5–1
FEATURES
Very High Current Transfer Ratio, 500% Min.
Isolation T est V oltage, 5300 V AC
RMS
High Isolation Resistance, 10
11
Typical
Low Coupling Capacitance
Standard Plastic DIP Package
Underwriters Lab File #E52744
VDE 0884 Available with Option 1
Maximum Ratings (Each Channel)
Emitter
Peak Reverse Voltage........................................3 V
Continuous Forward Current.........................60 mA
Power Dissipation at 25
°
C.........................100 mW
Derate Linearly from 25
°
C....................1.33 mW/
°
C
Detector
Collector-Emitter Breakdown Voltage .............30 V
Collector (Load) Current..............................125 mA
Power Dissipation at 25
°
C Ambient...........150 mW
Derate Linearly from 25
°
C......................2.0 mW/
°
C
Package
Isolation Test Voltage (between emitter
and detector refer to standard climate
23
°
C/50%RH, DIN 50014)
t=1 sec...........................................5300 VAC
RMS
Creepage...............................................7 mm min.
Clearance...............................................7 mm min.
Comparative Tracking Index per
DIN IEC 112/VDE303, part 1........................
175
Isolation Resistance
V
IO
=500V, T
A
=25
°
C ......................... R
IO
=10
12
V
IO
=500V, T
A
=100
°
C ....................... R
IO
=10
11
Total Dissipation at 25
°
C Ambient
ILD32 .....................................................400 mW
ILQ32 .....................................................500 mW
Derate Linearly from 25
°
C
ILD32 ...............................................5.33 mW/
°
C
ILQ32 ...............................................6.67 mW/
°
C
Storage Temperature ...................–55
°
C to +150
°
C
Operating Temperature ...............–55
°
C to +100
°
C
Lead Soldering Time at 260
°
C....................10 sec.
DESCRIPTION
The ILD32/ILQ32 are optically coupled isolators
with a Gallium Arsenide infrared LED and a silicon
photodarlington sensor. Switching can be achieved
while maintaining a high degree of isolation
between driving and load circuits. These optocou-
plers can be used to replace reed and mercury
relays with advantages of long life, high speed
switching and elimination of magnetic fields.
The ILD32 has two isolated channels in a DIP pack-
age, and the ILQ32 has four channels. These
devices can be used to replace 4N32s or 4N33s in
applications calling for several single channel opto-
couplers on a board.
V
DE
Electrical Characteristics
(T
A
=25
°
C)
Symbol Min. Typ. Max. Unit Condition
Emitter
Forward Voltage V
F
1.25 1.5 V I
F
=10 mA
Reverse Current I
R
0.1 100
µ
AV
R
=3.0 V
Capacitance C
O
25 pF V
R
=0 V
Detector
Breakdown Voltage
Collector-Emitter BV
CEO
30 V I
C
=100
µ
A,
I
F
=0
Breakdown Voltage
Emitter-Collector BV
ECO
510 VI
E
=100
µ
A
Collector-Emitter
Leakage Current I
CEO
1.0 100 nA V
CE
=10V,
I
F
=0
Package
Current Transfer Ratio CTR 500 % I
F
=10 mA
Collector Emitter
Saturation Voltage V
CEsat
1.0 V I
C
=2 mA,
I
F
=8 mA
Isolation Capacitance C
ISOL
0.5 pF
Turn-On Time t
on
15
µ
sV
CC
=10 V
Turn-Off Time t
off
30
µ
sI
F
=5 mA,
R
L
=100
Dimensions in inches (mm)
.
268 (6.81)
.
255 (6.48)
.790 (20.07)
.779 (19.77 )
.045 (1.14)
.030 (.76)
4°
Typ.
.100 (2.54)
Typ.
10°
Typ.
3°–9°
.305 typ.
(7.75) typ.
.022 (.56)
.018 (.46) .012 (.30)
.008 (.20)
.135 (3.43
)
.115 (2.92
)
Pin One I.D.
.150 (3.81)
.130 (3.30)
.040 (1.02)
.030 (.76 )
.268 (6.81)
.255 (6.48)
34
65 .390 (9.91)
.379 (9.63)
.045 (1.14)
.030 (.76)
4°
Typ.
.100 (2.54)
Typ.
10°
Typ.
3°–9°
.305 typ.
(7.75) typ.
.022 (.56)
.018 (.46) .012 (.30)
.008 (.20)
.135 (3.43)
.115 (2.92)
12
87
Pin One I.D.
.150 (3.81)
.130 (3.30)
.040 (1.02)
.030 (.76 )
Emitter
Collector
Collector
Emitter
Emitter
Collector
Collector
Emitter
Anode
Cathode
Cathode
Anode
Anode
Cathode
Cathode
Anode
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
8
7
6
5
Emitter
Collector
Collector
Emitter
Anode
Cathode
Cathode
Anode
1
2
3
4
Dual
Channel
Quad
Channel
DUAL CHANNEL
ILD32
QUAD CHANNEL
ILQ32
PHOTODARLINGTON OPTOCOUPLER
5–2
ILD32/ILQ32
Figure 1. Forward voltage versus forward current
Figure 2. Normalized non-saturated and saturated
CTRce at TA=25
°
C versus LED current
Figure 3. Normalized non-saturated and saturated
collector-emitter current versus LED current
Figure 4. Low to high propagation delay versus
collector load resistance and LED current
100101.1
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
IF - Forward Current - mA
VF - Forward Voltage - V
Ta = -55°C
Ta = 25°C
Ta = 85°C
.1 1 10 100 1000
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Vce =1V
Vce = 10V
IF - LED Current - mA
NCTRce - Normalized CTR
Vce = 10 V
IF = 10 mA
Ta = 25 °C
Normalized to:
100
101.1
.001
.01
.1
1
10
Vc e = 1V
Vc e = 10 V
IF - LE D Current - mA
NIce - Normalized Ice
Ta = 25°C
IF = 1 0 mA
Vc e = 10 V
Normalized to:
0 5 10 15 20
0
20
40
60
80 Ta = 2 5°C, Vcc = 10 V
Vt h = 1. 5 V
220
470
1K
IF - LED Current - mA
tpLH - Low/High Propa gation
Dela y - µs
100
Figure 5. High to low propagation delay versus
collector load resistamce and LED current
Figure 6. Switching timing
Figure 7. Switching schematic
0 5 10 15 20
0
5
10
15
20
100
1K
IF - LED Current - mA
tpHL - High/Low Propagation
de la y - µs
Ta = 25°C
Vcc = 10 V
Vth = 1.5 V
IF
tR
V
O
tD
tStF
tPHL
tPLH
VTH=1.5 V
V
O
RL
VCC=10
V
F=10 KHz,
DF=50%
I
F=5 mA