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
MCLK 35 Master Clock (Input) - Clock source for the delta-sigma modulators.
SCLK 36 Serial Clock (Input/Output) - Serial clock for the serial audio interface.
GND/
Thermal Pad -Ground reference for the internal charge pump and dig ital section; th ermal relief pad. See “QFN Ther-
mal Pad” on page 68 for more information.
Power
Supply Pin Name I/O Internal
Connections Driver Receiver
VL
RESET Input - - 1.8 V - 3.3 V, with Hysteresis
SCL Input - - 1.8 V - 3.3 V, with Hysteresis
SDA Input/Output - CMOS/Open Drain 1.8 V - 3.3 V, with Hysteresis
MCLK Input - - 1.8 V - 3.3 V
LRCK Input/Output Weak Pull-up
(~1 MΩ) 1.8 V - 3.3 V, CMOS 1.8 V - 3.3 V
SCLK Input/Output Weak Pull-up
(~1 MΩ) 1.8 V - 3.3 V, CMOS 1.8 V - 3.3 V
SDOUT Output - 1.8 V - 3.3 V, CMOS 1.8 V - 3.3 V
SDIN Input - - 1.8 V - 3.3 V
VA HPDETECT Input - - 1.8 V - 2.5 V, with Hysteresis
10 DS773F1
CS42L55
2. TYPICAL CONNECTION DIAGRAM
Note 2
2.2 µF
Note 1
Analog
Input 1
Analog
Input 2
1 µF
GND/Thermal Pad
VL
0.1 µF
+1.65 V to +3.47 V
SCL
SDA
RESET
2 kΩ
LRCK
MCLK
SCLK
2.2 µF
+VHPFILT
VDFILT
LINEREF
SDIN
SDOUT
1 µF
AIN2REF
AIN1A 1800 pF
1800 pF
100 kΩ
100 Ω
AIN1B *
*
Digital Audio
Processor
AIN2A 1800 pF
1800 pF
AIN2B *
*
FLYC
FLYN
-VHPFILT
2.2 µF
1 µF
1 µF
1 µF
1 µF
100 kΩ
100 Ω
100 Ω
100 Ω
100 kΩ
100 kΩ
2.2 µF **
**
VCP
AIN1REF 1 µF
LINEOUTA
LINEOUTB
0.1 µF
VA
+1.65 V to +2.71 V
0.1 µF
VLDO
2.2 µF
VQ
AGND
NPO/C0G dielectric capacitors.
1000 pF
AFILTA
AFILTB
1000 pF 2.2 µF
**
HPOUTB
HPOUTA Headphone Out
Left & Right
33 Ω
0.1 µF
HPDETECT
33 Ω
0.1 µF
47 kΩ
HPREF
FILT+
+1.65 V to +2.71 V
FLYP
2.2 µF **
**
**
Note 1
Notes:
1. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown. Larger capacitance
reduces the ripple on the internal amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels.
Smaller capacitance may not sufficiently reduce ripple to achieve the rated output power and distortion. Since the actual value
of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the manufacturer’s data
sheet, capacitors should be selected based on the minimum output power and maximum distortion required.
2. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the default
charge pump switching frequency. The required capacitance follows an inverse relationship with the charge pump’s switching
frequency. When increasing the switching frequency, the capacitance may decrease; when lowering the switching frequency,
the capacitance must increase. Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value
by a percentage specified in the manufacturer’s data sheet, capacitors should be selected based on the minimum output
power, maximum distortion and maximum charge pump switching frequency required.
3. Additional bulk capacitance may be added to improve PSRR at low frequencies.
4. These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as
close as possible to the inputs. They are only needed when the PGA (Programmable Gain Amplifier) is bypassed.
5. Input pairs (such as AIN2A, AIN2REF and AIN2B) may be left floating if they are not used.
Note 4
Note 3
2 kΩ
*
**
Low ESR, X7R/X5R dielectric capacitors.
**
**
**
**
** **
**
**
**
** ** **
Note 5
**
**
562 Ω
562 Ω
3300 pF
Rext
Rext
LPF is Optional Line Level Out
Left & Right
3300 pF
*
*
Figure 1. Typical Connection Diagram
CS42L55
DS773F1 11
CS42L55
3. CHARACTERISTIC AND SPECIFICATION TABLES
RECOMMENDED OPERATING CONDITIONS
GND = AGND = 0 V, all voltages with respect to ground.
ABSOLUTE MAXIMUM RATINGS
GND = AGND = 0 V; all voltages with respect to ground.
WARNING:Operation at or beyo nd these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Notes: 1. Due to the existence of parasitic body diodes between VCP and V A, current flows from VCP to V A when-
ever the VA power supply is lower than VCP. This causes a “back-powering” effect on the VA power
supply rails internal to the part. Hence V A should be maintained at an e qual or greater voltage than VCP
at all times. While “back-powerin g” does not have any adverse ef fects on device operation with respect
to performance and reliability , it does lead to extra power consumption and therefore should be avoided.
2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause
SCR latch-up.
3. The maximum over/under voltage is limited by the input current.
Parameters Symbol Min Max Units
DC Power Supply
Analog VA 1.65 2.71 V
Charge Pump VCP 1.65 VA V
LDO Regulator for Digital VLDO 1.65 2.71 V
Serial/Control Port Interface VL 1.65 3.47 V
Ambient Temperature Commercial - CNZ TA-40 +85 °C
Parameters Symbol Min Max Units
DC Power Supply Analog, Charge Pump, LDO
Serial/Control Port Interface VA, VCP, VLDO
VL -0.3
-0.3 3.0
4.0 V
V
Input Current (Note 2) Iin 10mA
Analog Input Voltage (Note 3) VIN AGND-0.7 VA+0.7 V
Digital Input Voltage (Note 3) VIND -0.3 VL+0.4 V
Ambient Operating Temperature (power applied) TA-50 +115 °C
Storage Temperature Tstg -65 +150 °C
12 DS773F1
CS42L55
ANALOG INPUT CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L55 are shown in the Figure 1. "Typical Connection Dia-
gram" on pa ge 10; Input is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; TA=+25°C; Measurement bandwidth is 20 Hz to 20 kHz. Sample Frequency = 48 kHz.
4. Referred to the typical full-scale voltage. Applies to all THD+N and Dynamic Range values in the table .
5. See test figure shown below.
6. SDOUT Code with HPFx=1;HPFRZx=0.
7. Measured between AINxx and AGND.
VA = 2.5 V VA = 1.8 V
Parameter (Note 4) Min Typ Max Min Typ Max Unit
Analog In to ADC (PGA bypassed)
Dynamic Range A-weighted
unweighted 89
86 95
92 -
-86
83 92
89 -
-dB
dB
Total Harmonic Distortion + Noise -1 dBFS
-20 dBFS
-60 dBFS
-
-
-
-85
-72
-32
-79
-
-26
-
-
-
-85
-69
-29
-79
-
-23
dB
dB
dB
Analog In to PGA to ADC
Dynamic Range
PGA Setting: 0 dB A-weighted
unweighted 88
85 94
91 -
-85
82 91
88 -
-dB
dB
PGA Setting: +12 dB A-weighted
unweighted 81
78 87
84 -
-78
75 84
81 -
-dB
dB
Total Harmo nic Distortion + Noise
PGA Setting: 0 dB -1 dBFS
-60 dBFS -
--87
-31 -81
-25 -
--85
-28 -79
-22 dB
dB
PGA Setting: +12 dB -1 dBFS - -83 -77 - -81 -75 dB
Common Mode Rejection (Note 5) -40--40-dB
DC Accuracy
Interchannel Gain Mismatch - 0.2 - - 0.2 - dB
Gain Drift - ±100 - - ±100 - ppm/°C
Offset Error (Note 6) - 352 - - 352 - LSB
Input
Interchannel Isolation (1 kHz) -90--90-dB
HP Amp to Analog Input Isolation RL = 10 kΩ
RL = 16 Ω
-
-90
83 -
--
-90
83 -
-dB
dB
Full-scale Input Voltage ADC
PGA (0 dB)
PGA (+12 dB)
0.76•VA
0.78•VA 0.80•VA
0.82•VA
0.198•VA
0.84•VA
0.86•VA 0.76•VA
0.78•VA 0.80•VA
0.82•VA
0.198•VA
0.84•VA
0.86•VA Vpp
Vpp
Vpp
Input Impedance (Note 7) ADC
PGA -
-60
40 -
--
-60
40 -
-kΩ
kΩ
100 m VPP,
25 Hz
100 Ω1 μF
AINxA
AINxREF
Figure 2. CMRR Test Config uration
DS773F1 13
CS42L55
ADC DIGITAL FILTER CHARACTERISTICS
Notes: 8. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 27 to 30 on
page 70) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
HPF parameters are for Fs = 48 kHz.
9. Characteristics are based on the default setting in register “HPF Control (Address 09h)” on page 47.
10. Settling time decreases at higher corner frequency settings.
Parameter (Note 8) Min Typ Max Unit
Frequency Response (20 Hz to 20 kHz) -0.07 - +0.02 dB
Passband to -0.05 dB corner
to -3 dB corner -
-0.421
0.495 -
-Fs
Fs
Stopband 0.52 - - Fs
Stopband Attenuation 33 - - dB
Total Group Del ay - 7.6/Fs - s
High-Pass Filter Characteristics (48 kHz Fs) (Note 9)
Passband to -3.0 dB corner
to -0.05 dB corner -
-1.87
17.15 -
-Hz
Hz
Passband Ripple - - 0.15 dB
Phase Devia ti o n @ 20 Hz -5.3-Deg
Filter Settling Time (Note 10) -105/Fs -s
14 DS773F1
CS42L55
HP OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25°C;
Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; T est load RL = 3 kΩ, CL= 150 pF for a Line Load,
and test load RL=16 Ω, CL = 150 pF for a headphone load. (See Figure 3 on page 15).
VA = 2.5 V VA = 1.8 V
Parameter (Note 11) Min Typ Max Min Typ Max Unit
Line Load RL = 3 kΩ (+2 dB Analog Gain)(Note 12)
Dynamic Range
18 to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
92
89
-
-
98
95
96
93
-
-
-
-
90
87
-
-
96
93
94
91
-
-
-
-
dB
dB
dB
dB
Total Harmo nic Distortion + Noise
18 to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
-
-
-
-
-
-
-84
-76
-36
-82
-74
-34
-78
-
-30
-
-
-
-
-
-
-
-
-
-85
-74
-34
-83
-72
-32
-79
-
-28
-
-
-
dB
dB
dB
dB
dB
dB
Full-scale Output Voltage (Note 13) 1.56•VA 1.64•VA 1.73•VA 1.56•VA 1.64•VA 1.73•VA VPP
HP Load RL = 16 Ω (-4 dB Analog Gain)(Note 12)
Dynamic Range
18 to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
89
86
-
-
95
92
93
90
-
-
-
-
88
85
-
-
94
91
92
89
-
-
-
-
dB
dB
dB
dB
Total Harmo nic Distortion + Noise - -75 -69 - -75 -69 dB
Full-scale Output Voltage 0.76•VA 0.82•VA 0.88•VA 0.76•VA 0.82•VA 0.88•VA VPP
Output Power (Note 13) -32--17-mW
Other Characteristics for RL = 16
Ω
or 3 k
Ω
Interchannel Isolation 3 kΩ
16 Ω
-
-90
90 -
--
-90
90 -
-dB
dB
Interchannel Gain Mismatch - 0.1 0.25 - 0.1 0.25 dB
Output Offset Voltage (Note 14) DAC to HPOUT - 0.5 1.0 - 0.5 1.0 mV
Gain Drift - ±100 - - ±100 - ppm/°C
AC-Load Resistance (RL)(Note 14) 16 - - 16 - - Ω
Load Capacitance (CL)(Note 14 ) - - 150 - - 150 pF
DS773F1 15
CS42L55
LINE OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25 °C;
Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 3 kΩ, CL = 150 pF (see Figure 3 on
page 15).
Notes: 11. One-half LSB of triangular PDF dither is added to data.
12. The Analog Gain setting (refer to “Headphone Volume Control” on page 57 or “Line Volume Control” on
page 58) must be configured as indicated to achieve the specified output characteristics. High gain se t-
tings at certain VA and VCP supply levels may cause clipping when the audio signal approaches full-
scale, maximum power output.
13. VCP settings lower than VA reduces the headroom of the headphone amplifier. As a result, the speci-
fied THD+N performance at full-scale output voltage and power may not be achieved.
14. See Figure 3 and Figure 4 on page 15. Refer to “Parameter Definitions” on page 71.
VA = 2.5 V VA = 1.8 V
Parameter (Note 11) Min Typ Max Min Typ Max Unit
(+2 dB Analog Gain) (Note 12)
Dynamic Range
18 to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
93
90
-
-
99
96
96
93
-
-
-
-
91
88
-
-
97
94
94
91
-
-
-
-
dB
dB
dB
dB
Total Harmonic Di stortion + Noise
18 to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
-
-
-
-
-
-
-84
-76
-36
-82
-74
-34
-78
-
-30
-
-
-
-
-
-
-
-
-
-86
-74
-34
-84
-72
-32
-80
-
-28
-
-
-
dB
dB
dB
dB
dB
dB
Full-scale Output Voltage (Note 13) 1.50•VA 1.58•VA 1.66•VA 1.50•VA 1.58•VA 1.66•VA VPP
Other Characteristics
Interchannel Isolation -90--90-dB
Interchannel Gain Mismatch - 0.1 0.25 - 0.1 0.25 dB
Output Offset Voltage (Note 14) DAC to LINEOUT -0.51.0-0.21.0mV
Gain Drift - ±100 - - ±100 - ppm/°C
Output Impedance - 100 - - 100 - Ω
AC-Load Resistance (RL)(Note 14) 3--3--kΩ
Load Capacitance (CL)(Note 14) - - 150 - - 150 pF
Test Load
LINEOUTx
GND/AGND
CL=150 pF
LINEREF RL=3 kΩ
M easurem ent
Device
-+
Test Load
HPOUTx
GND/AGND
CL=150 pF
0.1 μF
33 Ω
HPREF
RL=16 Ω or
3 kΩ
Measurement
Device
-+
Figure 3. HP Output Test Configuration Figure 4. Line Output Test Configuration
16 DS773F1
CS42L55
ANALOG PASSTHROUGH CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; Input is a 1 kHz sine wave through the passive input filter shown in Figure 1, PGA an d HP /Line gain = 0 dB; All Sup-
plies = VA, VCP Mo de; GND = AGND = 0 V; TA = +25 °C; Measurement bandwidth is 20 Hz to 20 kHz. Sample Frequency =
48 kHz.
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
Notes: 15. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 31 to 34 on
page 70) have been normalized to Fs and can be de-nor malized by multiplying the X-axis scale by Fs.
16. Measurement bandwidth is from Stopband to 3 Fs.
VA = 2.5 V VA = 1.8 V
Parameter Min Typ Max Min Typ Max Unit
Analog In to HP Amp (ADC is powered down)
RL = 3 kΩ (+2 dB Output Analog Gain)(Note 12)
Dynamic Range A-weig hted
unweighted -
-94
91 -
--
-91
88 -
-dB
dB
Total Harmonic Distortion + Noise -1 dB
-20 dB
-60 dB
-
-
-
-70
-71
-31
-
-
-
-
-
-
-80
-68
-28
-
-
-
dB
dB
dB
Full-scale Input Voltage - 0.80•VA - - 0.80•VA - Vpp
Full-scale Output Voltage - 0.93•VA - - 0.93•VA - Vpp
Passband Ripple 0/-0.3 0/-0.3 dB
RL = 16 Ω (-4 dB Output Analog Gain)(Note 12)
Dynamic Range A-weig hted
unweighted -
-94
91 -
--
-91
88 -
-dB
dB
Total Harmonic Distortion + Noise -1 dB
-20 dB
-60 dB
-
-
-
-70
-71
-31
-
-
-
-
-
-
-80
-68
-28
-
-
-
dB
dB
dB
Full-scale Input Voltage - 0.80•VA - - 0.80•VA - Vpp
Output Power (Note 13) -12--6.5-mW
Passband Ripple - 0/-0.3 - - 0/-0.3 - dB
Analog In to Line Amp (ADC is powered down)
RL = 3 kΩ (+2 dB Output Analog Gain) (Note 12)
Dynamic Range A-weig hted
unweighted -
-94
91 -
--
-91
88 -
-dB
dB
Total Harmonic Distortion + Noise -1 dB
-20 dB
-60 dB
-
-
-
-70
-71
-31
-
-
-
-
-
-
-80
-68
-28
-
-
-
dB
dB
dB
Full-scale Input Voltage - 0.80•VA - - 0.80•VA - Vpp
Full-scale Output Voltage - 0.89•VA - - 0.89•VA - Vpp
Passband Ripple 0/-0.3 0/-0.3 dB
Parameter (Note 15) Min Typ Max Unit
Frequency Response 20 Hz to 20 kH z Fs = 48.000 kHz
Fs = 44.118 kHz -0.04
-0.14 -
-+0.04
+0.14 dB
dB
Passband to -0.05 dB corner
to -3 dB corner -
-0.48
0.49 -
-Fs
Fs
Stopband 0.55 - - Fs
Stopband Attenuation (Note 16) 49 - - dB
Total Group Delay -9/Fs -s
De-emphasis Error Fs = 44.118 kHz - - +0.05/-0.25 dB
DS773F1 17
CS42L55
SWITCHING SPECIFICATIONS - SERIAL PORT
Inputs: Logic 0 = GND = AGND, Logic 1 = VL, LRCK, SCLK, SDOUT CLOAD = 15 pF.
Notes: 17. After powering up the CS42L55, RESET should be held low after the power supplies and clocks are
settled. This specification is valid with the recommended capacitor on VDFILT.
18. The device will periodically extend the SCLK high time to compensate for the fractional MCLK/SCLK
ratio.
Parameters Symbol Min Max Units
RESET pin Low Pulse Width (Note 17) 1-ms
MCLK Frequency (See “Serial Port Clocking”
on page 34)MHz
MCLK Duty Cycle 45 55 %
Slave Mode (Figure 5)
Input Sample Rate (LRCK) Fs(See “Serial Port Clocking”
on page 34)kHz
LRCK Duty Cycle 45 55 %
SCLK Frequency 1/tPs - 68•FsHz
SCLK Duty Cycle 45 55 %
LRCK Setup Time Before SCLK Rising Edge tss(LK-SK) 40 - ns
SDOUT Setup Time Before SCLK Risin g Edge tss(SDO-SK) 20 - ns
SDOUT Hold Time After SCLK Rising Edge ths(SK-SDO) 30 - ns
SDIN Setup Time Before SCLK Rising Edge tss(SD-SK) 20 - ns
SDIN Hold Time After SCLK Rising Edge ths 20 - ns
Master Mode (Figure 6)
Output Sample Rate (LRCK) All Speed Modes Fs(See “Serial Port Clocking
on page 34)Hz
LRCK Duty Cycle 45 55 %
SCLK Frequency SCLK = MCLK mode 1/tPm - 12.0000 MHz
All Other Modes 1/tPm - 68•FsHz
SCLK Duty Cycle RATIO[1:0] = ‘11’ 45 55 %
RATIO[1:0] = ‘01’ (Note 18) 33 66 %
LRCK Time Before SCLK F alling Edge tsm(LK-SK) 2ns
SDOUT Setup Time Before SCLK Risin g Edge tsm(SDO-SK) 20 - ns
SDOUT Hold Time After SCLK Rising Edge thm(SK-SDO) 30 - ns
SDIN Setup Time Before SCLK Rising Edge tsm(SD-SK) 20 - ns
SDIN Hold Time After SCLK Rising Edge thm 20 - ns
ths(SK-SDO)
//
//
//
//
//
//
//
//
tss(SD-SK)
MSB
MSB
LRCK
SCLK
SDOUT
SDIN
tss(LK-SK) tP
ths
tss(SDO-SK)
//
//
//
//
Figure 5. Serial Port Timing (Slave Mode) Figure 6. Serial Port Timing (Master Mode)
thm(SK-SDO)
//
//
//
//
//
//
//
//
tsm(SD-SK)
MSB
MSB
LRCK
SCLK
SDOUT
SDIN
tPm
thm
tsm(SDO-SK)
//
//
//
//
//
//
tsm(LK-SK)
18 DS773F1
CS42L55
SWITCHING SPECIFICATIONS - CONTROL PORT
Inputs: Logic 0 = GND = AGND, Logic 1 = VL, SDA CL=30pF.
Notes: 19. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
Parameter Symbol Min Max Unit
SCL Clock Frequency fscl - 100 kHz
RESET Rising Edge to Start tirs 500 - ns
Bus Free Time Between Transmissions tbuf 4.7 - µs
Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs
Clock Low time tlow 4.7 - µs
Clock High Time thigh 4.0 - µs
Setup Time for Repeated Start Condition tsust 4.7 - µs
SDA Hold Time from SCL Falling (Note 19) thdd 0-µs
SDA Setup time to SCL Rising tsud 250 - ns
Rise Time of SCL and SDA trc -1µs
Fall T ime SCL and SDA tfc - 300 ns
Setup Time for Stop Condition tsusp 4.7 - µs
Acknowledge Delay from SCL Fallin g tack 300 1000 ns
tbuf thdst thdst
tlow tr
tf
thdd
thigh
tsud tsust
tsusp
Stop Start Start Stop
Repeated
SDA
SCL
tirs
RESET
Figure 7. I²C Control Port Timing
DS773F1 19
CS42L55
POWER SUPPLY REJECTION (PSRR) CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; GND = AGND = 0 V; all voltages with respect to ground.
Notes: 20. Valid with the recommended capacitor values on FILT+ and VQ, no load on HP and Line. Increasing
the capacitance on FILT+ and VQ will also increase the PSRR.
21. The PGA is biased with VQ, created by a resistor divider from the VA supply.
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS
22. See “I/O Pin Characteristics” on page 9 for serial and control port power rails.
Parameters Min Typ Max Units
PSRR with 100 mVpp, 1 kHz signal (Note 20) PGA to ADC
ADC
PGA to HP & Line Amps
DAC to HP & Line Amps
-
-
-
-
55
50
50
50
-
-
-
-
dB
dB
dB
dB
PSRR with 100 mVpp, 60 Hz signal (Note 20) PGA to ADC (Note 21)
ADC
PGA to HP & Line Amps
DAC to HP & Line Amps
-
-
-
-
35
25
50
60
-
-
-
-
dB
dB
dB
dB
Parameters (Note 22) Symbol Min Max Units
Input Leakage Current Iin 10μA
Input Capacitance -10pF
1.8 V - 3.3 V Logic
High-Level Output Voltage (IOH = -100 μA) VOH VL - 0.2 - V
Low-Level Output Voltage (IOL = 100 μA) VOL -0.2V
High-Level Input Voltage VL = 1.65 V
VL = 1.8 V
VL = 2.0 V
VL > 2.0 V
VIH 0.83•VL
0.76•VL
0.68•VL
0.65•VL
-
-
-
-
V
Low-Level Input Voltage VIL -0.30VLV
HPDETECT Input
High-Level Input Voltage HPDVIH 0.65•VA - V
Low-Level Input Voltage HPDVIL -0.35VAV
VCP
GND/AGND
Voltmeter
-
+
1 ΩPowe r Su p ply
-
+
1 Ω
-
+
1 Ω
-
+
1 Ω
VA
VLDO
VL
2.2 µF
0.1 µF
0.1 µF
0.1 µF
Note: Current is derived fr om t he voltage dr op across
a 1 Ω resistor in series with each supply input.
Figure 8. Power Consumption Test Configuration
20 DS773F1
CS42L55
POWER CONSUMPTION - ALL SUPPLIES = 1.8 V
Operation Test Condi-
tions (unless otherwise
specified): All zeros input,
slave mode, sample rate =
48 kHz; No load. Refer to
Figure 8 on page 19.
Power Ctl. Registers ADC, Line, HP
Sel. Registers
PDN_DSP - 0Fh page 50
Typical Current (mA)
02h page 42 03h page 43 08h page 46
PDN_CHRG
PDN_ADCB
PDN_ADCA
PDN
PDN_HPB[1:0]
PDN_HPA[1:0]
PDN_LINB[1:0]
PDN_LINA[1:0]
ADCBMUX[1:0]
ADCAMUX[1:0]
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
Class H
Mode
page 45
iVCP iVA iVLDO iVL
Total
Power
(mW)
1Off (Note 23) xxxxx x x x x xxxxxx -0.002 0.003 0.002 0.001 0.01
2Standby MCLKDIS=1 xxx1x x x x x xxxxxx -0.003 0.002 0.039 0.006 0.09
MCLKDIS=0 xxx1x x x x x xxxxxx -0.002 0.005 0.223 0.006 0.43
(Note 23) MCLKDIS=x xxx1x x x x x xxxxxx -0.002 0.002 0.010 0.002 0.03
3Mono Record (Note 24) ADC 010011111111xx01xxxxx -0.003 0.859 0.650 0.017 2.75
PGA to ADC 010011111111xx00xxxxx -0.002 1.053 0.650 0.018 3.10
4Stereo Record (Note 24) ADC 0000111111110101xxxxx -0.002 1.116 0.795 0.022 3.48
PGA to ADC 0000111111110000xxxxx -0.002 1.470 0.800 0.022 4.13
5Mono Play to HP No Effects 111011101111xxxxxxx01 VCP/2 0.450 1.007 0.686 0.006 3.87
VCP 0.928 1.014 0.690 0.006 4.75
Effects 111011101111xxxxxxx00 VCP/2 0.452 1.008 0.964 0.006 4.37
VCP 0.936 1.014 0.972 0.006 5.27
6Mono Play to Line No Effects 1 1 1 0 11111110xxxxx0xx1 VCP/2 0.394 1.008 0.704 0.006 3.80
VCP 0.822 1.015 0.692 0.005 4.56
Effects 1 1 10 11111110xxxxx0xx0 VCP/2 0.394 1.008 0.977 0.006 4.29
VCP 0.822 1.015 0.969 0.006 5.06
7Stereo Play to HP No Effects 111010101111xxxxxx001 VCP/2 0.697 1.434 0.688 0.006 5.08
VCP 1.405 1.441 0.692 0.006 6.38
Effects 111010101111xxxxxx000 VCP/2 0.693 1.435 1.023 0.006 5.68
VCP 1.429 1.442 1.031 0.006 7.04
8Stereo Play to Line No Effect s 1 1 1 011111010xxxx00xx1 VCP/2 0.572 1.437 0.697 0.006 4.88
VCP 1.182 1.443 0.698 0.005 5.99
Effects 1 1 10 11111010xxxx00xx0 VCP/2 0.572 1.437 1.025 0.006 5.47
VCP 1.182 1.445 1.025 0.006 6.58
9Stereo Passthrough to HP 011010101111xxxxxx11x VCP/2 0.562 1.083 0.190 0.005 3.31
VCP 1.159 1.090 0.190 0.006 4.40
10 Stereo Passthrough to Line 0 1 1 0 11111010xxxx11xxx VCP/2 0.572 1.084 0.190 0.006 3.33
VCP 1.181 1.093 0.190 0.006 4.44
11 Mono Rec. & Play No Effects
PGA In, HP Out 010011101111xx00xxx01 VCP/2 0.450 1.838 1.063 0.017 6.06
VCP 0.931 1.846 1.061 0.017 6.94
Effects 010011101111xx00xxx00 VCP/2 0.453 1.839 1.346 0.017 6.58
VCP 0.937 1.846 1.345 0.018 7.46
12 Stereo Rec. & Play No Effects
PGA In, HP Out 0000101011110000xx001 VCP/2 0.689 2.682 1.209 0.023 8.29
VCP 1.417 2.690 1.218 0.022 9.63
Effects 0000101011110000xx000 VCP/2 0.693 2.682 1.560 0.022 8.92
VCP 1.420 2.691 1.561 0.023 10.25
DS773F1 21
CS42L55
POWER CONSUMPTION - ALL SUPPLIES = 2.5 V
Notes: 23. When “Off”, RESET pin and clock/data line s he ld LO ; whe n in “sta nd by”, lines are held HI.
24. Either inputs 1 or 2 may be selected. Input 1 is shown for simplicity.
Operation Test Condi-
tions (unless otherwise
specified): /All zeros input,
slave mode, sample rate =
48 kHz; No load. Refer to
Figure 8 on pag e 19.
Power Ctl. Registers MUX Registers
PDN_DSP - 0Fh page 50
Typical Current (mA)
02h page 42 03hpage 43 08h page 46
PDN_CHRG
PDN_ADCB
PDN_ADCA
PDN
PDN_HPB[1:0]
PDN_HPA[1:0]
PDN_LINB[1:0]
PDN_LINA[1:0]
ADCBMUX[1:0]
ADCAMUX[1:0]
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
Class H
Mode
page 45
iVCP iVA iVLDO iVL
Total
Power
(mW)
1Off (Note 23) xxxxx x x x x xxxxxx -0.001 0.001 0.001 0.000 0.01
2Standby MCLKDIS=1 xxx1x x x x x xxxxxx -0.000 0.000 0.064 0.007 0.18
MCLKDIS=0 xxx1x x x x x xxxxxx -0.000 0.013 0.385 0.007 1.01
(Note 23) MCLKDIS=x xxx1x x x x x xxxxxx -0.000 0.000 0.018 0.000 0.05
3Mono Record (Note 24) ADC 110011111111xx01xxxxx -0.000 0.752 0.743 0.019 3.79
PGA to ADC 110011111111xx00xxxxx -0.000 0.997 0.750 0.019 4.42
4Stereo Record (Note 24) ADC 1000111111110101xxxxx -0.000 1.031 0.918 0.025 4.94
PGA to ADC 1000111111110000xxxxx -0.000 1.511 0.926 0.024 6.15
5Mono Play to HP No Effects 111011101111xxxxxxx01 VCP/2 0.676 1.327 0.705 0.007 6.79
VCP 1.694 1.339 0.709 0.007 9.37
Effects 111011101111xxxxxxx00 VCP/2 0.677 1.325 1.032 0.007 7.60
VCP 1.728 1.337 1.049 0.007 10.30
6Mono Play to Line No Effects 111011111110xxxxx0xx1 VCP/2 0.585 1.328 0.738 0.007 6.65
VCP 1.516 1.339 0.739 0.007 9.00
Effects 111011111110xxxxx0xx0 VCP/2 0.585 1.324 1.030 0.006 7.36
VCP 1.515 1.338 1.030 0.007 9.73
7Stereo Play to HP No Effects 111010101111xxxxxx001 VCP/2 0.943 1.833 0.711 0.007 8.74
VCP 2.250 1.850 0.744 0.007 12.13
Effects 111010101111xxxxxx000 VCP/2 0.945 1.835 1.090 0.007 9.69
VCP 2.237 1.846 1.121 0.007 13.03
8Stereo Play to Line No Effects 111011111010xxxx00xx1 VCP/2 0.760 1.835 0.730 0.007 8.33
VCP 1.888 1.848 0.740 0.006 11.21
Effects 111011111010xxxx00xx0 VCP/2 0.760 1.836 1.085 0.007 9.22
VCP 1.888 1.851 1.058 0.007 12.01
9Stereo Passthrough to HP 111010101111xxxxxx11x VCP/2 0.751 1.174 0.212 0.007 5.36
VCP 1.880 1.188 0.212 0.007 8.22
10 Stereo Passthrough to Line 111011111010xxxx11xxx VCP/2 0.759 1.175 0.211 0.007 5.38
VCP 1.886 1.189 0.211 0.007 8.23
11 Mono Rec. & Play No Effects
PGA In, HP Out 110011101111xx00xxx01 VCP/2 0.676 2.055 1.159 0.018 9.77
VCP 1.700 2.068 1.196 0.018 12.46
Effects 110011101111xx00xxx00 VCP/2 0.678 2.055 1.462 0.018 10.53
VCP 1.696 2.066 1.463 0.018 13.11
12 Stereo Rec. & Play No Effects
PGA In, HP Out 1000101011110000xx001 VCP/2 0.945 3.071 1.340 0.024 13.45
VCP 2.254 3.089 1.358 0.023 16.81
Effects 1000101011110000xx000 VCP/2 0.950 3.074 1.702 0.024 14.38
VCP 2.254 3.090 1.705 0.023 17.68
22 DS773F1
CS42L55
4. APPLICATIONS
4.1 Overview
4.1.1 Basic Architecture
The CS42L55 is a highly integrated, ultra-low power, 24-bit audio CODEC comprised of stereo A/D and
D/A converters with pseudo-differential stereo input and output amplifiers. The ADC and DAC are de-
signed using multi-bit delta-sigma techniques; both converters operate at a low oversampling ratio of
64xFs, maximizing power savings while maintaining high performance. The CODEC operates in one of
three samp le rate spee d mod es: Quar ter, Half and Sing le. It acce pts and is capable of gene rating ser ial
audio clocks (SCLK, LRCK) derived from a 12 or 6 MH z input Master Clock (MCLK). Designed with a very
low voltage digital core and low voltage Class H amplifiers (powere d from a n inte gr ated low-dro pout re g-
ulator and a step-down/inver ting charg e pump, resp ective ly), the CS4 2L55 provide s significant reduction
in overall power con su m pt ion .
4.1.2 Line Inputs
The analog input portion of the CODEC allows selection from two stereo line-level sources into a Pro-
grammable Gain Amplifier (PGA). The optional pseudo-differential configuration provide s noise- rejection
for single-ended inputs.
4.1.3 Line and Headphone Outputs (Class H, Ground-Centered Amplifiers)
The analog output portion of the CODEC includes separate pseudo-differential headphone and line out
Class H amplifiers. An on-chip step-down/inver ting charge pump cr eates a positive and negative voltage
equal to the input or one-half the input supply for the amplifiers, allowing an adaptable, full-scale output
swing centered around ground. The inverting architecture eliminates the need for large DC-blocking ca-
pacitors and allows the amplifier to deliver more power to headphone lo ads at lower sup ply voltages. The
step-down architecture allows the amplifier’s power supply to adapt to the required output signal. This
adaptive power supply sche me converts traditional Class AB amplifiers into more power-efficient Class H
amplifiers.
4.1.4 Fixed-Function DSP Engine
The fixed function digital signal processing engine processes both the PCM serial input data and ADC
output data allowing a mix between the two. Independ ent vo lume contr ol, left/rig ht chan nel swaps, mo no
mixes, tone control comprise the DSP eng ine.
4.1.5 Beep Generator
The beep generator delivers tones at select frequencies across approximately two octave major scales.
With independent volume control, beeps may be configured to occur continuously, periodically or at single
time intervals.
4.1.6 Power Management
Several control reg isters and bits provide inde pendent power down control of the ADC, PGA, DSP, h ead-
phone and line outputs, allowing o peration in select applications with minimal power consumption.
DS773F1 23
CS42L55
4.2 Analog Inputs
Referenced Control Register Location
Analog Front End
PGAxMUX
PDN_ADCx
PGAxVOL[5:0]
PGAB=A
ANLGZCx
ADCxMUX[1:0]
INV_ADCx
PDN_CHRG
HPFRZx
HPFx
HPFx_CF[1:0]
Digital Volume
BOOSTx
ADCxMUTE
ADCxATT[7:0]
DIGSFT
ADCB=A
ALCx
ALCxSRDIS
ALCxZCDIS
ALCARATE[5:0]
ALCRRATE[5:0]
MAX[2:0]
MIN[2:0]
NGALL
NG
THRESH[3:0]
NGDELAY[1:0]
Miscellaneous
DIGSUM[1:0]
DIGMUX
“PGA x Input Select” on page 49
“Power Down ADC x” on page 42
“PGAx Volume” on page 49
“PGA Channel B=A” on page 48
“Analog Zero Cross” on page 46
“ADC x Input Select” on page 46
“Invert ADC Signal Polarity” on page 48
“Power Down ADC Charge Pump” on page 42
“ADCx High-Pass Filter Freeze” on page 47
“ADCx High-Pass Filter” on page 47
“HPF x Corner Frequency” on page 47
“Boostx” on page 49
“ADC Mute” on page 48
“ADCx Volume” on page 50
“Digital Soft Ramp” on page 46
“ADC Channel B=A” on page 48
“ALCx” on page 62
“ALCx Soft Ramp Disable” on page 65
“ALCx Zero Cross Disable” on page 65
“ALC Attack Rate” on page 63
“ALC Release Rate” on page 63
“ALC Maximum Threshold” on page 64
“ALC Minimum Threshold” on page 64
“Noise Gate All Channels” on page 64
“Noise Gate Enable” on page 65
“Noise Gate Threshold and Boost” on page 65
“Noise Gate Delay Timing” on page 65
“Digital Sum” on page 48
“Digital MUX” on page 45
`
Gain Adjust
ALC
PDN_ADCA
PGAAVOL[5:0]
PGAB=A
ANLGZC
HPFRZA
HPFA
HPFA_CF[1:0]
PDN_ADCA
INV_ADCA
PDN_CHRG
ALCB
ALCBSRDIS
ALCBZCDIS
PCM Serial Interface
TO DSP Engine
ALCARATE[5:0]
ALCRRATE[5:0]
MAX[2:0]
MIN[2:0]
ALCA
ALCASRDIS
ALCAZCDIS
AIN1A
AIN2A
ADC
PDN_ADCB
PGABVOL[5:0]
PGAB=A
ANLGZC
BOOSTB
ADCBMUTE
DIGSFT
ADCBATT[7:0]
ADCB=A
HPFRZB
HPB
HPFB_CF[1:0]
PDN_ADCB
INV_ADCB
PDN_CHRG
Noise Gate NGALL
NG
THRESH[3:0]
NGDELAY[1:0]
Gain Adjust
FROM DSP ENGINE
DIGMUX
AIN1REF
AIN1B
AIN2B
ANALOG PASSTHRU TO
HEADPHONE, LINE AMPLIFIER MUX
Swap/
Mix
DIGSUM[1:0]
BOOSTA
ADCAMUTE
DIGSFT
ADCAATT[7:0]
ADCB=A
ADC
ADCAMUX[1:0]
ADCBMUX[1:0]
AIN2REF
PGAAMUX
PGABMUX
Figure 9. Analog Input Signal Flow
24 DS773F1
CS42L55
4.2.1 Pseudo-Differential Inputs
The CS42L55 implements a pseudo-differential input stage. The AINxREF inputs are intended to be used
as a pseudo-differential reference signal. This feature provides 0 noise rejection with single-ended sig-
nals. Figure 10 shows a basic diagram outlinin g the inter na l imple menta tio n of the pse udo -differ en tial in-
put stage, including a recommende d stereo pseudo-differential input topology. If pseudo-differential input
functionality is not required, simply leave the AINxREF pin floating.
4.2.2 Automatic Level Control (ALC)
When enabled, the ALC monitors the analog input signal after the digital attenuator. The ALC then detects
when peak levels exceed the maximum threshold settings and first lower s the PGA gain settings and then
increases the digital attenuation levels at a programmable attack rate and maintains the resulting level
below the maximum threshold.
When input signal levels fall below the minimum threshold, digital attenuation levels are decreased first
and the PGA gain is then increased at a programmable release rate and maintains the resulting level
above the minimum threshold.
Attack and release rates a re affected by the ADC soft ramp/zero cross settings and sample rate, Fs. ALC
soft ramp and zero cross dependency may be independently enabled/disabled.
Recommended settings: Best level control may be realized with the fastest attack and slowest release
setting with soft ramp enabled in the control registers.
Notes:
1. When ALC x is enabled and th e PGAxVOL[5:0] is set to +12 dB, the ADCxATT[7:0] should not be set
below 0 dB.
2. The maximum desired gain must be set in the PGAxVOL register. The ALC will only apply the gain
set in PGAxVOL.
3. The ALC maintains the output signa l between the MIN an d MAX thresholds. As the input signal level
changes, the level-controlled output may not always be the same but will always fall between the
thresholds.
Referenced Control Register Location
PGAxMUX ........................... “PGA x Input Select” on page 49
AIN1A
AIN1REF
27
26
//
//
PGAAMUX=’0'b
+
-
Left Input
GND 1 µF
1 µF
(differential traces)
AIN2B
AIN2REF
24
25
//
// +
-
Right Input
GND 1 µF
1 µF
(differential traces)
PGA A
PGA B
PGABMUX=’1'b
common mode rejection at input of PGA reduces
external system noise
Fi
g
ure 10. Stereo Pseudo-Differential In
p
ut
DS773F1 25
CS42L55
4.3 Analog In to Analog Out Passthrough
The CS42L55 accommodates analog routing of the analog input signal directly to the headphone and line
out amplifiers. This feature is useful in applications that utilize an FM tuner where audio recovered over-the-
air must be tr ansmitted to the h eadphone amplifie r without digita l conversion in the ADC and DAC. This an-
alog passthrough path red uces p ower co nsum ption and is immune to mo dula tor switching noise that cou l d
interfere with some tuners. This path is selected using the Line and /or HP mux bits and powering do wn the
ADC.
Referenced Con t rol Register Location
PGAxVOL[5:0].....................
ADCxATT[7:0]......................
MAX[2:0], MIN[2:0] ..............
“PGAx Volume” on page 49
“ADCx Volume” on page 50
“ALC Threshold (Address 26h)” on page 64
Referenced Control Register Location
PDN_ADCx .........................
HPxMUX..............................
LINExMUX...........................
“Power Down ADC x” on page 42
“Headphone Input Select” on page 47
“Line Input Select” on page 47
Output
(after ALC)
Input (before ALC)
RRATE[5:0]
PGA Gain and/or
Attenuator
ALC
Response
MAX[2:0]
ARATE[5:0
]
below full scale
MIN[2:0]
below full scale
MIN[2:0]
below full scale
MAX[2:0]
below full scale
Figure 11. ALC Operation
26 DS773F1
CS42L55
4.4 Analog Outputs
Referenced Control Register Locati on
DSP
PDN_DSP
DEEMPH
PMIXxMUTE
PMIXxVOL[6:0]
INV_PCMx
PCMxSWAP[1:0]
AMIXxMUTE
AMIXxVOL[6:0]
ADCxSWAP[1:0]
MSTxVOL[7:0]
MSTxMUTE
DIGSFT
PLYBCKB=A
TC_EN
BASS_CF[1:0]
TREB_CF[1:0]
BASS[3:0]
TREB[3:0]
Limiter
LIMIT
LIMIT_ALL
LIMSRDIS
LMAX[2:0]
CUSH[2:0]
LIMARATE[7:0]
LIMRRATE[7:0]
Beep Generator
“Power Down DSP” on page 50
“HP/Line De-Emphasis” on page 50
“PCM Mixer Channel x Mute” on page 52
“PCM Mixer Channel x Volume” on page 52
“Invert PCM Signal Polarity” on page 51
“PCM Mix Channel Swap” on page 60
“ADC Mixer Channel x Mute” on page 51
“ADC Mixer Channel x Volume” on page 51
“ADC Mix Channel Swap” on page 60
“Master Volume Control” on page 57
“Master Playback Mute” on page 51
“Digital Soft Ramp” on page 46
“Playback Channels B=A” on page 50
“Tone Control Enable” on page 56
“Bass Corner Frequency” on page 56
“Treble Corner Frequency” on page 55
“Bass Gain” on page 56
“Treble Gain” on page 56
“Peak Detect and Limiter” on page 61
“Peak Signal Limit All Channels” on page 61
“Limiter Soft Ramp Disable” on page 66
“Limiter Maximum Threshold” on page 60
“Limiter Cushion Threshold” on page 61
“Limiter Attack Rate” on page 62
“Limiter Release Rate” on page 62
Refer to “Beep Generator” on page 31 for all referenced controls
Beep
Generator
VOL
ΣBass/
Treble/
Control
ΣVOL
Peak
Detect
Limiter
Chnl Vol.
Settings
Channel
Swap
Demph VOL
VOL
MSTAVOL[7:0]
MSTBVOL[7:0]
AMIXAMUTE
AMIXBMUTE
AMIXAVOL[6:0]
AMIXBVOL[6:0]
PMIXAMUTE
PMIXBMUTE
PMIXAVOL[6:0]
PMIXBVOL[6:0]
BPVOL[4:0]
DEEMPH TC_EN
BASS_CF[1:0]
TREB_CF[1:0]
BASS[3:0]
TREB[3:0]
Fixed Function DSP
MSTAMUTE
MSTBMUTE
DIGSFT
PLYBCKB=A
LIMARATE[7:0]
LIMRRATE[7:0]
LMAX[2:0]
CUSH[2:0]
LIMSRDIS
LIMIT
LIMIT_ALL
PCMASWAP[1:0]
PCMBSWAP[1:0]
PCM Serial Interface
INPUTS FROM ADCA
and ADCB
OFFTIME[2:0]
ONTIME[3:0]
FREQ[3:0]
BEEP[1:0]
Digital Mix to ADC
Serial Interface
Channel
Swap
INV_PCMA
INV_PCMB
ADCASWAP[1:0]
ADCBSWAP[1:0]
PDN_DSP
DAC to HP and
Line MUX
MSTxVOL[7:0], MSTxMUTE and DIGSFT are always
available regard less of the PDN_DSP setting.
*
*
Figure 12. DSP Engine Signal Flow
DS773F1 27
CS42L55
4.5 Class H Amplifier
The CS42L55 headph one and line output amp lifiers use a patented Cirr us Logic Bi-Moda l Class H technol-
ogy. This technology maximizes operating e fficiency of the typical Class AB amplifier while maintaining high
performance. In a Cla ss H amplifier design, the rail voltages supplied to the amplifier vary with the needs of
the music passage that is being amplified. This prevents unnecessarily wasting energy during low power
passages of program material or when the program material is played back at a low volume level.
The central component of the Bi-Modal Class H technology found in the CS42L55 is the internal charge
pump, which creates the rail voltages for the headpho ne and line amplifiers o f the device. The charge pump
receives its input voltage from the voltage present on the VCP pin of the CS42L55. From this input voltage,
the charge pump creates the differential rail voltages that are supplied to the amplifier output st ages. The
charge pump is cap able of supplying two sets of differential rail voltages. One set is equal to ± VCP and the
other is equal to ± VCP/2.
4.5.1 Power Control Options
The method by which the CS42L55 decides which set of rail voltages is supplied to the amplifier output
stages depends on the settin gs of the Adaptive Power bits (ADPTPWR) found in “Class H Power Control
(Address 06h)” sect ion on page 45. As detailed in this section, there are four possible settings for these
bits: Mode 00, 01, 10 and 11.
Referenced Control Register Location
Analog Output
ADPTPWR[1:0]
CHGFREQ[3:0]
PDN_HPx[1:0]
PDN_LINx[1:0]
HPxMUTE
HPxVOL[7:0]
LINExMUTE
LINExVOL[7:0]
ANLGZC
PLYBCKB=A
HPxMUX
LINExMUX
“Adaptive Power Adjustment” on page 45
“Charge Pump Frequency” on page 67
“Headphone Power Control” on page 43
“Line Power Control” on page 43
“Headphone Channel x Mute” on page 57
“Headphone Volume Control” on page 57
“Line Channel x Mute” on page 58
“Line Volume Control” on page 58
“Analog Zero Cross” on page 46
“Playback Channels B=A” on page 50
“Headphone Input Select” on page 47
“Line Input Select” on page 47
Referenced Control Register Location
ADPTPWR[1:0]................... “Adaptive Power Adjustment” on page 45
+VHPFILT
-VHPFILT
HPOUTA
HPOUTB
HPREF
ADPTPWR[1:0]
+VCP
+VCP/2
-VCP
-VCP/2
VCP
LINEOUTA
LINEOUTB
LINEREF
HPxVOL[6:0]
HPxMUTE
ANLGZC
PLYBCKB=A
LINExVOL[6:0]
LINExMUTE
ANLGZC
PLYBCKB=A
HPxMUX
LINExMUX
from PGAx
from DACx
PDN_HPx[1:0]
PDN_LINx[1:0]
HP Detection HPDETECT
= HP and Line Supply
+HP Supply +Line Supply
-HP Supply -Line Supply
Class H Control
Step-down/Inverting
Charge Pump
CHGFREQ[3:0]
Figure 13. Analog Output Stage
28 DS773F1
CS42L55
4.5.1.1 Standard Class AB Operation (Mode 01 and 10)
When the Adaptive Power bits are set to either 01 or 10, the rail voltages supplied to the amplifiers will be
held to ±VCP/2 or ±VCP, respectively. For these two settings, the rail voltages supplied to the output stag-
es are held constant, regardle ss of the signal level, inte rnal volume settings, or th e settings of the AIN and
DIN advisory volume registers. In either o f these two settings, the a mplifiers in the CS4 2L55 simply oper -
ate in a traditiona l Class AB configuration.
4.5.1.2 Adapted to Volume Settings (Mode 00)
When the Adaptiv e Power bits are set to 00, the CS42L55 decides which set of rail voltages to send to
the amplifiers based upon the gain and attenuation level s of all active internal pr ocessing blocks. In order
to adjust for external analog (line or microphone sources) or digital (DSP) input volume settings, it also
takes into account the settings of the AIN and DIN advisory volume registers. The combined effect of all
volume settings is shown in Figure 14.
If the total gain and attenuation set in the volu me control registers would cause the amplifiers to clip a full-
scale signal when operating from the lower se t of rail voltages, the control logic instructs the charge pump
to provide the higher set of the two rail voltages (±VCP) to the amplifier s. If the total gain and atte nuation
set in the volume control registers would not cause the amplifiers to clip a full-scale signal when op erating
from the lower set of rail voltages, the control logic instructs the charge pump to supply the lower set of
rail voltages (±VCP/2) to the amplifiers.
Note: The A and B channels of each respective volume co ntrol must both cross the thresho ld to trigger
a change in the VCP mode. The control logic also monitors various functions (listed in the table below)
that may affect the total gain and attenuation of the signal applied to the amplifiers.
External DSP
Control Logic
Charge
Pump
PMIX, AMIX
Volume
Setting
Master
Volume
Setting
Headphone or
Line Volume
Setting
Control Port
Headphone
Amplifier
Line
Amplifier
AIN Advisory
Volume Setting
DIN Advisory
Volume Setting
Analog Input Source
I²S Serial Audio Input
Figure 14. Adaptive Mode 00
DS773F1 29
CS42L55
4.5.1.3 Adapted to Output Signal (Mode 11)
When the Adaptive Power bits are set to 11, the CS42L55 decides which of the two sets of rail voltages
to send to the a mplifiers based so lely upon the level of the signal being sent to the amplifiers. If the signal
that is sent to the amplifiers would cause the amplifiers to clip when operating on the lowe r set of rail volt-
ages, the control logic instructs the charge pump to provide the higher set of rail voltages (±VCP) to the
amplifiers. If the signal that is sent to the amplifiers would not ca use the amplifier s to clip whe n operatin g
on the lower set of rail voltages, the control logic instructs the charge pump to provide the lower set of rail
voltages (±VCP/2) to the amplifiers. This mode of operation eliminates the need to advise the CS42L55
of volume settings external to the device.
Note: Signal detection is made using digital cir cuitry. This mode should, therefore, not be used with an-
alog passthro ugh (PGA to HP/Line).
4.5.2 Power Supply Transitions
Charge pump transitions from the lower set of rail voltages to the higher set of rail voltages occur on the
next FLYN/P clock cycle. Despite the fast response time of the system, the capacitive elements on the
VHPFILT pins prevent the rail voltages from changing instantan eously. Instead, the r ail voltages ramp up
from ±VCP/2 to ±VCP based on the time constant created by the output impedance of the charge pump
and the capacitor on the VHPFILT pin (the transition time is approximately 20 µs). This behavior is de-
tailed in Figure 15. During this charg ing transition, a high dv/d t transient on the inputs may briefly clip the
outputs before the rail voltages charge to the full ±VCP level. This transitory clipping has been found to
be inaudible in listening tests.
Reference d C ontrol Register Location
HPxVOL[7:0] .......................
LINExVOL[7:0] ....................
MSTxVOL[7:0].....................
MSTxMUTE.........................
AMIXxVOL[6:0]....................
PMIXxVOL[6:0]....................
AINADV[7:0]........................
DINADV[7:0]........................
BOOSTx..............................
ADCxMUX...........................
PGAxVOL............................
ADCxMUTE.........................
ADCxSWP...........................
PCMxSWP ..........................
HPxMUX..............................
LINExMUX...........................
HPxMUTE ...........................
LINExMUTE ........................
PDN_HPx............................
PDN_LINEx.........................
TREB...................................
BASS...................................
TCEN...................................
BEEP...................................
BPVOL ................................
ADCB=A..............................
PGAB=A..............................
PLYBCKB=A........................
“Headphone Volume Control” on page 57
“Line Volume Control” on page 58
“Master Volume Control” on page 57
“Master Playback Mute” on page 51
“ADC Mixer Channel x Volume” on page 51
“PCM Mixer Channel x Volume” on page 52
“Analog Input Advisory Volume” on page 59
“Digital Input Advisory Volume” on page 59
“Boostx” on page 49
“ADC x Input Select” on page 46
“PGAx Volume” on page 49
“ADC Mute” on page 48
“ADC Mix Channel Swap” on page 60
“PCM Mix Channel Swap” on page 60
“Headphone Input Select” on page 47
“Line Input Select” on page 47
“Headphone Channel x Mute” on page 57
“Line Channel x Mute” on page 58
“Headphone Power Control” on page 43
“Line Power Control” on page 43
“Treble Gain” on page 56
“Bass Gain” on page 56
“Tone Control Enable” on page 56
“Beep Configuration” on page 55
“Beep Volume” on page 55
“ADC Channel B=A” on page 48
“PGA Channel B=A” on page 48
“Playback Channels B=A” on page 50
30 DS773F1
CS42L55
When the charge pump transition s from the hi gher set of rail voltages to the lower set, there is a one sec-
ond delay before the charge pump supplies the lower rail voltages to the amplifiers. This hysteres is en-
sures that the charge pump doesn't toggle between the two rail voltages as signals approach the clip
threshold. It also prevents clipping in the instance of repetitive high level transients in the input signal. The
timing diagram for this transitional behavior is detailed in Figure 16.
+VCP
-VCP
-VCP
2
+VCP
2
Ideal Transition
Ideal Transition
Actual Transition caused
by VHPFILT Capacitor
Actual Transition caused
by VHPFILT Capacitor
Time
Figure 15. VHPFILT Transitions
Output Level
-10 dB
VCP
2
VCP
- VCP
- VCP
2
Amplifier Rail
Voltage
1 second
Time
Time
Figure 16. VHPFILT Hysteresis
DS773F1 31
CS42L55
4.5.3 Efficiency
As discussed in pr evious sectio ns, the amplifier s internal to the CS42L55 oper ate from one of two sets of
rail voltages, based upon the needs of the signal being amplified or the total gain/attenuation settings. The
power cur ves for th e two mode s of ope ration ar e shown in Figure 15. This graph details the power sup-
plied to a load versus the power drawn from the supply for each of the three use cases.
When the rail voltages are set to VCP, the amplifiers will operate in their least efficient mode. When the
rail voltages are held at ±VCP/2, the amplifiers will operate in their most efficient mode, but will be will
clipped if require d to amplify a full-scale signal.
Note: The ±VCP/2 curve ends at the point at which the output of the amplifiers r eached 10 % THD+N.
The benefit of Bi-Modal Class H is shown in the solid trace on th e grap h. At low er ou tput levels, the a m-
plifiers operate on the ±VCP/2 curv e. At high er outpu t levels, they operate on th e ±VCP curve. The dura-
tion the amplifiers will operate on either of the two curves (±VCP/2 or ±VCP) depends on both the content
and the output level of the program material being amplified. The highest efficiency operation will result
from maintaining an output level that is close to, but not exceeding, the clip threshold of the ±VCP/2 curve.
4.6 Beep Generator
The Beep Generator generates audio frequencies across approximately two octave major scales. It offers
three modes of oper ation: Continuous, multiple and single (one-sho t) beeps. Sixteen On and eight Off times
are available.
Note: The Beep is gener ated before the limiter an d may affect desired limiting performance. If the limiter
function is used, it may be necessar y to set the beep volume sufficiently below the threshold to pre-
vent the peak detect from triggering. Since the master volume control, MSTxVOL[7:0], will affect
the beep volume, the DAC volume may alternatively be controlled using the PMIXxVOL[6:0] bits.
Class H Amplifiers automatically
switch between ±VCP and ±VCP/2
to conserve power with typical
headphone loads.
Class AB Amplifiers do not
conserve power with typical
headphone loads.
±VCP/2
±VCP
Figure 17. Class H Power to Load vs. Power from VCP Supply
All Supplies= 1.8 V
RL = 32 Ω
32 DS773F1
CS42L55
4.7 Limiter
When enabled, the limiter monitors the digital input signal before the DAC modulators , detects when levels
exceed the maximum threshold settings and lowers the master volume at a programmable attack rate below
the maximum threshold. When the input signal level falls below the maximum threshold, the AOUT volume
returns to its original level set in the Master Volum e Control register at a programmable release rate. Attack
and release rates ar e affected by the DAC soft ramp settin gs and sample r ate, Fs. Limiter soft ramp de pen-
dency may be indep en de ntly en ab le d/ disa b l ed usin g th e LIM S R DIS.
Notes:
1. Recommended settings: Best limiting performance may be realized with the fastest attack and
slowest release setting with soft ramp enabled in the control registers. The CUSH bits allow the user
to set a threshold slightly below the maximum threshold for hyste resis control - this cushions the
sound as the limiter attacks and releases.
2. The Limiter maintains the output signal between the CUSH and MAX thr esholds. As the digi tal input
signal level changes, the level-controlled output may not always be the same but will always fall within
the thresholds.
Referenced Control Register Location
MSTxVOL[7:0].....................
PMIXxVOL[6:0]....................
OFFTIME[2:0]......................
ONTIME[3:0] .......................
FREQ[3:0] ...........................
BEEP[1:0]............................
BPVOL[4:0] .........................
“Master Volume Control: MSTA (Address 18h) & MSTB (Address 19h)” on page 57
“PCMx Mixer Volume: PCMA (Address 12h) & PCMB (Address 13h)” on page 52
“Beep Off Time” on page 54
“Beep On Time” on page 54
“Beep Frequency” on page 53
“Beep Configuration” on page 55
“Beep Volume” on page 55
Referenced Con t rol Register Location
Limiter Rates.......................
Limiter Thresholds
LIMSRDIS...........................
Master Volume Control........
“Limiter Release Rate” on page 62, “Limiter Attack Rate” on page 62
“Limiter Maximum Threshold” on page 60, “Limiter Cushion Threshold” on page 61
“Limiter Soft Ramp Disable” on page 66
“Master Volume Control: MSTA (Address 18h) & MSTB (Address 19h)” on page 57
FREQ[3:0]
...
BPVOL[4:0]
ONTIME[3:0] OFFTIME[2:0]
BEEP[1:0] =
'01'
BEEP[1:0] =
'10'
BEEP[1:0] =
'11'
SINGLE-BEEP: Beep turns on at a
configurable frequency (FREQ) and
volume (BPVOL) for the duration of
ONTIME. BEEP must be cleared
and set for additional beeps.
MULTI-BEEP: Beep turns on at a configurable frequency (FREQ)
and volume (BPVOL) for the duration of ONTIME and turns off for
the duration of OFFTIME. On and off cycles are repeated until
REPEAT is cleared.
CONTINUOUS BEEP: Beep turns on at a configurable frequency (FREQ) and volume (BPVOL) and remains on
until REPEAT is cl e are d.
Figure 18. Beep Configuration Options
DS773F1 33
CS42L55
MAX[2:0]
Output
(after Limiter)
Input
RRATE[5:0]ARATE[5:0]
Volume
Limiter
CUSH[2:0]
ATTACK/RELEASE SOUND
CUSHION
MAX[2:0]
Fi
g
ure 19. Peak Detect & Limite r
34 DS773F1
CS42L55
4.8 Serial Port Clocking
The CODEC serial audio inte rface port operates either as a slave or master. It accepts externally generated
clocks in Slave Mode (M/S = ‘0’b) and will generate synchronous clocks derived from an input master clock
(MCLK) in Master Mode (M/S = ‘1’b). Refer to the table below for the required setting in register 05h asso-
ciated with a given MCLK and sample rate.
4.9 Digital Interface Format
The serial port opera tes in the I²S digital interface for mats with varying bit depths up to 24 into the DAC and
a fixed depth of 24 out the ADC. Data is clocked out of the ADC on an internally delayed version of the rising
SCLK edge. This provides more setup time for capturing data on the rising edge of SCLK. Data is clocked
into the DAC on the rising edge of SCLK.
4.10 Initialization
The CODEC enters a Power-Down state upon initial power-up. The inte rpolation and decimation filters, d el-
ta-sigma modulators and control port registers are reset. The charge pump, LDO, intern al voltage reference
and switched-capacitor low-pass filters are powered down. The device will remain in the Power-Down state
until the RESET pin is brought high. The control port is accessible once RESET is high and the desired reg-
ister settings can be loaded per the interface descriptions in the “Register Description” on page 42.
Referenced Control Register Location
Register 05h........................
M/S...................................... “Clocking Control 2 (Address 05h)” on page 44
“Master/Slave Mode” on page 43
MCLK (MHz) LRCK (kHz) Clock Ratio SPEED[1:0] 32kGROUP RATIO[1:0] Register 05h
12.0000
(MCLKDIV2=’1’b)
8.0000 1500 11 1 01 0x1D
11.0294 1088 11 0 11 0x1B
12.0000 1000 11 0 01 0x19
16.0000 750 10 1 01 0x15
22.0588 544 10 0 11 0x13
24.0000 500 10 0 01 0x11
32.0000 375 01 1 01 0x0D
44.1180 272 01 0 11 0x0B
48.0000 250 01 0 01 0x09
6.0000
(MCLKDIV2=’0’b)
8.0000 750 11 1 01 0x1D
11.0294 544 11 0 11 0x1B
12.0000 500 11 0 01 0x19
16.0000 375 10 1 01 0x15
22.0588 272 10 0 11 0x13
24.0000 250 10 0 01 0x11
32.0000 187.5 01 1 01 0x0D
44.1180 136 01 0 11 0x0B
48.0000 125 01 0 01 0x09
LRCK
SCLK
MSB LSB LSB
AOUTA / AINxA
Left Channel Ri gh t Channel
SDOUT
SDIN
AOUTB / AINxB
MSB MSB
Figure 20. I²S Format
DS773F1 35
CS42L55
After the PDN bit is released and MCLK is valid, the quiescent voltage, VQ, and the internal voltage refer-
ence, FILT+, will begin powering up to normal operation. The charge pump slowly powers up and charges
the capacitors. Power is then applied to the headphone amplifiers and switched-capacitor filters, and the an-
alog/digital outputs enter a muted state. MCLK occurrences are counted over one LRCK period to determine
a valid MCLK/LRCK ratio and normal operation begins.
4.11 Recommended DAC to HP or Line Power-Up Sequence (Playback)
1. Hold RESET low until the power supplies are stable; no specific power supply sequencing is required.
RESET should be held low for a minimum of 1 ms after power supplies are stable.
2. Apply MCLK (LRCK, SCLK and SDIN may be applied at any time) at the appropriate frequency.
3. Bring RESET high.
4. Wait a minimum of 500 ns before writing to the control port.
5. The default state of the master power down bit, PDN, is ‘1’b. Load the following register settings while
keeping the PDN bit set to ‘1’b.
6. Load the required register settings detailed in 4.13 “Required Initialization Settings” on page 37.
7. Configure the headphone and line power down controls for ON, OFF, or HPDETECT op eration.
Register Controls: PDN_HPx[1:0], PDN_LINx[1:0]
8. Configure the serial port I/O control for master or slave operation.
Register Controls: M/S
9. Configure the master clock (MCLK) and bit cl ock (SCLK) I/O control as desired. Refer to 4.8 “Serial Port
Clocking” on page 34 for the required configuration for a given master clock.
Register Controls: MCLKDIV2, SCK=MCK
10. Configure the sample rate (LRCK) controls for the desired sample rate. Refer to 4.8 “Serial Port Clock-
ing” on page 34 for the required configuration for a given sample rate.
Register Controls: See Register 05h
11. The default state of the DSP engine’s power down bit, PDN_DSP, is ‘0’b. It is not necessary to power
down the DSP before changing the various DSP functions. The DSP may be powered down for addi-
tional power savings.
12. To minimize pops on th e hea dphon e o r line a mplifier, each respective an alo g volume contr ol must fir st
be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
13. After muting the headphone or line amplifiers, set the PDN bit to ‘0’b.
14. Wait 75 ms for the headphone or line amplifier to power up.
15. Un-mute and ramp the volume for the headphone or line amplifiers to the desired level.
16. Bring RESET low if the analog or digital supplies drop below the recommended operating condition to
prevent power glitch related issues.
Power Up Sequence Register Location
Step 5, 13............................
Step 7..................................
Steps 8-9.............................
Step 10................................
Step 11................................
Step 12a,15a.......................
Step 12b,15b.......................
“Power Down” on page 42
“Power Control 2 (Address 03h)” on page 43
“Clocking Control 1 (Address 04h)” on page 43
“Clocking Control 2 (Address 05h)” on page 44
“Power Down DSP” on page 50
“Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
“Headphone Volume Control” on page 57, “Line Volume Control” on page 58
36 DS773F1
CS42L55
4.11.1 Recommended Power-Down Sequence
1. To minimize pops on the headphone or line amplifier, each respective analog volume control must
first be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
2. Set the PDN bit to ‘1’b.
3. Bring RESET low.
4.12 Recommended PGA to HP or Line Power-Up Sequence (Analog Passthrough)
1. Hold RESET low until the power supplies are stable; no specific power s upply sequencing is required.
RESET should be held low for a minim um of 1 ms after power supp lies are stab le.
2. Apply MCLK at the appropriate frequency.
3. Bring RESET high.
4. Wait a minimum of 500 ns before writing to the control port.
5. The default state of the master power down bit, PDN, is ‘1’b. Load the following register settings while
keeping the PDN bit set to ‘1’b.
6. Load the required register settings detailed in 4.13 “Requ ired Initialization Settings” on page 37.
7. Configure the headphone and line power down controls for ON, OFF, or HPDETECT operation.
Register Controls: PDN_HPx[1:0], PDN_LINx[1:0]
8. Configure the HP and/or Line amplifiers to receive the analog output from the PGA.
Register Controls: LINExMUX, HPxMUX
9. Power down the DSP engine.
Register Controls: PDN_DSP
10. To minimize pops on the headp hone or line amp lifier, each respective analog volume co ntrol must first
be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
11. After muting the headphone and/or line amplifiers, set the PDN bit to ‘0’b.
12. Wait 75 ms for the headphone or line amplifier to power up.
13. Un-mute and ramp the vo lume for the headphone or line amplifiers to the desired level.
14. Bring RESET low if the analog or digital supplies drop below the recommended operating condition to
prevent power glitch related issues.
4.12.1 Recommended Power-Down Sequence
1. To minimize pops on the headphone and/or line amplifier, each respe ctive analog volume control
must first be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
2. During power down, the CODEC attempts to power down on a zero cross transition of the analog
Power Down Sequence Register Location
Step 1a ................................
Step 1b ................................
Step 2..................................
“Headphone Volume Control” on page 57, Line Volume Control” on page 58
“Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
“Power Down” on page 42
Power Up Sequence Register Location
Step 5, 11............................
Step 7..................................
Steps 8................................
Step 9..................................
Step 10a,13a.......................
Step 10b,13b.......................
“Power Down” on page 42
“Power Control 2 (Address 03h)” on page 43
“ADC, Line, HP MUX (Address 08h)” on page 46
“Power Down DSP” on page 50
“Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
“Headphone Volume Control” on page 57, “Line Volume Control” on page 58
DS773F1 37
CS42L55
signal. The zero cro ss timeout, h owever, is depen de nt on the seri al por t clock domain. Thus, to fully
power down, the ADC must briefly power up to enable the zero cross state machine. Follow the
remaining steps below to complete the power down sequence.
3. Set bit 5 in register 07h to ‘1’b. This implements a high impeda nce state on the seria l output ports to
avoid possible contention in step 4 if clocks are already applied to the serial port.
4. Configure the serial port I/O control for master operation.
Register Controls: M/S
5. Power up either one of the ADC channels.
Register Controls: PDN_ADCx
6. Wait 100 ms.
7. Set the PDN bit to ‘1’b. The CODEC is completely powered down in a low power state.
8. To achieve the lowest operating quiescent current, bring RESET low. All control port registers will be
reset to their default state.
4.13 Required Initialization Settings
The current required for various sections in the CODEC must be reduced using the control port compensa-
tion strategy shown below. All performance and power consumption measurements were taken with the
Control Port Compensation shown below.
Power Down Sequence Register Location
Step 1a ................................
Step 1b ................................
Step 3..................................
Step 4..................................
Step 5..................................
Step 7..................................
“Headphone Volume Control” on page 57, “Line Volume Control” on page 58
“Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
“Miscellaneous Control (Address 07h)” on page 45
“Master/Slave Mode” on page 43
“Power Down ADC x” on page 42
“Power Down” on page 42
VA < 2.1 V VA > 2.1 V Current adjustments are made in
the following sections:
Control Port
Compensation
1. Write 0x99 to register 0x00.
2. Write 0x30 to register 0x2E.
3. Write 0x07 to register 0x32.
4. Write 0xFF to register 0x33.
5. Write 0xF8 to register 0x34.
6. Write 0xDC to register 0x35 .
7. Write 0xFC to register 0x36.
8. Write 0xAC to register 0x37.
9. Write 0xF8 to register 0x3A.
10. Write 0xD3 to register 0x3C.
11. Write 0x23 to register 0x3D.
12. Write 0x81 to register 0x3E.
13. Write 0x46 to register 0x3F.
14. Write 0x00 to register 0x00.
1. Write 0x99 to register 0x00.
2. Write 0x30 to register 0x2E.
3. Write 0x07 to register 0x32.
4. Write 0xFD to register 0x33.
5. Write 0xF8 to register 0x34.
6. Write 0xDC to register 0x35.
7. Write 0xF8 to register 0x36.
8. Write 0x6C to register 0x37.
9. Write 0xF8 to register 0x3A.
10. Write 0xD3 to register 0x3C.
11. Write 0x23 to register 0x3D.
12. Write 0x81 to register 0x3E.
13. Write 0x46 to register 0x3F.
14. Write 0x00 to register 0x00.
1. [Enable test register access.]
2. Digital Regulator.
3. ADC.
4. ADC.
5. ADC.
6. Zero Cross Detector.
7. PGA.
8. PGA.
9. DAC.
10. Headphone Amplifier.
11. Headphone & Line Amplifier.
12. Line Amplifier.
13. PGA & ADC.
14. [Disable test register access.].
38 DS773F1
CS42L55
4.14 Control Port Operation
The control port is used to access the registers allowing the CODEC to be configured for the desired oper-
ational modes and for mats. The operation of the contro l port may be complete ly asynchronous with respect
to the audio sample rates. However, to avoid potential interference problems, the control port pins should
remain static if no operation is required.
The control port operates using an I²C interface with the CODEC acting as a slave device.
4.14.1 I²C Control
SDA is a bidirectional data line. Data is clocked into and out of the par t by the clock, SCL. The signal tim-
ings for a read and write cycle are shown in Figure 21 and Figure 22. A Start condition is defined as a
falling transition of SDA while the clock is high. A Stop condition is defined as a rising transition of SDA
while the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the
CS42L55 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low
for a write).
The upper 7 bits of the address field are fixed at 1001010. To communicate with the CS42L55, the chip
address field, which is the first byte sent to the CS42L55, should match 1001010. The eighth bit of the
address is the R/W bit. If th e operation is a write, th e next byte is the Memory Address Pointer (MAP); the
MAP selects the register to be read or written. If the operation is a read, the contents of the register pointed
to by the MAP will be output. Setting the auto-increment bit in MAP allows successive reads or writes of
consecutive registers. Each byte is separated by an acknowledge bit. The ACK bit is output from the
CS42L55 after each input byte is read and is input to the CS42L55 from the microcontroller after each
transmitted byte.
Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown
in Figure 22, the write operation is aborted (after the acknowledge for the MAP byte) by sending a stop
condition. The following pseudocode illustrates an aborted write operation followed by a read operation.
Send start condition.
Send 10010100 (chip add ress & write operation).
Receive acknowledge bit.
Send MAP byte, auto-increment off.
4 5 6 7 24 25
SCL
CHIP ADDRESS (WRITE) MAP BYTE DATA DATA +1
START
ACK STOP
ACKACKACK
1 0 0 1 0 1 0 0
SDA INCR 6 5 4 3 2 1 0 7 6 1 0 7 6 1 0 7 6 1 0
0 1 2 3 8 9 12 16 17 18 19 10 11 13 14 15 27 28
26
DATA +n
Figure 21. Control Port Timing, I²C Write
SCL
CHIP ADDRESS (WRITE) MAP BYTE DATA DATA +1
START ACK
STOP
ACK
ACK
ACK
1 0 0 1 0 1 0 0
SDA 1 0 0 1 0 1 0 1
CHIP ADDRESS (READ)
START
INCR 6 5 4 3 2 1 0 7 0 7 0 7 0
NO
16 8 9 12 13 14 15 4 5 6 7 0 1 20 21 22 23 24 26 27 28
2 3 10 11 17 18 19 25
ACK
DATA + n
STOP
Figure 22. Control Port Timing, I²C Read
DS773F1 39
CS42L55
Receive acknowledge bit.
Send stop condition, aborting write.
Send start condition.
Send 10010101 (chip address & read oper ation).
Receive acknowledge bit.
Receive byte, co nt en ts of selec te d re gis ter .
Send acknowledge bit.
Send stop condition.
Setting the auto-increment bit in the MAP allows successive reads or writes of consecutive registers. Each
byte is separated by an acknowledge bit.
4.14.2 Memory Address Pointer (MAP)
The MAP byte comes after the address byte and selects the register to be read or written. Refer to the
pseudo code above for implementation details.
4.14.2.1 Map Increment (INCR)
The device has MAP auto-increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is
set to 0, MAP will stay constant for successive I²C writes or reads. If INCR is set to 1, MAP will auto-in-
crement after each byte is read or written, allowing block reads or writes of successive registers.
40 DS773F1
CS42L55
5. REGISTER QUICK REFERENCE
(Default values are shown below the bit names)
I²C Address: 1001010[R/W] - 10010100 = 0x94(Write); 10010101 = 0x95(Read)
Adr. Function 7 6 5 4 3 2 1 0
01h ID
(Read Only) Reserved Reserved Reserved Reserved Reserved REVID2 REVID1 REVID0
p42 xxxxxxxx
02h Power Ctl 1 Reserved Reserved Reserved Reserved PDN_CHRG PDN_ADCB PDN_ADCA PDN
p42 00001111
03h Power Ctl 2 PDN_HPB1 PDN_HPB0 PDN_HPA1 PDN_HPA0 PDN_LINB1 PDN_LINB0 PDN_LINA1 PDN_LINA0
p43 11111111
04h Clocking Ctl 1 Reserved Reserved M/S INV_SCLK SCK=MCK1 SCK=MCK0 MCLKDIV2 MCLKDIS
p43 00000000
05h Clocking Ctl 2 Reserved Reserved Reserved SPEED1 SPEED0 32kGROUP RATIO1 RATIO0
p44 00001011
06h Class H Power
Ctl Reserved Reserved ADPTPWR1 ADPTPWR0 Reserved Reserved Reserved Reserved
p45 00000000
07h Misc. Ctl DIGMUX Reserved Reserved Reserved ANLGZC DIGSFT Reserved FREEZE
p45 00001100
08h ADC, Line, HP
MUX ADCBMUX1 ADCBMUX0 ADCAMUX1 ADCAMUX0 LINEBMUX LINEAMUX HPBMUX HPAMUX
p46 00000000
09h HPF Ctl HPFB HPFRZB HPFA HPFRZA HPFB_CF1 HPFB_CF0 HPFA_CF1 HPFA_CF0
p47 10100000
0Ah Misc. ADC Ctl ADCB=A PGAB=A DIGSUM1 DIGSUM0 INV_ADCB INV_ADCA ADCBMUTE ADCAMUTE
p48 00000000
0Bh PGAA Vol, MUX BOOSTA PGAAMUX PGAAVOL5 PGAAVOL4 PGAAVOL3 PGAAVOL2 PGAAVOL1 PGAAVOL0
p49 00000000
0Ch PGAB Vol, MUX BOOSTB PGABMUX PGABVOL5 PGABVOL4 PGABVOL3 PGABVOL2 PGABVOL1 PGABVOL0
p49 00000000
0Dh ADCA Attenua-
tor ADCAATT7 ADCAATT6 ADCAATT5 ADCAATT4 ADCAATT3 ADCAATT2 ADCAATT1 ADCAATT0
p50 00000000
0Eh ADCB Attenua-
tor ADCBATT7 ADCBATT6 ADCBATT5 ADCBATT4 ADCBATT3 ADCBATT2 ADCBATT1 ADCBATT0
p50 00000000
0Fh Playback Ctl 1 PDN_DSP DEEMPH Reserved PLYBCKB=A INV_PCMB INV_PCMA MSTBMUTE MSTAMUTE
p50 00000000
10h ADCMIXA Vol AMIXAMUTE AMIXAVOL6 AMIXAVOL5 AMIXAVOL4 AMIXAVOL3 AMIXAVOL2 AMIXAVOL1 AMIXAVOL0
p51 10000000
11h ADCMIXB Vol AMIXBMUTE AMIXBVOL6 AMIXBVOL5 AMIXBVOL4 AMIXBVOL3 AMIXBVOL2 AMIXBVOL1 AMIXBVOL0
p51 10000000
12h PCMMIXA Vol PMIXAMUTE PMIXAVOL6 PMIXAVOL5 PMIXAVOL4 PMIXAVOL3 PMIXAVOL2 PMIXAVOL1 PMIXAVOL0
p52 00000000
13h PCMMIXB Vol PMIXBMUTE PMIXBVOL6 PMIXBVOL5 PMIXBVOL4 PMIXBVOL3 PMIXBVOL2 PMIXBVOL1 PMIXBVOL0
p52 00000000
14h BEEP Freq,
On Time FREQ3 FREQ2 FREQ1 FREQ0 ONTIME3 ONTIME2 ONTIME1 ONTIME0
p53 00000000
15h BEEP Vol,
Off Time OFFTIME2 OFFTIME1 OFFTIME0 BPVOL4 BPVOL3 BPVOL2 BPVOL1 BPVOL0
p54 00000000
16h BEEP,
Tone Cfg. BEEP1 BEEP0 Reserved TREB_CF1 TREB_CF0 BASS_CF1 BASS_CF0 TC_EN
p55 00000000
17h Tone Ctl TREB3 TREB2 TREB1 TREB0 BASS3 BASS2 BASS1 BASS0
p56 10001000
18h Master A Vol MSTAVOL7 MSTAVOL6 MSTAVOL5 MSTAVOL4 MSTAVOL3 MSTAVOL2 MSTAVOL1 MSTAVOL0
p57 00000000
19h Master B Vol MSTBVOL7 MSTBVOL6 MSTBVOL5 MSTBVOL4 MSTBVOL3 MSTBVOL2 MSTBVOL1 MSTBVOL0
p57 00000000
1Ah Headphone A
Volume HPAMUTE HPAVOL6 HPAVOL5 HPAVOL4 HPAVOL3 HPAVOL2 HPAVOL1 HPAVOL0
p57 00000000
DS773F1 41
CS42L55
1Bh Headphone B
Volume HPBMUTE HPBVOL6 HPBVOL5 HPBVOL4 HPBVOL3 HPBVOL2 HPBVOL1 HPBVOL0
p57 000 00000
1Ch Line A
Volume LINEAMUTE LINEAVOL6 LINEAVOL5 LINEAVOL4 LINEAVOL3 LINEAVOL2 LINEAVOL1 LINEAVOL0
p58 000 00000
1Dh Line B
Volume LINEBMUTE LINEBVOL6 LINEBVOL5 LINEBVOL4 LINEBVOL3 LINEBVOL2 LINEBVOL1 LINEBVOL0
p58 000 00000
1Eh Analog Input
Advisory Vol AINADV7 AINADV6 AINADV5 AINADV4 AINADV3 AINADV2 AINADV1 AINADV0
p59 000 00000
1Fh Digital Input
Advisory Vol DINADV7 DINADV6 DINADV5 DINADV4 DINADV3 DINADV2 DINADV1 DINADV0
p59 000 00000
20h Channel Mixer
& Swap PCMBSWP1 PCMBSWP0 PCMASWP1 PCMASWP0 ADCBSWP1 ADCBSWP0 ADCASWP1 ADCASWP0
p60 000 00000
21h Limit Thresh-
olds LMAX2 LMAX1 LMAX0 CUSH2 CUSH1 CUSH0 Reserved Reserved
p60 000 00000
22h Limit Ctl,
Release Rate LIMIT LIMIT_ALL LIMRRATE5 LIMRRATE4 LIMRRATE3 LIMRRATE2 LIMRRATE1 LIMRRATE0
p61 011 11111
23h Limiter Attack
Rate Reserved Reserved LIMARATE5 LIMARATE4 LIMARATE3 LIMARATE2 LIMARATE1 LIMARATE0
p62 000 00000
24h ALC Enable,
Attack Rate ALCB ALCA ALCARATE5 AALCRATE4 ALCARATE3 ALCARATE2 ALCARATE1 ALCARATE0
p62 000 00000
25h ALC Release
Rate Reserved Reserved ALCRRATE5 ALCRRATE4 ALCRRATE3 ALCRRATE2 ALCRRATE1 ALCRRATE0
p63 001 11111
26h ALC Thresholds ALCMAX2 ALCMAX1 ALCMAX0 ALCMIN2 ALCMIN1 ALCMIN0 Reserved Reserved
p64 000 00000
27h Noise Gate Ctl NGALL NG NGBOOST THRESH2 THRESH1 THRESH0 NGDELAY1 NGDELAY0
p64 000 00000
28h ALC, Limiter
SFT, ZC Disable ALCBSRDIS ALCBZCDIS ALCASRDIS ALCAZCDIS LIMSRDIS Reserved Reserved Reserved
p65 000 00000
29h Misc. Status
(Read Only) HPDETECT SPCLKERR DSPBOVFL DSPAOVFL MIXBOVFL MIXAOVFL ADCBOVFL ADCAOVFL
p66 000 00000
2Ah Charge Pump
Freq Reserved Reserved Reserved Reserved CHGFREQ3 CHGFREQ2 CHGFREQ1 CHGFREQ0
p67 000 00101
I²C Address: 1001010[R/W] - 10010100 = 0x94 (Write); 10010101 = 0x95(Read)
Adr. Function 7 6 5 4 3 2 1 0
42 DS773F1
CS42L55
6. REGISTER DESCRIPTION
Except for the chip I.D., revision register, and status register, which are Read Only, all registers are Read/Write. See
the following bit definition tables for bit assignment information. The default state of each bit after a power-up se-
quence or reset is listed in each bit description. All Reserved registers must maintain their default state.
6.1 Fab I.D. and Revision Register (Address 01h) (Read Only)
6.1.1 Chip Revision (Read Only)
CS42L55 revision level.
6.2 Power Control 1 (Address 02h)
6.2.1 Power Down ADC Charge Pump
Configures the power sta te of the ADC charge pump. For optima l ADC performance and power consump-
tion, set to ‘1’b when VA > 2.1 V and set to ‘0’b when VA < 2.1 V.
6.2.2 Power Down ADC x
Configures the power state of ADC channel x.
6.2.3 Power Down
Configures the power state of the entire CODEC.
I²C Address: 1001010[R/W]
76543210
Reserved Reserved Reserved Reserved Reserved REVID2 REVID1 REVID0
REVID[2:0] Revision Level
000 A0
001 A1
76543210
Reserved Reserved Reserved Reserved PDN_CHRG PDN_ADCB PDN_ADCA PDN
PDN_CHRG ADC Charge Pump Status
0 Powered Up
1Powered Down
PDN_ADCx ADC Status
0 Powered Up
1Powered Down
PDN CODEC Status
0 Powered Up
1Powered Down
DS773F1 43
CS42L55
6.3 Power Control 2 (Address 03h)
6.3.1 Headphone Power Control
Configures how the HPDETECT pin, 29, controls the power for the headphone amplifier.
6.3.2 Line Power Control
Configures how the HPDET ECT pin, 29, controls the power for the line amplifier.
6.4 Clocking Control 1 (Address 04h)
6.4.1 Master/Slave Mode
Configures the serial port I/O clocking.
6.4.2 SCLK Polarity
Configures the polarity of the SCLK signal.
76543210
PDN_HPB1 PDN_HPB0 PDN_HPA1 PDN_HPA0 PDN_LINB1 PDN_LINB0 PDN_LINA1 PDN_LINA0
PDN_HPx[1:0] Headphone Status
00 Headphone channel is ON when the HPDETECT pin, 29, is LO.
Headphone channel is OFF when the HPDETECT pin, 29, is HI.
01 Headphone channel is ON when the HPDETECT pin, 29, is HI.
Headphone channel is OFF when the HPDETECT pin, 29, is LO.
10 Headphone channel is always ON.
11 Headphone channel is always OFF.
PDN_LINx[1:0] Line Status
00 Line channel is ON when the HPDETECT pin, 29, is LO.
Line channel is OFF when the HPDETECT pin, 29, is HI.
01 Line channel is ON when the HPDETECT pin, 29, is HI.
Line channel is OFF when the HPDETECT pin, 29, is LO.
10 Line channel is always ON.
11 Line channel is always OFF.
76543210
Reserved Reserved M/S INV_SCLK SCK=MCK1 SCK=MCK0 MCLKDIV2 MCLKDIS
M/S Serial Port Clocks
0Slave (Input ONLY)
1 Master (Output ONLY)
Application: “Serial Port Clocking” on page 34
INV_SCLK SCLK Polarity
0Not Inverted
1 Inverted
44 DS773F1
CS42L55
6.4.3 SCLK Equals MCLK
Configures the SCLK signal source and speed for master mode.
6.4.4 MCLK Divide By 2
Configures a divide of the input MCLK prior to all internal circuitr y.
6.4.5 MCLK Disable
Configures the MCLK signal prior to all internal circuitry.
Note: This function should be enabled during power down (PDN=1) ONLY.
6.5 Clocking Control 2 (Address 05h)
6.5.1 Speed Mode
Configures the speed mod e of the CODEC in slave mo de and sets th e ap propr iate M CLK divide ratio for
LRCK and SCLK in master mode.
Notes:
1. Slave/Master Mode is determined by the M/S bit in “Master/Slave Mode” on page 43.
2. Certain sample and MCLK frequencies require setting the SPEED[1:0] bits, the 32k_GROUP bit
(“32 kHz Sample Rate Group” on page 45) and the RATIO[1:0] bits (“Internal MCLK/LRCK Ratio” on
page 45). Low sample rate s may also affect dynamic range performance in the typical audio band.
Refer to the referenced application for more information.
SCK=MCK[1:0] Output SCLK
00 Re-timed, bursted signal with minimal speed needed to clock the required data samples
01 Reserved
10 MCLK signal after the MCLK divide (MCLKDIV2) circuit
11 MCLK signal before the MCLK divide (MCLKDIV2) circuit
MCLKDIV2 MCLK signal into CODEC
0No divide
1 Divided by 2
Application: “Serial Port Clocking” on page 34
MCLKDIS MCLK signal into CODEC
0On
1 Off; Disables the clock tree to save power when the CODEC is powered down.
76543210
Reserved Reserved Reserved SPEED1 SPEED0 32kGROUP RATIO1 RATIO0
SPEED[1:0] Serial Port Speed
00 Reserved
01 Single-Speed Mode (SSM)
10 Half-Speed Mode (HSM)
11 Quarter-Speed Mode (QSM)
Application: “Serial Port Clocking” on page 34
DS773F1 45
CS42L55
6.5.2 32 kHz Sample Rate Group
Specifies whether or not the input/output sample rate is 8 kHz, 16 kHz or 32 kHz.
6.5.3 Internal MCLK/LRCK Ratio
Configures the internal MCLK/LRCK ratio.
6.6 Class H Power Control (Address 06h)
6.6.1 Adaptive Power Adjustment
Configures how the power to the headphone and line amplifiers adapts to the output signal level.
6.7 Miscellaneous Control (Address 07h)
6.7.1 Digital MUX
Selects the signal source for the ADC serial port.
32kGROUP 8 kHz, 16 kHz or 32 kHz sample rate?
0No
1Yes
Application: “Serial Port Clocking” on page 34
RATIO[1:0] Internal MCLK Cycles per LRCK
00 Reserved
01 125
10 Reserved
11 136
Application: “Serial Port Clocking” on page 34
76543210
Reserved Reserved ADPTPWR1 ADPTPWR0 Reserved Reserved Reserved Reserved
ADPTPWR[1:0] Power Supply
00 Adapted to volume setting; Voltage level is determined by the sum of the relevant volume settings
01 Fixed - Headphone and Line Amp supply = +/-VCP/2
10 Fixed - Headphone and Line Amp supply = +/-VCP
11 Adapted to Signal; Voltage level is dynamically determined by the output signal
Application: “Class H Amplifier” on page 27
76543210
DIGMUX Reserved Reserved Reserved ANLGZC DIGSFT Reserved FREEZE
DIGMUX SDOUT Signal Source
0ADC
1 DSP Mix
46 DS773F1
CS42L55
6.7.2 Analog Zero Cross
Configures when the signal level changes occur for the analog volume controls.
Note: If the signal does not encounter a zero crossing, the requested volume change will occur after a
timeout period of 1024 sample periods (approximately 10.7 ms at 48 kHz sample rate).
6.7.3 Digital Soft Ramp
Configures an incremental volume ramp from the current level to the new level at the specified rate.
6.7.4 Freeze Registers
Configures a hold on all register settings.
6.8 ADC, Line, HP MUX (Address 08h)
6.8.1 ADC x Input Select
Selects the specified analog input signal into ADCx.
Note: Pseudo-differential inputs are not available when the PGA is bypassed.
ANLGZCx Volume Changes Affected Analog Volume Controls
0Do not occur on a zero cross-
ing PGAx_VOL[5:0] (“PGAx Volume” on page 49)
HPxMUTE (“Headphone Channel x Mute” on page 57)
HPxVOL[6:0] (“Headphone Volume Control” on page 57)
LINExMUTE (“Line Channel x Mute” on page 58)
LINExVOL[6:0] (“Line Volume Control” on page 58)
1Occur on a zero crossing
DIGSFT Volume Changes Affected Digital Volume Controls
0 Do not occur with a soft ramp ADCxMUTE (“ADC Mute” on page 48)
ADCxATT[7:0] (“ADCx Volume” on page 50)
AMIXxMUTE (“ADC Mixer Channel x Mute” on page 51)
AMIXxVOL[6:0] (“ADC Mixer Channel x Volume” on page 51)
PMIXxMUTE (“PCM Mixer Channel x Mute” on page 52)
PMIXxVOL[6:0] (“PCM Mixer Channel x Volume” on page 52)
MSTxMUTE (“Master Playback Mute” on page 51)
MSTxVOL[7:0] (“Master Volume Control” on page 57)
1Occur with a soft ramp
Ramp Rate: 1/8 dB every LRCK cycle
FREEZE Control Port Status
0Register changes take effect immediately
1Modifications may be made to all control port registers without the changes taking effect until after the
FREEZE is disabled.
7 6 5 4 3210
ADCBMUX1 ADCBMUX0 ADCAMUX1 ADCAMUX0 LINEBMUX LINEAMUX HPBMUX HPAMUX
ADCxMUX[1:0] Selected Input to ADCx
00 PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 49) to select an input channel.
01 AIN1x; PGA is bypassed
10 AIN2x; PGA is bypassed
11 Reserved
DS773F1 47
CS42L55
6.8.2 Line Input Select
Selects the specified analog input signal into line amplifier x.
Note: The PGA path must not be selected while the Line Amplifier is powered down.
6.8.3 Headphone Input Select
Selects the specified analog input signal into headphone amplifier x.
Note: The PGA path must not be selected while the Headphone Amplifier is powered down.
6.9 HPF Control (Address 09h)
6.9.1 ADCx High-Pass Filter
Configures the internal high -pass filter after ADCx.
6.9.2 ADCx High-Pass Filter Freeze
Configures the high pass filter’s digital DC subtraction and/or calib ra tio n afte r AD Cx.
6.9.3 HPF x Corner Frequency
Sets the corner frequency (-3 dB point) for the internal High-Pass Filter (HPF).
LINExMUX Selected Input to Line Amplifier Ch. x
0DACx
1 PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 49) to select an input channel.
HPxMUX Selected Input to HP Amplifier Ch. x
0DACx
1 PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 49) to select an input channel.
76543210
HPFB HPFRZB HPFA HPFRZA HPFB_CF1 HPFB_CF0 HPFA_CF1 HPFA_CF0
HPFx High Pass Filter Status
0 Disabled
1Enabled
HPFRZx High Pass Filter Digital Subtraction
0Continuous DC Subtraction
1 Frozen DC Subtraction
HPFx_CF[1:0] HPF Corner Frequency Setting (Fs=48 kHz)
00 1.8 Hz
01 119 Hz
10 236 Hz
11 464 Hz
48 DS773F1
CS42L55
6.10 Misc. ADC Control (Address 0Ah)
6.10.1 ADC Channel B=A
Configures independent or ganged volume control of the ADC and the ALC.
6.10.2 PGA Channel B=A
Configures independe nt or ganged volume control of the PGA.
6.10.3 Digital Sum
Configures a mix/swap of ADCA and ADCB.
6.10.4 Invert ADC Signal Polarity
Configures the polarity of the ADC signal.
6.10.5 ADC Mute
Configures a digital mute on ADC channel x.
76543210
ADCB=A PGAB=A DIGSUM1 DIGSUM0 INV_ADCB INV_ADCA ADCBMUTE ADCAMUTE
ADCB=A Single Volume Control
0Disabled
1 Enabled
PGAB=A Single Volume Control
0Disabled
1 Enabled
DIGSUM[1:0] Serial Output Signal
Left Channel Right Channel
00 ADCA ADCB
01 (ADCA + ADCB)/2 (ADCA + ADCB)/2
10 (ADCA - ADCB)/2 (ADCA - ADCB)/2
11 ADCB ADCA
INV_ADCx ADC Signal Polarity
0Not Inverted
1Inverted
ADCxMUTE ADC Mute
0Not muted.
1 Muted
DS773F1 49
CS42L55
6.11 PGA x MUX, Volume:
PGA A (Address 0Bh) & PGA B (Address 0Ch)
6.11.1 Boostx
Configures a +20 dB boost on channel x.
6.11.2 PGA x Input Select
Selects the specified analog input signal into PGA channel x.
Note: For pseudo-differential inputs, the CODEC automatically chooses the respective pseudo-ground
(AIN1REF or AIN2REF) for each input selection.
6.11.3 PGAx Volume
Sets the volume/gain of the Programmable Gain Amplifier (PGA).
Notes:
1. Refer to Figure 23 and Figure 24 on page 69 for differential and integral nonlinearity (DNL and INL).
765432 10
BOOSTx PGAxMUX PGAxVOL5 PGAxVOL4 PGAxVOL3 PGAxVOL2 PGAxVOL1 PGAxVOL0
BOOSTx +20 dB Boost
0No boost applied
1 +20 dB boost applied
PGAxMUX Selected Input to PGAx
0AIN1x
1AIN2x
PGAxVOL[5:0] Volume
01 1111 12 dB
... ...
01 1000 12 dB
... ...
00 0001 +0.5 dB
00 0000 0 dB
11 1111 -0.5 dB
... ...
11 0100 -6.0 dB
... ...
10 0000 -6.0 dB
Step Size: 0.5 dB
50 DS773F1
CS42L55
6.12 ADCx Attenuator Control:
ADCAATT (Address 0Dh) & ADCBATT (Address 0Eh)
6.12.1 ADCx Volume
Sets the volume of the ADC signal.
6.13 Playback Control 1 (Address 0Fh)
6.13.1 Power Down DSP
Configures the power state of the DSP Engine.
6.13.2 HP/Line De-Emphasis
Configures a 15μs/50μs digital de-emphasis filter response on the headphone and line outputs.
6.13.3 Playback Channels B=A
Configures independent or ganged volume control of all playback channels.
Note: This function does not affect the AMIXBMUTE, PMIXBMUTE or MSTBMUTE control. When mut-
ing channel A in a ganged scenario, the MUTEB must also be enabled. Muting channel A without muting
channel B in a ganged scenario may cause clipping on channel B.
76543210
ADCxATT7 ADCxATT6 ADCxATT5 ADCxATT4 ADCxATT3 ADCxATT2 ADCxATT1 ADCxATT0
ADCxATT[7:0] Volume
0111 1111 0 dB
... ...
0000 0000 0 dB
1111 1111 -1.0 dB
1111 1110 -2.0 dB
... ...
1010 0000 -96.0 dB
... ...
1000 0000 -96.0 dB
Step Size: 1.0 dB
76543210
PDN_DSP DEEMPH Reserved PLYBCKB=A INV_PCMB INV_PCMA MSTBMUTE MSTAMUTE
PDNDSP DSP Status DSP Engine Controls/Blocks
0Powered Up AMIXxMUTE (“ADC Mixer Channel x Mute” on page 51)
AMIXxVOL[6:0] (“ADC Mixer Channel x Volume” on page 51)
PMIXxMUTE (“PCM Mixer Channel x Mute” on page 52)
PMIXxVOL[6:0] (“PCM Mixer Channel x Volume” on page 52)
Beep Generator, Tone Control, De-Emphasis
1 Powered Down
DEEMPH De-Emphasis Status
0 Diabled
1 Enabled
PLYBCKB=A Single Volume Control for all Playback Channels
0Disabled; Independent channel control.
1 Enabled; Ganged channel control. Channel A volume control controls channel B volume.
DS773F1 51
CS42L55
6.13.4 Invert PCM Signal Polarity
Configures the polarity of the digital input signal.
6.13.5 Master Playback Mute
Configures a digital mute on th e master volume control for channel x.
6.14 ADCx Mixer Volume:
ADCA (Address 10h) & ADCB (Address 11h)
6.14.1 ADC Mixer Channel x Mute
Configures a digital mute on the ADC mix in the DSP Engin e.
6.14.2 ADC Mixer Channel x Volume
Sets the volume/gain of the ADC mix in the DSP Engine.
INV_PCMx PCM Signal Polarity
0Not Inverted
1 Inverted
MSTxMUTE Master Mute
0Not muted.
1 Muted
76543210
AMIXxMUTE AMIXxVOL6 AMIXxVOL5 AMIXxVOL4 AMIXxVOL3 AMIXxVOL2 AMIXxVOL1 AMIXxVOL0
AMIXxMUTE ADC Mixer Mute
0 Disabled
1Enabled
AMIXxVOL[6:0] Volume
001 1000 +12.0 dB
... ...
000 0001 +0.5 dB
000 0000 0 dB
111 1111 -0.5 dB
... ...
001 1001 -51.5 dB
Step Size: 0.5 dB
52 DS773F1
CS42L55
6.15 PCMx Mixer Volume:
PCMA (Address 12h) & PCMB (Address 13h)
6.15.1 PCM Mixer Channel x Mute
Configures a digital mute on the PCM mix from the serial data input (SDIN) to the DSP Engine.
6.15.2 PCM Mixer Channel x Volume
Sets the volume/gain of the PCM mix from the serial data input (SDIN) to the DSP Engine.
76543210
PMIXxMUTE PMIXxVOL6 PMIXxVOL5 PMIXxVOL4 PMIXxVOL3 PMIXxVOL2 PMIXxVOL1 PMIXxVOL0
PMIXxMUTE PCM Mixer Mute
0Disabled
1 Enabled
PMIXxVOL[6:0] Volume
001 1000 +12.0 dB
... ...
000 0001 +0.5 dB
000 0000 0 dB
111 1111 -0.5 dB
... ...
001 1001 -51.5 dB
Step Size: 0.5 dB
DS773F1 53
CS42L55
6.16 Beep Frequency & On Time (Address 14h)
6.16.1 Beep Frequency
Sets the freque n cy of th e be ep sign a l.
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep frequency will scale directly with sample rate, Fs, but is fixed at the nominal Fs within each
speed mode.
76543210
FREQ3 FREQ2 FREQ1 FREQ0 ONTIME3 ONTIME2 ONTIME1 ONTIME0
FREQ[3:0] Frequency (Fs = 12, 24 or 48 kHz)
0000 254.76 Hz
0001 509.51 Hz
0010 571.65 Hz
0011 651.04 Hz
0100 689.34 Hz
0101 756.04 Hz
0110 869.45 Hz
0111 976.56 Hz
1000 1019.02 Hz
1001 1171.88 Hz
1010 1302.08 Hz
1011 1378.67 Hz
1100 1562.50 Hz
1101 1674.11 Hz
1110 1953.13 Hz
1111 2130.68 Hz
Application: “Beep Generator” on page 31
54 DS773F1
CS42L55
6.16.2 Beep On Time
Sets the on duration of the beep signal.
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep on time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed
mode.
6.17 Beep Volume & Off Time (Address 15h)
6.17.1 Beep Off Time
Sets the off duration of the beep signal.
Notes:
1. This setting must not change when BEEP and/or REPEAT is enabled.
2. Beep off time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed
mode.
ONTIME[3:0] On Time (Fs = 12, 24 or 48 kHz)
0000 ~86 ms
0001 ~430 ms
0010 ~780 ms
0011 ~1.20 s
0100 ~1.50 s
0101 ~1.80 s
0110 ~2.20 s
0111 ~2.50 s
1000 ~2.80 s
1001 ~3.20 s
1010 ~3.50 s
1011 ~3.80 s
1100 ~4.20 s
1101 ~4.50 s
1110 ~4.80 s
1111 ~5.20 s
Application: “Beep Generator” on page 31
76543210
OFFTIME2 OFFTIME1 OFFTIME0 BPVOL4 BPVOL3 BPVOL2 BPVOL1 BPVOL0
OFFTIME[2:0] Off Time (Fs = 12, 24 or 48 kHz)
000 ~1.23 s
001 ~2.58 s
010 ~3.90 s
011 ~5.20 s
100 ~6.60 s
101 ~8.05 s
110 ~9.35 s
111 ~10.80 s
Application: “Beep Generator” on page 31
DS773F1 55
CS42L55
6.17.2 Beep Volume
Sets the volume of the beep signal.
Note: This setting must not change when BEEP is enabled.
6.18 Beep & Tone Configuration (Address 16h)
6.18.1 Beep Configuration
Configures a beep mixed with the HP and Line output.
Notes:
1. When used in analog pass through mode, the output alternates between the signal from the PGA and
the beep signal. The beep signa l does not mix with the analog signal from the PGA.
2. Re-engaging the beep before it has completed its initial cycle will cause the beep signal to remain ON
for the maximum ONTIME duration.
6.18.2 Treble Corner Frequency
Sets the corner frequency for the treble shelving filter.
BPVOL[4:0] Gain
00110 +12.0 dB
··· ···
00000 0 dB
11111 -2 dB
11110 -4 dB
··· ···
00111 -50 dB
Step Size: 2 dB
Application: “Beep Generator” on page 31
76543210
BEEP1 BEEP0 Reserved TREBCF1 TREBCF0 BASSCF1 BASSCF0 TCEN
BEEP[1:0] Beep Occurrence
00 Off
01 Single
10 Multiple
11 Continuous
Application: “Beep Generator” on page 31
TREBCF[1:0] Treble Corner Frequency Setting
00 5 kHz
01 7 kHz
10 10 kHz
11 15 kHz
56 DS773F1
CS42L55
6.18.3 Bass Corner Frequency
Sets the corner frequency for the bass shelving filter.
6.18.4 T one Control Enable
Configures the treble and bass activation.
6.19 Tone Control (Address 17h)
6.19.1 Treble Gain
Sets the gain of the treble shelving filter.
6.19.2 Bass Gain
Sets the gain of the bass shelving filter.
BASSCF[1:0] Bass Corner Frequency Setting
00 50 Hz
01 100 Hz
10 200 Hz
11 250 Hz
TCEN Bass and Treble Control
0Disabled
1 Enabled
76543210
TREB3 TREB2 TREB1 TREB0 BASS3 BASS2 BASS1 BASS0
TREB[3:0] Gain Setting
0000 +12.0 dB
··· ···
0111 +1.5 dB
1000 0 dB
1001 -1.5 dB
··· ···
1111 -10.5 dB
Step Size: 1.5 dB
BASS[3:0] Gain Setting
0000 +12.0 dB
··· ···
0111 +1.5 dB
1000 0 dB
1001 -1.5 dB
··· ···
1111 -10.5 dB
Step Size: 1.5 dB
DS773F1 57
CS42L55
6.20 Master Volume Control:
MSTA (Address 18h) & MSTB (Address 19h)
6.20.1 Master Volume Control
Sets the volume of the signal out the DSP.
6.21 Headphone Volume Control:
HPA (Address 1Ah) & HPB (Address 1Bh)
6.21.1 Headphone Channel x Mute
Configures an analog mute on the headphone a mplifier.
6.21.2 Headphone Volume Control
Sets the volume of the signal out of the headphone amplifier.
Note:
1. The step size may deviate from 1.0 dB. Refer to Figure 25 and Figure 26 on pa ge 69.
76543210
MSTxVOL7 MSTxVOL6 MSTxVOL5 MSTxVOL4 MSTxVOL3 MSTxVOL2 MSTxVOL1 MSTxVOL0
MSTxVOL[7:0] Master Volume
0001 1000 +12.0 dB
··· ···
0000 0000 0 dB
1111 1111 -0.5 dB
1111 1110 -1.0 dB
··· ···
0011 0100 -102 dB
··· ···
0001 1001 -102 dB
Step Size: 0.5 dB
76543210
HPxMUTE HPxVOL6 HPxVOL5 HPxVOL4 HPxVOL3 HPxVOL2 HPxVOL1 HPxVOL0
HPxMUTE HP Amp Mute
0Disabled
1 Enabled
HPxVOL[6:0] Heaphone Volume
0111111 12 dB
... ...
0001100 12 dB
... ...
0000001 +1.0 dB
0000000 0 dB
1111111 -1.0 dB
... ...
1000100 -60.0 dB (Actual volume is approximately -58 dB. (Note 1))
... ...
1000000 -60.0 dB (Actual volume is approximately -58 dB. (Note 1))
Step Size: 1.0 dB
58 DS773F1
CS42L55
6.22 Line Volume Control:
LINEA (Address 1Ch) & LINEB (Address 1Dh)
6.22.1 Line Channel x Mute
Configures an analog mute on the line amplifier.
6.22.2 Line Volume Control
Sets the volume of the signal out of the lin e amplifier.
Note:
1. The step size may deviate from 1.0 dB. Refer to Figure 25 on page 69 and Fi gu r e 26 on pa ge 69 .
76543210
LINExMUTE LINExVOL6 LINExVOL5 LINExVOL4 LINExVOL3 LINExVOL2 LINExVOL1 LINExVOL0
LINExMUTE HP Amp Mute
0Disabled
1 Enabled
LINExVOL[6:0] Line Volume
0111111 12 dB
... ...
0001100 1 2 dB
... ...
0000001 +1.0 dB
0000000 0 dB
1111111 -1.0 dB
... ...
1000100 -60.0 dB (Actual volume is approximately -58 dB. (Note 1))
... ...
1000000 -60.0 dB (Actual volume is approximately -58 dB. (Note 1))
Step Size: 1.0 dB
DS773F1 59
CS42L55
6.23 Analog Input Advisory Volume (Address 1Eh)
6.23.1 Analog Input Advisory Volume
Defines the maximum analog input volume level used by the class H controller to determine the appropri-
ate supply for the HP and Line amplifiers.
6.24 Digital Input Advisory Volume (Address 1Fh)
6.24.1 Digital Input Advisory Volume
Defines the maximum digital input volume level used by the class H controller to determine the appropri-
ate supply for the HP and Line amplifiers.
Note: Between the headphone and line, the final output voltage from the charge pump is dictated by
the highest required advisory volume. When any respective amplifier is powered down, the charge pump’s
voltage automatically adjusts to the appropriate level.
76543210
AINADV7 AINADV6 AINADV5 AINADV4 AINADV3 AINADV2 AINADV1 AINADV0
AINADV[7:0] Defined Input Volume
0001 1000 Reserved
··· ···
0000 0001 Reserved
0000 0000 0 dB
1111 1111 -0.5 dB
1111 1110 -1.0 dB
··· ···
0011 0100 -102 dB
··· ···
0001 1001 -102 dB
Step Size: 0.5 dB
76543210
DINADV7 DINADV6 DINADV5 DINADV4 DINADV3 DINADV2 DINADV1 DINADV0
DINADV[7:0] Defined Input Volume
0001 1000 Reserved
··· ···
0000 0001 Reserved
0000 0000 0 dB
1111 1111 -0.5 dB
1111 1110 -1.0 dB
··· ···
0011 0100 -102 dB
··· ···
0001 1001 -102 dB
Step Size: 0.5 dB
60 DS773F1
CS42L55
6.25 ADC & PCM Channel Mixer (Address 20h)
6.25.1 PCM Mix Channel Swap
Configures a mix/swap of the PCM Mix to the headphone/line outputs.
6.25.2 ADC Mix Channel Swap
Configures a mix/swap of the ADC Mix to the headphone/line outputs. .
6.26 Limiter Min/Max Thresholds (Address 21h)
6.26.1 Limiter Maximum Threshold
Sets the maximum level, below full-scale, at which to limit and attenuate the output signal at the attack
rate (LIMARATE - “Limiter Release Rate” on page 62).
Note: Bass, Treble a nd di gital gain settin gs th at bo ost th e sign al be yond th e max imum thre shold may
trigger an attack.
76543210
PCMBSWP1 PCMBSWP0 PCMASWP1 PCMASWP0 ADCBSWP1 ADCBSWP0 ADCASWP1 ADCASWP0
PCMxSWP[1:0] PCM Mix to HP/LINEOUTA PCM Mix to HP/LINEOUTB
00 Left Right
01 (Left + Right)/2 (Left + Right)/2
10
11 Right Left
ADCxSWP[1:0] ADC Mix to HP/LINEOUTA Channel ADC Mix to HP/LINEOUTB Channel
00 Left Right
01 (Left + Right)/2 (Left + Right)/2
10
11 Right Left
76543210
LMAX2 LMAX1 LMAX0 CUSH2 CUSH1 CUSH0 Reserved Reserved
LMAX[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Limiter” on page 32
DS773F1 61
CS42L55
6.26.2 Limiter Cushion Threshold
Sets the minimum level at which to disengage the Limiter’s attenuation at the release rate (LIMRRATE -
“Limiter Release Rate” on page 62) until levels lie between the LMAX and CUSH thresh o lds.
Note: This setting is usually set slightly be low the LM AX th re shold .
6.27 Limiter Control, Release Rate (Address 22h)
6.27.1 Peak Detect and Limiter
Configures the peak detect and limiter circuitr y.
6.27.2 Peak Signal Limit All Channels
Sets how channe ls ar e at te nu at ed whe n th e limit er is enab led.
CUSH[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Limiter” on page 32
76543210
LIMIT LIMIT_ALL LIMRRATE5 LIMRRATE4 LIMRRATE3 LIMRRATE2 LIMRRATE1 LIMRRATE0
LIMIT Limiter Statu s
0Disabled
1 Enabled
Application: “Limiter” on page 32
LIMIT_ALL Limiter action:
0
Apply the necessary attenuation on a specific channel only when the signal amplitudes on that specific chan-
nel rises above LMAX.
Remove attenuation on a specific channel only when the signal amplitude on that specific channel falls below
CUSH.
1Apply the necessary attenuation on BOTH channels when the signal amplitudes on any ONE channel rises
above LMAX.
Remove attenuation on BOTH channels only when the signal amplitude on BOTH channels fall below CUSH.
Application: “Limiter” on page 32
62 DS773F1
CS42L55
6.27.3 Limiter Release Rate
Sets the rate at which the limiter relea ses the dig ita l attenuation from leve ls below the CUSH[2:0 ] thresh-
old (“Limiter Cushion Threshold” on page 61) and returns the analog output level to the MSTxVOL[7:0]
(“Master Volume Control” on pag e 57) setting.
Note: The limiter release rate is user-selectable but is also a function of the sampling frequency, Fs,
and the DIGSFT (“Digital Soft Ramp” on page 46) setting unless the disable bit (“Limiter Soft Ramp Dis-
able” on page 66) is enabled.
6.28 Limiter Attack Rate (Address 23h)
6.28.1 Limiter Attack Rate
Sets the rate at which the limiter applies digital attenuation from levels above the MAX[2:0] threshold
(“Limiter Maximum Threshold” on page 60).
Note: The limiter attack rate is user-selectab le but is also a function of the sampling freque ncy, Fs, and
the DIGSFT (“Digital Soft Ramp” on page 46) setting unless the disable bit (“Limiter Soft Ramp Disable”
on page 66) is enabled.
6.29 ALC Enable & Attack Rate (Address 24h)
6.29.1 ALCx
Configures the automatic level controller (ALC).
LIMRRATE[5:0] Release Time
00 0000 Fastest Release
··· ···
11 1111 Slowest Release
Application: “Limiter” on page 32
76543210
Reserved Reserved LIMARATE5 LIMARATE4 LIMARATE3 LIMARATE2 LIMARATE1 LIMARATE0
LIMARATE[5:0] Attack Time
00 0000 Fastest Attack
··· ···
11 1111 Slowest Attack
Application: “Limiter” on page 32
76543210
ALCB ALCA ALCARATE5 AALCRATE4 ALCARATE3 ALCARATE2 ALCARATE1 ALCARATE0
ALC ALC Status
0Disabled
1 Enabled
Application: “Automatic Level Control (ALC)” on page 24
DS773F1 63
CS42L55
6.29.2 ALC Attack Rate
Sets the rate at which the ALC applies analog and/or digita l attenuation from levels above the AMAX[2:0]
threshold (“ALC Maximum Threshold” on page 64).
Note: The ALC attack rate is user-selectable but is also a function of the sampling frequency, Fs, the
ANLGZCx (“Analog Zero Cross” on page 46) and the DIGSFT (“Digital Soft Ramp” on page 46) setting
unless the respective disable bit (“ALCx Soft Ramp Disable” on page 65 or “ALCx Zero Cross Disable” o n
page 65) is enabled.
6.30 ALC Release Rate (Address 25h)
6.30.1 ALC Release Rate
Sets the rate at which the ALC releases the analog and/or digital attenuation from levels below the
MIN[2:0] threshold (“Limiter Cushion Threshold” on page 61) and returns the signal level to the PGAx-
VOL[5:0] (“PGAx Volume” on page 49) and ADCxVOL[7:0] (“ADCx Volume” on page 50) setting.
Notes:
1. The ALC release rate is user-selectable but is also a function of the sampling frequency, Fs, and the
DIGSFT (“Digital Soft Ramp” on page 46) and ANLGZCx (“Analog Zero Cross” on page 46) setting.
2. The Release Rate setting must always be slower than the Attack Rate.
ALCARATE[5:0] Attack Time
00 0000 Fastest Attack
··· ···
11 1111 Slowest Attack
Application: “Automatic Level Control (ALC)” on page 24
76543210
Reserved Reserved ALCRRATE5 ALCRRATE4 ALCRRATE3 ALCRRATE2 ALCRRATE1 ALCRRATE0
ALCRRATE[5:0] Release Time
00 0000 Fastest Release
··· ···
11 1111 Slowest Release
Application: “Automatic Level Control (ALC)” on page 24
64 DS773F1
CS42L55
6.31 ALC Threshold (Address 26h)
6.31.1 ALC Maximum Threshold
Sets the maximum level, below full-scale, at which to limit and attenuate the input signal at the attack r ate
(ALCARATE - “ALC Attack Rate” on page 63).
6.31.2 ALC Minimum Threshold
Sets the minimum level at which to disengage the ALC’s attenuation or amplify the input signal at the re-
lease rate (ALCRRATE - “ALC Release Rate” on page 63) until levels lie between the ALCMAX and AL-
CMIN thresholds.
Note: This setting is usually set slightly below the ALCMAX threshold.
6.32 Noise Gate Control (Address 27h)
6.32.1 Noise Gate All Channels
Sets which chann els are attenuated when clipping on any single channel occurs.
76543210
ALCMAX2 ALCMAX1 ALCMAX0 ALCMIN2 ALCMIN1 ALCMIN0 Reserved Reserved
MAX[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Automatic Level Control ( ALC)” on page 24
ALCMIN[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Automatic Level Control ( ALC)” on page 24
76543210
NGALL NG NG_BOOST THRESH2 THRESH1 THRESH0 NGDELAY1 NGDELAY0
NGALL Noise Gate triggered by:
0Individual channel; Any channel that falls below the threshold setting triggers the noise gate attenuation for
ONLY that channel.
1Both channels A & B; Both channels must fall below the threshold setting for the noise gate attenuation to
take effect.
DS773F1 65
CS42L55
6.32.2 Noise Gate Enable
Configures the noise gate.
6.32.3 Noise Gate Threshold and Boost
THRESH sets the threshold level of the noise gate. Input signals below the threshold level will be attenu-
ated to -96 dB. NG_BOOST configures a +30 dB boost to the threshold settings.
6.32.4 Noise Gate Delay Timing
Sets the delay time before the no ise gate att ac ks.
Note: The Noise Gate attack rate is a function of the sampling fr equency, Fs, and the DIGSFT ( “Digital
Soft Ramp” on page 46) setting unless the disable bit (“ALCx Soft Ramp Disable” on page 65) is enabled.
6.33 ALC and Limiter Soft Ramp, Zero Cross Disables (Address 28h)
6.33.1 ALCx Soft Ramp Disable
Configures an ove r rid e of the an alo g soft ram p se ttin g.
6.33.2 ALCx Zero Cross Disable
Configures an ove r rid e of the an alo g zero cro ss set tin g.
NG Noise Gate Status
0Disabled
1 Enabled
THRESH[2:0] Minimum Setting (NG_BOOST = ‘0’b) Minimum Setting (NG_BOOST = ‘1’b)
000 -64 dB -34 dB
001 -67 dB -36 dB
010 -70 dB -40 dB
011 -73 dB -43 dB
100 -76 dB -46 dB
101 -82 dB -52 dB
110 Reserved -58 dB
111 Reserved -64 dB
NGDELAY[1:0] Delay Setting
00 50 ms
01 100 ms
10 150 ms
11 200 ms
76543210
ALCBSRDIS ALCBZCDIS ALCASRDIS ALCAZCDIS LIMSRDIS Reserved Reserved
ALCxSRDIS ALC Soft Ramp Disable
0OFF; ALC Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 46) setting
1 ON; ALC volume changes take effect in one step, regardless of the DIGSFT se tting.
ALCxZCDIS ALC Zero Cross Disable
0OFF; ALC Attack Rate is dictated by the ANLGZC (“Analog Zero Cross” on page 46) setting
1 ON; ALC volume changes take effect at any time, regardless of the ANLGZC setting.
66 DS773F1
CS42L55
6.33.3 Limiter Soft Ramp Disable
Configures an override of the digital soft ramp setting.
6.34 Status (Address 29h) (Read Only)
For bits [6:0] in this register, a “1” means the associated error condition has occu rred at least once since the
register was last read. A”0” means the associated error condition has NOT occurred since the last reading
of the register. Reading the register resets these bits to 0.
6.34.1 HPDETECT Pin Status (Read Only)
Indicates the status of the HPDETECT pin.
6.34.2 Serial Port Clock Error (Read Only)
Indicates the status of the MCLK to LRCK ratio.
Note: On initial power up and application of clocks, this bit will report ‘1’b as the serial port re-synchro-
nizes.
6.34.3 DSP Engine Overflow (Read Only)
Indicates the over-range status in the DSP data path.
6.34.4 MIXx Overflow (Read Only)
Indicates the over-range status in the PCM mix data path.
LIMSRDIS Limiter Soft Ramp Disable
0OFF; Limiter Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 46) setting
1 ON; Limiter volume changes take effect in one step, regardless of the DIGSFT setting.
76543210
HPDETECT SPCLKERR DSPBOVFL DSPAOVFL MIXBOVFL MIXAOVFL ADCBOVFL ADCAOVFL
HPDETECT Pin State
0Low
1High
SPCLKERR Serial Port Clock Status:
0 MCLK/LRCK ratio is valid.
1 MCLK/LRCK ratio is not valid.
Application: “Serial Port Clocking” on page 34
DSPxOVFL DSP Overflow Status:
0 No digital clipping has occurred in the data path after the DSP.
1 Digital clipping has occurred in the data path after the DSP.
MIXxOVFL PCM Overflow Status:
0 No digital clipping has occurred in the data path of the ADC and PCM mix of the DSP.
1 Digital clipping has occurred in the data path of the ADC and PCM mix of the DSP.
DS773F1 67
CS42L55
6.34.5 ADCx Overflow (Read Only)
Indicates the over-range status in the ADC signal path.
6.35 Charge Pump Frequency (Address 2Ah)
6.35.1 Charge Pump Frequency
Sets the charge pump frequency on FLYN and FLYP.
Note: The output THD+N performance improves at higher frequencies; power consumption increases
at higher frequencies.
ADCxOVFL ADC Overflow Status:
0 No clipping has occurred anywhere in the ADC signal path.
1 Clipping has occurred in the ADC signal path.
76543210
Reserved Reserved Reserved Reserved CHGFREQ3 CHGFREQ2 CHGFREQ1 CHGFREQ0
CHGFREQ[3:0] N
0000 0
...
0101 5
...
1111 15
Formula: Frequency = 1.5 MHz/(N+2)
68 DS773F1
CS42L55
7. PCB LAYOUT CONSIDERATIONS
7.1 Power Supply
As with any high-resolution conve rter, the CS42L5 5 require s careful attention to po wer supply and ground-
ing arrangements if its pote ntial performance is to be r ealized. Figure 1 on page 10 shows the r ecommend-
ed power arrangements, with VA and VCP connected to clean supplies. VLDO, which powers the digital
circuitry, may be run from the system logic supply. Alternatively, VLDO may be powered from the analog
supply via a ferrite bea d. In this ca se, no addit i ona l devices shou ld be po were d fro m VLDO .
7.2 Grounding
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling
capacitors are r ecommended. Decoupling ca pacitors should be as close to the pins of the CS42L55 as pos-
sible. The low value ceramic capacitor should be closest to the pin and should be mounted on the same
side of the board as the CS42L55 to minimize inductance effects. All signals, especially clocks, should be
kept away from the FILT+ and VQ pins in order to a void unwanted coupling into the modula tors. The FILT+,
VQ, +VHPFILT and -VHPFILT capacitors must be positioned to minimize the electrical path from each re-
spective pin to AGND. The CDB42L55 evaluation board demonstra tes the optim um layou t and power sup-
ply arrangements.
7.3 QFN Thermal Pad
The CS42L55 comes in a compact QFN package. The under side of the QFN package re veals a large metal
pad that serves as a thermal relief to provide for maximum heat dissipation. This pad must mate with an
equally dimensioned coppe r pad on the PCB and must be electrically conne cted to ground. A series of vias
should be used to connect this copper pad to one or more larger ground plan es on other PCB layers. In split
ground systems, it is re commended that this thermal pad be connected to AGND for best performance. The
CDB42L55 evaluation board demonstrates the optimum thermal pad and via configuration.
DS773F1 69
CS42L55
8. ANALOG VOLUME NON-LINEARITY (DNL & INL)
PGA Volume Setting
Actual Output Volume, dB
-8
-6
-4
-2
0
2
4
6
8
10
12
-6-5-4-3-2-10123456789101112
PGA Volume Setting
Actual Step Size, dB
0.4
0.42
0.44
0.46
0.48
0.5
0.52
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
Figure 23. PGA Step Size vs. Volume Setting Figure 24. PGA Output Volume vs. Volume Setting
HP/Line Volume Setting
Actual Step Size, dB
0
0.2
0.4
0.6
0.8
1
-60 -50 -40 -30 -20 -10 0 +10 +20
HP/Line Volum e Se tting
Actual Output Volume, dB
-60
-50
-40
-30
-20
-10
0
10
-60 -50 -40 -30 -20 -10 0 10 20
Figure 25. HP/Line Step Size vs. Volume Setting Figure 26. HP/Line Output Volume vs. Volume Setting
70 DS773F1
CS42L55
9. ADC & DAC DIGITAL FILTERS
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
Frequency (normalized to Fs)
Amplitude dB
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
5
−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
0.15
0.2
0.25
Frequency (normalized to Fs)
Amplitude dB
Figure 27. ADC Passband Ripple Figure 28. ADC Stopband Rejection
0.4 0.43 0.46 0.49 0.52 0.55 0.58 0.61 0.64
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
Frequency (normalized to Fs)
Amplitude dB
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
5
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
Frequency (normalized to Fs)
Amplitude dB
Figure 29. ADC Transition Band Figure 30. ADC Transition Band Detail
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
frequency (Normalized to Fs)
Magnitude (dB)
Figure 31. DAC Passband Ripple Figure 32. DAC Stopband
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.4
5
−0.05
−0.04
−0.03
−0.02
−0.01
0
0.01
0.02
0.03
frequency (Normalized to Fs)
Magnitude (dB)
Figure 33. DAC Transition Band Figure 34. DAC Transition Band (Detail)
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
−60
−50
−40
−30
−20
−10
0
frequency (Normalized to Fs)
Magnitude (dB)
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54
−60
−50
−40
−30
−20
−10
0
frequency (Normalized to Fs)
Magnitude (dB)
DS773F1 71
CS42L55
10.PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms value of the signal to the rms sum of all other spectral compon ents over th e specified
bandwidth. Dynamic Range is a signal-to-noise ratio mea surement over the specified band width made with
a -60 dB signal. 60 dB is added to resulting measurement to refer the me asurement to full-scale. This tech-
nique ensures that the distortion comp onents are below the noise level and do not affect the measuremen t.
This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the
Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decib els .
Total Harmonic Distortion + Noise
The ratio of the rms value of the signal to the rms sum of all other spectral compon ents over th e specified
bandwidth (typically 10 Hz to 20 k Hz), including distortion components. Expressed in decibels. Measured
at -1 dBFS and -20 dBFS for the analog input and 0 dB and -20 dB for the analog output as suggested in
AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at
1 kHz. Units in decibels.
Interchannel Isolation
A measure of crosstalk betwe en the left and right cha nnel pairs. Measu red for each ch annel at the conver t-
er's output with no signal to the inpu t under test and a full- scale signal applied to the oth er channel. Units in
decibels.
HP to ADC Isolation
A measure of crosstalk between the headphone amplifier and the ADC inputs. Measured for each channel
at the ADC’s output with no signal to the input and a full-scale signal applied to the headphone amplifier with
a 16 Ω or 10 kΩ load. Units in decibels.
Output Offset Voltage
Describes the DC offset vo ltage present at the amplifier’s output dur ing a MUTE state. When measuring the
offset out the line amplifier, the line amplifier is ON while the head phone amplifier is OFF; when measuring
the offset out the headphone amplifier, the headphone amplifier is ON while the line amplifier is OFF. The
offset observed at the output of the HP/Line amplifiers is a result of the non-infinite CMRR of the output am-
plifier that exists due to CMOS process limitations and is proportional to the analog volume settings.
AC Load Resistan c e an d Cap ac it anc e
RL and CL reflect the recommended minimum resistance and maximum capacitance required for the inter-
nal op-amp's stability and signal integrity. CL will effectively move the band-limiting pole of the amp in the
output stage. Increasing this value beyond the recommen ded 150 pF can cause the internal op-a mp to be-
come unstable.
Interchannel Gain Mismatch
The gain difference between left and right channel pairs. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a fu ll-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal.
72 DS773F1
CS42L55
11.PACKAGE DIMENSIONS
(Unless otherwise specified, linear tolerance is ±0.05 mm, and angular tolerance is ±2 deg.)
1. Controlling dimensions are in millimeters.
2. Unless otherwise specified tolerance: Linear ±0.05 mm, Angular ±2 deg.
3. Dimensioning and tolerances per ASME Y 14.5M-1994.
4. Dimension lead width applies to the plated terminal and is measured 0.15 mm and 0.30 mm from the
terminal tip.
THERMAL CHARACTERISTICS
INCHES MILLIMETERS NOTE
Dim MIN NOM MAX MIN NOM MAX
A 0.01773 0.0197 0.45 - 0.50 1,3
A1 0.00000 0.00197 0.00 - 0.05 1,3
b 0.00591 0.00788 0.00985 0.15 0.20 0.25 1,3,4
e 0.01576 0.40 REF 1,3
D 0.19503 0.1970 0.19897 4.95 5.00 5.05 1,3
E 0.19503 0.1970 0.19897 4.95 5.00 5.05 1,3
D2 0.13593 0.1379 0.13987 3.45 3.50 3.55 1,3
E2 0.13593 0.1379 0.13987 3.45 3.50 3.55 1,3
L 0.01379 0.1576 0.01773 0.35 0.40 0.45 1,3
P1 0.00985 0.01182 0.01379 0.25 0.30 0.35 1,3
P2 0.00985 0.01182 0.01379 0.25 0.30 0.35 1,3
JEDEC #: MO-220
Controlling Dimension is Millimeters.
Parameter Symbol Min Typ Max Units
Junction to Ambient Thermal Impedance 2 Layer Board
4 Layer Board θJA
θJA
-
-68
28 -
-°C/Watt
°C/Watt
PIN #1
CORNER
L
A
A1
e
b
D2
E2
P1
P1
E
D
1.50 REF
1.50 REF
P2
Pin #1 IDENTIFIER
LASER MARKING
P2
36L QFN (5 X 5 mm BODY) PACKAGE DRAWING (Note 2)
DS773F1 73
CS42L55
12.ORDERING INFORMATION
13.REFERENCES
1. Philips Semiconductor, The I²C-Bus Specification: Version 2.1, January 2000.
http://www.semiconductors.philips.com
14.REVISION HISTORY
Product Description Package P b-Free Grade Temp Range Container Order #
CS42L55 Ultra Low Power, Stereo
CODEC w/ Class H HP Amp
for Portable Apps 36L-QFN YES Commercial -40°C to + 85°C Rail CS42L55-CNZ
Tape & Reel CS42L55-CNZR
CDB42L55 CS42L55 Evaluation Board - No - - - CDB42L55
Revision Changes
F1 Initial Release
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one neare st to you go to www.cirrus.com/corporate/contacts/sales.cfm
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without not ice and is pr ovided "AS IS" witho ut warr anty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or o ther righ ts of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work righ ts,
copyrights, tradem arks, trade secrets or oth er intellectual prop erty rights. Cirrus ow ns the copyrights a ssociated with the information contained herein and gives con-
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RI SKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS AR E NOT DESIGNED, AU THORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-
ICAL APPLICATIONS. INCLUSION OF CIRRUS PR ODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUST OMER’S RISK AND CIR-
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARR ANTIES OF MERCHANTABILITY AND
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM-
ER’S CUSTOMER USES OR PERMITS THE US E OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DI STRI BUT ORS AN D OT HE R AGE NTS FRO M ANY AND AL L LI ABI L I TY, I NCL UDING AT-
TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, an d the Cirrus Logic logo designs are tradem a rks of Ci rru s Lo gi c, Inc. All o ther bra nd and product names in this document may be trademarks
or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor.