VS-50WQ10FNPbF
www.vishay.com Vishay Semiconductors
Revision: 29-May-13 1Document Number: 94235
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Schottky Rectifier, 5.5 A
FEATURES
• Popular D-PAK outline
• Small foot print, surface mountable
• Low forward voltage drop
• High frequency operation
• Guard ring for enhanced ruggedness and long term
reliability
• Meets MSL level 1, per J-STD-020, LF maximum peak of
260 °C
• Material categorization: For definitions of compliance
please see www.vishay.com/doc?99912
DESCRIPTION
The VS-50WQ10FNPbF surface mount Schottky rectifier
has been designed for applications requiring low forward
drop and small foot prints on PC board. Typical applications
are in disk drives, switching power supplies, converters,
freewheeling diodes, battery charging, and reverse battery
protection.
PRODUCT SUMMARY
Package D-PAK (TO-252AA)
IF(AV) 5.5 A
VR100 V
VF at IFSee Electrical table
IRM 4 mA at 125 °C
TJ max. 150 °C
Diode variation Single die
EAS 6 mJ
Anode
13
Base
cathode
Anode
4, 2
MAJOR RATINGS AND CHARACTERISTICS
SYMBOL CHARACTERISTICS VALUES UNITS
IF(AV) Rectangular waveform 5.5 A
VRRM 100 V
IFSM tp = 5 μs sine 330 A
VF5 Apk, TJ = 125 °C 0.63 V
TJRange - 40 to 150 °C
VOLTAGE RATINGS
PARAMETER SYMBOL VS-50WQ10FNPbF UNITS
Maximum DC reverse voltage VR100 V
Maximum working peak reverse voltage VRWM
ABSOLUTE MAXIMUM RATINGS
PARAMETER SYMBOL TEST CONDITIONS VALUES UNITS
Maximum average forward current
See fig. 5 IF(AV) 50 % duty cycle at TC = 135 °C, rectangular waveform 5.5
A
Maximum peak one cycle
non-repetitive surge current
See fig. 7
IFSM
5 μs sine or 3 μs rect. pulse Following any rated load
condition and with rated
VRRM applied
330
10 ms sine or 6 ms rect. pulse 110
Non-repetitive avalanche energy EAS TJ = 25 °C, IAS = 0.5 A, L = 40 mH 6.0 mJ
Repetitive avalanche current IAR Current decaying linearly to zero in 1 μs
Frequency limited by TJ maximum VA = 1.5 x VR typical 0.5 A