Order Number C14071
TinyRISC® BDMR4103
Ev aluation Board
User’s Guide
July 2000
ii
This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LSI Logic Corporation.
Document DB15-000161-00, First Edition (July 2000). This document describes
revision A of the LSI Logic Corporation TinyRISC®BDMR4103 Evaluation Board
User’s Guide and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.
To receive product literature, visit us at http://www.lsilogic.com.
LSI Logic Corporation reserves the right to make changes to any products
described herein at any time without notice. LSI Logic does not assume any
responsibility or liability arising out of the application or use of any product
described herein, except as expressly agreed to in writing by LSI Logic; nor does
the purchase or use of a product from LSI Logic convey a license under any
patent rights, copyrights, trademark rights, or any other of the intellectual
property rights of LSI Logic or third parties.
Copyright © 2000 by LSI Logic Corporation. All rights reserved.
TRADEMARK ACKNOWLEDGMENT
The LSI Logic logo design, TinyRISC, and MiniRISC are registered trademarks
and SerialICE is a trademark of LSI Logic Corporation. All other brand and
product names may be trademarks of their respective companies.
Preface iii
Preface
This book is the primary reference and user’s guide for the TinyRISC®
BDMR4103 Evaluation Board. This guide describes the basic features of
the evaluation board, including hookup procedures and system
configuration. For additional information that relates to the board and its
components, refer to Related Publications,” on page iv.
Audience
This document assumes that you are familiar with microprocessors and
related support devices. The people who benefit from this book are:
Engineers and managers who are evaluating the LR4103
microprocessor for possible use in a system
Engineers who are designing the microprocessor into a system
Organization
This document has the following chapters:
Chapter 1, Introduction, gives an overview of the BDMR4103
Evaluation Board and describes its features.
Chapter 2, Installation Procedures, explains how to connect power
to the BDMR4103 Evaluation Board, go through a quick board check
procedure, and install jumpers.
Chapter 3, Board Design and Layout, describes the design and
layout of the BDMR4103 Evaluation Board.
Chapter 4, PAL Equations, provides the PAL equations for the
BDMR4103 Evaluation Board.
Chapter 5, Schematics, contains the schematics for the BDMR4103
Evaluation Board.
Chapter 6, Bill of Materials, lists the bill of materials for the
BDMR4103 Evaluation Board.
iv Preface
Related Publications
TinyRISC
®
EZ4103 EasyMACRO Microprocessor and FBusMacro
Technical Manual,
LSI Logic Corporation, Order Number C14068.
TinyRISC
®
LR4103 Microprocessor Technical Manual,
LSI Logic
Corporation, Document Number DB14-000081-00.
TinyRISC
®
BDMR4103 Evaluation Kit Getting Started
, LSI Logic
Corporation, Document Number DB15-000095-00.
MIPS PROM Monitor and C Run-Time Library User’s Guide
, LSI Logic
Corporation, Order Number C14017.A.
The C Programming Language
, 2nd edition 1988, by B Kerringhan and
D. Ritchie, Prentice Hall.
PC16550D Universal Asynchronous Receiver Transmitter with FIFOs,
National Semiconductor Corp
.
Am79C970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
for PCI Local Bus Product,
Advanced Micro Devices.
DS1307/DS1308 64 X 8 Serial Real Time Clock
, DALLAS
Semiconductor.
Conventions Used in This Manual
The word
assert
means to drive a signal true or active. The word
deassert
means to drive a signal false or inactive.
Hexadecimal numbers are indicated by the prefix “0x”—for example,
0x32CF. Binary numbers are indicated by the prefix “0b”—for example,
0b0011.0010.1100.1111.
All signals with names ending in “N” are active LOW; otherwise, signals
are active HIGH.
Preface v
Abbreviations
The following abbreviations are used in this manual. Note that
abbreviated signal names are not listed:
ASE Application Specific Extension
CPLD Complex Programmable Logic Device
DIMM Dual Inline Memory Module
DIN Deutsches Institut für Normung
DIP Dual In-line Package
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
EDO Extended Data Output
EEPROM Electronically Erasable Programmable Read Only Memory
EJTAG Enhanced Joint Test Action Group
EPROM Erasable Programmable Read Only Memory
FAPI FBus Advanced Peripheral Interface
FBM FBusMACRO
FET Field Effect Transistor
ICE In-Circuit Emulation
ISA Instruction Set Architecture
ISP In-System Programmable
JEDEC Joint Electrical Device Engineering Committee
JTAG Joint Test Action Group
kKilo-ohm
Kbyte Kilobyte
LED Light Emitting Diode
MMegaohm
Mbyte Megabyte
vi Preface
PAL Programmable Array Logic
PBGA Plastic Ball Grid Array
PCI Peripheral Component Interface
PLCC Plastic Leaded Chip Carrier
PLD Programmable Logic Device
PLL Phase-Locked Loop
PROM Programmable Read Only Memory
QSOP Quarter Size Outline Package
R/A Right Angle
RTC Real Time Clock
SDRAM Synchronous DRAM
SOIC Small Outline Integrated Circuit
SOJ Small Outline J-bend
SPST Single-Pole Single-throw
SRAM Static RAM
SSOP Shrink Small Outline Package
TAP Test Access Port
TP Test Point
TQFP Thin Quad Flat Package
TSOP Thin Small Outline Package
TSSOP Thin Shrink Small Outline Package
UART Universal Asynchronous Receiver Transmitter
UHS Ultra High Speed
µF Microfarad
Ohm
Contents vii
Contents
Chapter 1 Introduction
1.1 Product Summary 1-1
1.2 Product Features 1-2
1.3 Debug Environment Overview 1-3
1.3.1 PROM-Based Debug Environments 1-3
1.3.2 EJTAG Debug Environment 1-3
1.4 Block Diagram 1-4
Chapter 2 Installation Procedures
2.1 Quick Check 2-1
2.1.1 Checking the Board 2-2
2.1.2 Resolving Problems 2-4
2.2 Jumper Settings 2-5
2.2.1 Select PLLN (JP1) 2-9
2.2.2 Divide C1 (JP2) and Divide C0 (JP3) 2-9
2.2.3 Divide A1 (JP4) and Divide A0 (JP5) 2-10
2.2.4 Endian Selection (JP6) 2-11
2.2.5 PLL Range Select (JP7) 2-11
2.2.6 Alternate Boot Program Selection (JP8) 2-11
2.2.7 Boot Device Selection (JP9) 2-11
2.2.8 Connect 3.3 V Power (JP10) 2-12
2.2.9 Connect CPU I/O Ring Power (JP11) 2-12
2.2.10 Connect VDD Core Power (JP12) 2-12
2.2.11 Clock Source Selection (JP14) 2-13
2.2.12 SerialICE-1 Input Data Selection (JP15) 2-13
2.2.13 SerialICE-1 Clock Selection (JP16) 2-13
2.2.14 EDO/SDRAM Selection (JP17) 2-13
viii Contents
Chapter 3 Board Design and Layout
3.1 Board Layout 3-2
3.2 External Interfaces 3-3
3.2.1 Expansion Connector (J2) 3-4
3.2.2 DIMM Connector (J3) 3-7
3.2.3 Serial Port Connector (J10) 3-9
3.2.4 RS-232 Serial Connector for SerialICE-1
Debug Interface(J9) 3-10
3.2.5 SerialICE-1 Connector (J8) 3-11
3.2.6 Ethernet Connector (J7) 3-12
3.2.7 EJTAG Connectors 3-13
Overview of EJTAG Functions 3-13
EJTAG Connector (J4) 3-13
EJTAG Connector (J5) 3-15
3.2.8 PAL Programming Connector (J11) 3-18
3.2.9 Power Supply Connector (J1) 3-19
3.3 Indicators 3-20
3.3.1 Power LED 3-20
3.3.2 Ethernet LEDs 3-21
3.3.3 Debug LED 3-21
3.3.4 7-Segment Display 3-22
3.4 System Memory 3-23
3.4.1 Synchronous DRAM Dual Inline Memory
Module (SDRAM DIMM) 3-23
3.4.2 Static RAM (SRAM) 3-23
3.4.3 Boot EPROMs 3-23
3.5 Memory Map 3-24
3.6 Two-Wire Serial Bus Peripheral Devices 3-26
3.6.1 Real-Time Clock (RTC) 3-26
3.6.2 EEPROM 3-28
3.6.3 Serial Presence Detect (SPD) 3-28
3.6.4 LR4103 Interrupts 3-29
3.7 Device Registers 3-29
3.7.1 PC16550D UART Registers 3-30
3.7.2 Am79C970A Ethernet Controller 3-31
Chapter 4 PAL Equations
Contents ix
Chapter 5 Schematics
5.1 Microprocessor and Clock Circuitry 5-2
5.2 ROMs, SRAMs, and Address Latches 5-4
5.3 Ethernet and DRAM Circuitry 5-6
5.4 Miscellaneous Circuitry and Connectors 5-8
5.5 Expansion Connector and Boot Device Selection
Circuitry 5-10
5.6 Power and Reset Circuitry 5-12
5.7 EJTAG Connectors 5-14
Chapter 6 Bill of Materials
Customer Feedback
Figures 1.1 BDMR4103 Block Diagram 1-4
2.1 View of the BDMR4103 Quick Check Components 2-2
2.2 Jumper Positions 2-5
2.3 Jumper Locations on the BDMR4103 Evaluation Board 2-6
3.1 BDMR4103 Evaluation Board Layout 3-2
3.2 Expansion Connector 3-5
3.3 DIMM Connector Pin Numbers 3-7
3.4 Serial Port Connector 3-9
3.5 RS-232 SerialICE-1 Connector 3-10
3.6 SerialICE-1 Connector 3-11
3.7 Ethernet 10BASE-T Connector 3-12
3.8 EJTAG Connector J4 3-14
3.9 EJTAG Connector J5 3-15
3.10 PAL Programming Connector 3-18
3.11 Power Supply Connector 3-19
3.12 Indicator Positions 3-20
3.13 Ethernet Indicator Positions 3-21
3.14 7-Segment Display 3-22
5.1 Microprocessor and Clock Circuitry 5-3
5.2 ROMs, SRAMs, and Address Latches 5-5
5.3 Ethernet and DRAM Circuitry 5-7
x Contents
5.4 Miscellaneous Circuitry and Connectors 5-9
5.5 Expansion Connector and Boot Device Selection
Circuitry 5-11
5.6 Power and Reset Circuitry 5-13
5.7 EJTAG Connectors 5-15
Tables 2.1 Default Jumper Settings 2-7
2.2 JP2 and JP3 Jumper Settings 2-10
2.3 JP4 and JP5 Jumper Settings 2-10
2.4 JP9 Jumper Settings 2-12
3.1 Summary of LR4103 Interface Connector Functions 3-3
3.2 Expansion Connector Pin Designations 3-5
3.3 DIMM Connector Pin Assignments 3-8
3.4 Serial Port Connector Pin Assignments 3-9
3.5 RS-232 SerialICE-1 Connector Pin Assignments 3-10
3.6 SerialICE-1 Header Pin Assignments 3-11
3.7 Ethernet Connector Pin Assignments 3-12
3.8 EJTAG Connector J4 Pin Assignment 3-14
3.9 EJTAG Connector J5 Pin Assignments 3-15
3.10 PAL Programming Connector Pin Assignments 3-19
3.11 Ethernet Indicator Functions 3-21
3.12 7-Segment Display Settings 3-22
3.13 Boot EPROM Addressing 3-24
3.14 Physical Memory Map 3-25
3.15 Real-Time Clock Addressing 3-27
3.16 RTC Registers 3-27
3.17 EEPROM Addressing 3-28
3.18 SPD EEPROM Addressing 3-28
3.19 BDMR4103 Interrupts 3-29
3.20 UART Registers 3-30
3.21 Ethernet Controller User Registers 3-31
6.1 BDMR4103 Bill of Materials 6-2
TinyRISC
®
BDMR4103 Evaluation Board User’s Guide 1-1
Chapter 1
Introduction
This chapter gives an overview of the BDMR4103 Evaluation Board.
Topics covered in the chapter include:
Section 1.1, “Product Summary”
Section 1.2, “Product Features”
Section 1.3, “Debug Environment Overview”
Section 1.4, “Block Diagram”
1.1 Product Summary
The BDMR4103 Evaluation Board is designed for use with the LSI Logic
TinyRISC LR4103 reference device. You can use the evaluation board to
Develop application software before (or in parallel with) designing a
system on a chip
Evaluate the memory system design price/performance trade-off by
running an actual benchmark program
Together with a PC or UNIX host, the evaluation board provides you with
a complete environment for hardware and software development and
debugging. Access to off-board logic through a 150-pin AMP expansion
connector and the capability to download software through
communication ports allows you to verify the functionality of your system
before protoyping the hardware.
1-2 Introduction
1.2 Product Features
The features of the BDMR4103 Evaluation Board are:
A TinyRISC LR4103 processor that provides a 120 MHz evaluation
target
128 Kbytes of on-board SRAM
A plug-in DRAM DIMM (dual inline memory module); the DIMM
connector accepts any standard 100-pin JEDEC (Joint Electrical
Device Engineering Committee) DIMM; a 16 Mbyte SDRAM DIMM is
supplied with board
1 Mbyte of FLASH EPROM; the EPROM contains a powerful monitor
and debugger for downloading and debugging user programs
A 1 Kbyte EEPROM for the configuration parameters
Real-Time Clock (RTC)
An on-board 16550 UART (universal asynchronous
receiver/transmitter) with one RS-232C serial port
SerialICE™-1 on-chip debugging capabilities
EJTAG debugging capabilities
A 7-segment display for status display and debug use
An on-board AM79C970A PCnet Ethernet controller with a
10BASE-T interface
A 150-pin AMP expansion connector that provides easy access to
the evaluation board
Support for 3.3 V devices
Debug Environment Overview 1-3
1.3 Debug Environment Overview
The BDMR4103 evaluation board offers debug support through a PROM
monitor-based debug environment (PMON and SerialICE-1 debug
interface) and EJTAG, a nonintrusive on-chip MIPS standard debug
environment.
For more information on setting up the three debug environments, please
refer to the
TinyRISC BDMR4103 Evaluation Kit Getting Started.
1.3.1 PROM-Based Debug Environments
PMON is a conventional assembly-level PROM-based debug monitor.
PMON supports stand-alone operation and operation as the backend for
a source-level debugger. The principal disadvantage of PMON is
memory usage. PMON takes up approximately 300 Kbytes of target
memory.
The BDMR4103 evaluation board is shipped with PMON stored in the
lower 512 Kbyte region of the FLASH memory at U12. Communication is
done through the RS-232 serial port and downloaded through the
RS-232 connector at J9 or the Ethernet connector at J7.
The BDMR4103 evaluation board also offers the SerialICE-1 debug
environment. The SerialICE-1 debug interface provides the same debug
features as PMON, but does it with less than 1 Kbyte of target memory.
Use the SerialICE-1 debug interface with either an assembly-level or a
source-level debugger. Communication and download is provided
through the SerialICE-1 RS-232 serial port (J9) or the TTL-level 10-pin
header (J8).
1.3.2 EJTAG Debug Environment
EJTAG (Extended Joint Test Action Group) is a standard on-chip MIPS
debugging environment. EJTAG does not require target system memory.
To use EJTAG, the user needs to set up the memory map for the
BDMR4103 evaluation board since it has a programmable memory
controller. The user can either accomplish this in application code or use
the sample boot-up code provided in the upper 512 Kbyte region of the
FLASH EPROM memory. The user must run this boot-up code before
1-4 Introduction
downloading application programs to the evaluation board using an
assembly-level or source-level debugger. Communication and download
occurs through the EJTAG connector at J4.
1.4 Block Diagram
Figure 1.1 shows a high level block diagram of the BDMR4103 evaluation
board.
Figure 1.1 BDMR4103 Block Diagram
LR4103
Microprocessor
Address Bus
Data Bus
SerialICE-1 Circuitry
EJTAG
Connectors
for Debug
128 Kbytes
SRAM 1 Mbyte
FLASH
1 Mbyte
EPROM
16 Mbytes
SDRAM
16550
UART Ethernet
Control
150-Pin
10BASE-T
Ethernet Connector
Serial
Port
7-Segment
Display
EPROM
Expansion
Connector
EEPROM
RTC
I2C Devices
TinyRISC
®
BDMR4103 Evaluation Board User’s Guide 2-1
Chapter 2
Installation Procedures
This chapter describes the installation procedure for the BDMR4103
Evaluation Board. Topics covered in the chapter include:
Section 2.1, “Quick Check”
Section 2.2, “Jumper Settings”
2.1 Quick Check
Figure 2.1 shows a simplified view of the BDMR4103 board with the
components referenced in this section. Figure 3.1,onpage 3-2, shows a
more detailed view of the board. Major connectors and the LR4103
processor are shown in Figure 2.1 to provide an orientation.
2-2 Installation Procedures
Figure 2.1 View of the BDMR4103 Quick Check Components
2.1.1 Checking the Board
You can check the evaluation board by booting the PROM monitor
program. The BDMR4103 board is shipped with a monitor program
burned into the AM29F080 FLASH EPROM at location U12.
Use the following procedure to check the board:
J9 J10
SerialICE-1 RS232 Port Serial Port
LR4103 Reference Device
U1
Microprocessor
U16
U36
U12
FLASH
EPROM
U25
EPROM
U5
U6
J2
J1
U13
C1
B1
A1
C50
B50
A50
Power
Supply
Connector
SI Oscillator
1 Mbyte
1 Mbyte
Power
LED
mproc
OSC
mproc
Crystal Core
Power
3.3 V
D5
1 Kbyte EEPROM
X1
100-Pin DIMM ConnectorJ3
Reset
Button
PinsPins
1
51
50
100
JP9
JP8
JP7
JP6
JP5
JP4
JP3
JP2
JP1
Ethernet
(RJ45) Port
J7
SerialICE-1
Header J8
150-Pin DIN Connector
Quick Check 2-3
1. Using a standard RS-232C cable, connect the serial port (J10) to
one of the following:
A terminal console.
A workstation or PC running a terminal emulator program.
Standard VT100-type terminals and PC AT-compatible PCs
operating in VT100 emulation mode are suitable. To emulate a
VT100 terminal on a PC, use the Hyperterminal application in
Microsoft Windows.
Set the terminal software for the following:
9600 baud
8 data bits
no parity
1 stop bit
Section 3.2.3, “Serial Port Connector (J10), on page 3-9 describes
the serial port connector.
2. Set the following jumpers: (Refer to Figure 2.3)
Remove JP9 to select the FLASH EPROM at location U12 as the
boot device.
Remove JP8 to select the correct boot program within the
FLASH EPROM.
Remove JP6 to select big-endian addressing mode.
3. LSI Logic provides an AC adapter with the BDMR4103 board. Power
from the adapter is supplied to the board by means of the standard
DC power connector at location J1. Figure 2.1 shows the position of
the DC connector on the evaluation board. Section 3.2.9, “Power
Supply Connector (J1), on page 3-19, describes the connector.
To apply power to the board, plug the DC power connector on the
AC adapter into the on-board power connector (J1) and plug the
three-pin AC connector on the adapter into main building power. The
power supply provided with the board will operate with AC power in
the range of 100 V–240 V, at 50/60 Hz. When power is applied to the
board, the power LED at D5 lights up.
2-4 Installation Procedures
4. The following events then occur:
The terminal screen displays a banner.
The monitor prompt appears on the screen.
The terminal displays the start-up message.
5. After the start-up message, the monitor displays the following
prompt:
PMON>
This prompt may vary slightly depending on the terminal display type
and settings. When you see the prompt, the system is ready for use.
2.1.2 Resolving Problems
If nothing appears on the screen when you power up the board, check
the following:
1. Is the power adapter plugged into the BDMR4103 board and into the
AC building supply?
2. Is the LED at D5 lit?
3. Is the RS-232C cable correctly installed at location J10?
4. Are the jumpers set for correct operation, as described in
Section 2.1.1, “Checking the Board”, step 2.?
5. If you are using a PC, is it operating in standard VT100 terminal
emulation mode?
If problems persist, contact your LSI Logic sales representative for
further assistance.
Jumper Settings 2-5
2.2 Jumper Settings
The BDMR4103 board has both 2- and 3-pin jumpers. As shown in
Figure 2.2, the 2-pin jumpers are described as being either in (installed)
or out (not installed), and the 3-pin jumpers are described as being in
positions 12, positions 23, or out.
Figure 2.2 Jumper Positions
All jumpers are identified by a number of the form
JPnn
(JP1, JP2, and
so forth) on the BDMR4103 board. Figure 2.3 on page 2-6 shows the
locations of the jumpers on the evaluation board. Connectors are shown
in Figure 2.3 on page 2-6 to provide the proper orientation. Table 2.1 on
page 2-7 summarizes the jumper functions and indicates the defaults
(factory settings). Sections 2.2.1 through 2.2.14 provide more detailed
information about jumper settings.
After performing the Quick Check in Section 2.1, disconnect the power
connection from the board and set the jumpers.
1 1
1
333
Positions 12 Positions 23 OutOutIn
Two-Pin Jumpers Three-Pin Jumpers
12 12 2 2 2
2-6 Installation Procedures
Figure 2.3 Jumper Locations on the BDMR4103 Evaluation Board
J7 J9 J10
U1
JP9
JP8
JP7
JP6
JP5
JP4
JP3
JP2
JP1
U24
JP17
JP 14
JP16
JP15
JP13
JP12
JP11
JP10
J2
JP9 Boot Device Selection
JP4 Divide A1
JP3 Divide Clock 0
JP2 Divide Clock 1
JP1 PLLN Selection
JP8 Alternate Boot Program Selection
JP7 PLL Range Selector
JP6 Endian Selection
JP5 Divide A0
JP14 Clock Source Selection
JP13 VDD Core Voltage Selection
JP12 Connect/ Disconnect
JP11 Connect/Disconnect
JP10 Connect/Disconnect +3 V Power
JP17 Address Line Configuration for SDRAM and EDO DRAM
JP16 SerialICE-1 Clock Selection
JP15 SerialICE-1 Input Data Selection
When installed,
these jumpers
tie the related
input to the
microprocessor
low.
LR4103
LR4103
Microprocessor
J3
J8
J1
I/O Power
LR4103 Core Power
LR4103
Control PCLK Freq.
Control PBCLK Freq.
321
3
2
1
321
Jumper Settings 2-7
Table 2.1 Default Jumper Settings
Jumper Jumper Name Setting Function Implemented Reference
JP1 Select PLLN In
(Default) Selects the PLL (phase-locked loop) circuit
as the clock source for the LR4103. Section
2.2.1,
page 2-9
Out Selects the input clock as the clock source
for the LR4103.
JP2 and
JP3 Divide C[1:0] Default:
JP2 In
JP3 In
See
Table 2.2
Control the PBCLK frequency.
The default settings select a PBCLK
frequency equal to 1/3 PCLK.
Section
2.2.2,
page 2-9
JP4 and
JP5 Divide A[1:0] Default:
JP4 In
JP5 Out
See
Table 2.3
Control the PCLK frequency.
The default settings select a PCLK
frequency equal to 4 x the input clock.
Section
2.2.3,
page 2-10
JP6 Endian
Selection Out
(Default) Selects big endian mode. Section
2.2.4,
page 2-11
In Selects little endian mode.
JP7 PLL Range
Selector In
(Default) 100–250 MHz
200–500 MHz
Section
2.2.5,
page 2-11
Out
JP8 Alternate Boot
Program
Selection
In Inverts the A19 input to the boot device to
allow the selection of an alternate boot
program.
Section
2.2.6,
page 2-11
Out
(Default) A19 input to the boot device is not inverted.
JP9 Boot Device
Selection In Selects the EPROM at U25 as the boot
device. Section
2.2.7,
page 2-11
Out
(Default) Selects the FLASH EPROM at U12 as the
boot device.
JP10 Connect 3.3 V In
(Default) Connects 3.3 V power to the onboard
devices. Section
2.2.8,
page 2-12
Out Disconnects 3.3 V power from the onboard
devices for test purposes.
(Sheet 1 of 2)
2-8 Installation Procedures
JP11 Connect CPU
Power In
(Default) Connects the 3.3 V power to the LR4103
VDDIO pins. Section
2.2.9,
page 2-12
Out Disconnects 3.3 V power from the LR4103
VDDIO pins for test purposes.
JP12 Connect VDD
Core Power In
(Default) Connects power to the LR4103 VDD_CORE
pins. Section
2.2.10,
page 2-12
Out Disconnects power from the LR4103
VDD_CORE pins for test purposes.
JP14 Oscillator/
Crystal Clock
Selection
Positions
1–2 Enables the oscillator at U5 to provide the
clock input to the LR4103 microprocessor. Section
2.2.11,
page 2-13
Positions
2–3
(Default)
Enables the X1 crystal to provide the clock
input to the LR4103 microprocessor.
JP15 SerialICE-1
Input Data
Selection
Positions
1–2
(Default)
The connector at J9 provides the data. Section
2.2.12,
page 2-13
Positions
2–3 The connector at J8 provides the data.
J16 SerialICE-1
Clock Selection Positions
1–2
(Default)
The on-board oscillator (U6) supplies the
SerialICE-1 clock. Section
2.2.13,
page 2-13
Positions
2–3 The connector at J8 provides the
SerialICE-1 clock.
JP17 SDRAM/EDO
Selection—
Controls
AddressInputto
DRAM DIMM
Module
Positions
1–2
(Default)
Address lines are configured for SDRAM. Section
2.2.14,
page 2-13
Positions
2–3 Address lines are configured for EDO
(extended data output) DRAM.
Table 2.1 Default Jumper Settings (Cont.)
Jumper Jumper Name Setting Function Implemented Reference
(Sheet 2 of 2)
Jumper Settings 2-9
2.2.1 Select PLLN (JP1)
This jumper selects the clock source for the LR4103 microprocessor. The
default setting is installed.
When JP1 is installed, the SELECT_PLLN input to the clock circuitry in
the microprocessor is tied low. This means that on reset, the CLKSEL bit
of the SCR2 register in the LR4103 is cleared, thus selecting the PLL
(phase-locked loop) circuit as the clock source for the LR4103.
When JP1 is not installed, the SELECT_PLLN input to the clock circuitry
in the microprocessor is tied high. This means that on reset, the CLKSEL
bit of the SCR2 register in the LR4103 chip is set, thus selecting the
input clock as the clock source for the LR4103.
You can use software at any time to overwrite the CLKSEL bit in the
SCR2 register originally set by this jumper.
2.2.2 Divide C1 (JP2) and Divide C0 (JP3)
These jumpers control the PBCLK frequency. The PBCLK is used as the
clock for the PCI devices connected to the LR4103 microprocessor.
When the jumpers are installed, they tie the inputs to the clock circuitry
in the microprocessor low. When they are not installed, the inputs are
high. On reset, the values set by these jumpers are loaded into the
CLKDC[1:0] bits in the LR4103 SCR2 register. See the
TinyRISC
EZ4103 EasyMACRO Microprocessor and FBusMacro Technical Manual
for more information.
The frequency of PBCLK is derived by dividing PCLK by the value of
CLKDC[1:0]. Table 2.2 shows the CLKDC values provided by the jumper
settings and the clock frequencies derived from these values.
2-10 Installation Procedures
You can use software at any time to overwrite the DIVC[1:0] values set
by these jumpers in the SCR2 register.
2.2.3 Divide A1 (JP4) and Divide A0 (JP5)
These jumpers control the PCLK frequency by setting the multiplication
value of the LR4103 PLL circuit. PCLK is the processor core clock, and
it is synthesized by multiplying the input clock by the value set on
jumpers JP4 and JP5. Table 2.2 shows the DIVA[1:0] inputs provided by
the jumpers and lists the PCLK frequencies derived from these inputs.
Table 2.2 JP2 and JP3 Jumper Settings
JP2 Setting JP3 Setting CLKDC[1:0] Values PBCLK Frequency
In (Default) In (Default) 0b00 PCLK divided by 3
In Out 0b01 PCLK divided by 1
Out In 0b10 PCLK divided by 2
Out Out 0b11 PCLK divided by 4
Table 2.3 JP4 and JP5 Jumper Settings
JP4 Setting JP5 Setting DIVA[1:0]
Inputs Values Max. PCLK
Frequency1
1. The maximum value is the value derived after reset. The values shown
in the right-hand column are the maximum values possible. A lower value
for PCLK can be obtained using software to program CLKDB[3:0] in the
SCR2 register of the LR4103. You cannot control the DIVA value using
software.
In In 0b00 4 Input*21
In (Default) Out (Default) 0b01 8 Input*41
Out In 0b10 16 Input*81
Out Out 0b11 32 Input*161
Jumper Settings 2-11
2.2.4 Endian Selection (JP6)
Jumper JP6 selects between big endian and little-endian addressing
mode. When the jumper is installed, the endian input to the board,
BIG_ENDIANP, is tied low, meaning the board is in little-endian mode.
When the jumper is not installed, BIG_ENDIANP is tied high, causing the
board to function in big-endian mode. The default is big-endian mode.
2.2.5 PLL Range Select (JP7)
When the JP7 jumper is in, the PLL range is 100250 MHz. When the
JP7 jumper is out, the PLL range is 200500 MHz. The PLL runs at twice
the chip clock. The LR4103 is rated for 120 MHz; thus, since
120x2=240, when the jumper JP7 is in, all valid input speeds are
acceptable.
2.2.6 Alternate Boot Program Selection (JP8)
When installed, JP8 inverts the most significant address bit (A19) input
to the boot device. When JP8 is not installed, A19 is not inverted. The
default is not installed.
This jumper is used to select between two boot programs installed in the
same 1 Mbyte EPROM. Each boot EPROM can accommodate two boot
programs, provided that neither program is larger than 512 Kbytes. The
alternate program should be programmed at address 0x80000 in the
boot EPROM memory. Setting the most significant address bit to the
EPROM HIGH (that is, installing JP8) allows the alternate program to be
selected.
2.2.7 Boot Device Selection (JP9)
The BDMR4103 Evaluation Board accommodates two boot devices: the
EPROM in the DIP socket at location U25, and the onboard FLASH
EPROM at location U12. Jumper JP9 selects between the system boot
devices. The default setting is not installed, causing the system to boot
from the FLASH EPROM at location U12.
2-12 Installation Procedures
The PAL at U42 maps the address of the selected boot device to the
MIPS boot vector address (0x1FC0 0000). Table 2.4 shows the address
spaces for each boot device.
2.2.8 Connect 3.3 V Power (JP10)
When jumper JP10 is installed, 3.3 V power is supplied to the on-board
devices. When the jumper is not installed, there is no 3.3 V power supply
to these devices. This jumper allows you to measure the current used by
3.3 V devices. To do this, remove the jumper and connect a current
meter between the terminals. The default setting is installed.
2.2.9 Connect CPU I/O Ring Power (JP11)
When jumper JP11 is installed, 3.3 V power is supplied to the LR4103
VDDIO pins. When the jumper is not installed, there is no 3.3 V power
supply to these pins. This jumper allows you to measure the current used
by the LR4103 I/O devices. To do this, remove the jumper and connect
a current meter between the terminals. The default setting is installed.
2.2.10 Connect VDD Core Power (JP12)
When jumper JP12 is installed, power is supplied to the LR4103
VDD_CORE pins. When the jumper is not installed, no power is supplied
to these pins. This jumper allows you to measure the current used by the
LR4103 internal logic. To do this, remove the jumper and connect a
current meter between the terminals. The default setting is installed.
VDD_CORE provides power to everything on the LR4103 but the I/O
ring.
Table 2.4 JP9 Jumper Settings
JP9
Setting Boot Device
(Board Location) Boot Device
Address Space Alternate Device
(Board Location) Alternate Device
Address Space
In EPROM (U25) 0x1FC00000–
0x1FCFFFFF FLASH EPROM
(U12) 0x1FD00000–
0X1FDFFFFF
Out
(Default) FLASH EPROM
(U12) 0x1FC00000–
0x1FCFFFFF EPROM (U25) 0x1FD00000–
0X1FDFFFFF
Jumper Settings 2-13
2.2.11 Clock Source Selection (JP14)
The three-position jumper, JP14, selects the clock input to the LR4103
microprocessor. When this jumper is installed in positions 1–2, the
oscillator at location U5 supplies the clock. When it is installed in
positions 2–3, the 25 MHz crystal X1 supplies the clock. The default is
positions 2–3.
2.2.12 SerialICE-1 Input Data Selection (JP15)
The three-position jumper, JP15, selects the source of the SerialICE-1
input data. When this jumper is installed in positions 1–2, the data input
comes from connector J9. When the jumper is in positions 2–3, the data
comes from connector J8. The default is positions 1–2.
2.2.13 SerialICE-1 Clock Selection (JP16)
The three-position jumper, JP16, selects the source of the SerialICE-1
clock. When this jumper is installed in positions 1–2, the on-board
oscillator at location U6 supplies the clock. The clock supplied should be
16x the desired baud rate. When the jumper is installed in positions
2–3, the clock signal is supplied from pin 4 of the connector at location
J8. The default is positions 1–2.
2.2.14 EDO/SDRAM Selection (JP17)
Jumper JP17 enables you to configure the address lines so that you can
use either SDRAM or EDO DRAM devices on the DIMM installed in the
DIMM slot at location J3. This is accomplished by routing the correct
signal to pin 68 of the DIMM. For SDRAM devices, pin 68 is defined as
bank address 0 (BA0); for EDO DRAM devices, pin 68 is defined as
address 11 (A11).
To configure the BDMR4103 board for SDRAM, the jumper is installed in
positions 1–2, routing address FADDRP27 to pin 68 of the DIMM socket.
To configure the BDMR4103 board for EDO DRAM, the jumper is
installed in positions 2–3, routing address FADDRP11 to pin 68. The
default is positions 1–2.
2-14 Installation Procedures
TinyRISC
®
BDMR4103 Evaluation Board User’s Guide 3-1
Chapter 3
Board Design and
Layout
This chapter describes the board design and layout of the BDMR4103
Evaluation Board as well as elements of the design architecture. Topics
covered in the chapter include:
Section 3.1, “Board Layout”
Section 3.2, “External Interfaces”
Section 3.3, “Indicators”
Section 3.4, “System Memory”
Section 3.5, “Memory Map”
Section 3.6, “Two-Wire Serial Bus Peripheral Devices”
Section 3.7, “Device Registers”
3-2 Board Design and Layout
3.1 Board Layout
Figure 3.1 shows the placement of the major components on the
BDMR4103 Evaluation Board. Note that the board is not drawn to scale
and the figure should not be used as a manufacturing aid.
Figure 3.1 BDMR4103 Evaluation Board Layout
SeriaIICE-1 RS232 Port Serial Port
Ethernet 10BASE-T
U10
LR4103 Reference Device
Microprocessor
JP9
JP8
JP7
JP6
JP5
JP4
JP3
JP2
JP1
U16
U36
U35
7-Segment
Display
U5
U24
U14
U6
U19
AM79C970A
J8
S1
U21
U4
U8
U7
U9
U3
U18
U32 U26 U27 U22 U29 U28
32 Kbytes x 8 SRAMs
PCnet TM
Ethernet
Controller
Power
Supply
Connector
Connector SerialICE-1
32 Kbytes x 8 SRAMs
Ethernet
Status Lights
Ethernet
Transformer
PAL
SI Oscillator
16550
Power
LED
Debug
LED D6
EJTAG
OSC mproc
OSC
JP14
µproc
Crystal Core
Power
3.3 V
U30
U38 U2
JP13
JP11
Header
I Kbyte
EEPROM
U13
U30
U17
JP12
JP10
JP17
JP16
JP15
B1 Battery
for Real-Time
X3
J1
J4
J5
J6
Debug
Probe
J7 J9 J10
UART
U42
U37
J11
PAL
Prog.
J3 100-pinDIMM Connector
D5
1
51
50
100
X1
Real-Time
Clock
Factory
Use
Only
Clock
J2
C1
B1
A1
C50
B50
A50 150-Pin DIN Connector
U1
U12
FLASH
EPROM
U25
EPROM
1 Mbyte
1 Mbyte
Voltage
Regulators
External Interfaces 3-3
3.2 External Interfaces
This section describes the external interfaces to the BDMR4103
Evaluation Board. The connectors that implement the interfaces let you
connect external logic, download software, connect to the Ethernet,
debug the board, program the PAL, and so forth. This section describes
the connectors listed in Table 3.1.Figure 3.1 (page 3-2) shows the
positions of the connectors on the board.
Table 3.1 Summary of LR4103 Interface Connector Functions
Board
Location Connector Name Description Application Main Ref.
J1 Power Supply Standard 5 V, 4.0 A,
DC power connector Connects board to AC
power supply. Page
3-19
J2 Expansion 150-pin DIN connector Connects external
modules to board;
expands design and
debug capabilities.
Page 3-4
J3 DIMM 100-pin DIMM connector Allows a DIMM module
to be installed on the
board, either SDRAM
(Synchronous DRAM) or
EDO (Extended Data
Output).
Page 3-7
J4 EJTAG 16-pin connector Provides basic break
and run control. Allows
you to download
programs and data to
memory. You can use
this connector or
connector J5 to debug
the board
.
Page
3-13
J5 EJTAG 52-pin connector Provides the same
debugging capabilities
as J4, plus PC trace
capability.
Page
3-15
J6 Debug Probe 20-pin connector Used only for factory
testing. Do not use this
connector.
3-4 Board Design and Layout
3.2.1 Expansion Connector (J2)
A 150-pin DIN connector (J2) lets you expand your design and
debugging capability to include external logic. Figure 3.2 on page 3-5
shows the pin numbers for the expansion connector and Table 3.2 on
page 3-5 lists the pin assignments.
Note that the expansion connector signals are not buffered on the
BDMR4103 Evaluation Board. You should buffer these signals when
using them off the evaluation board.
J7 Ethernet 10BASE-T RJ45 connector Connects the board to
the Ethernet using a
standard 10BASE-T
plug.
Page
3-12
J8 SerialICE-1 Interface 10-pin header Provides a logic level
SerialICE-1 interface.
You need special
equipment to use this
interface.
Page
3-11
J9 SerialICE-1 RS232 DB-9 connector Provides a standard
RS232 serial connector
for SerialICE-1 Debug
Interface.
Page
3-10
J10 Serial Port DB-9 connector Allows you to connect a
standard terminal for
RS232 serial I/O
communication.
Page 3-9
J11 PAL Programming Port 8-pin header Allows you to program
the PAL (U42). Page
3-18
Table 3.1 Summary of LR4103 Interface Connector Functions (Cont.)
Board
Location Connector Name Description Application Main Ref.
External Interfaces 3-5
Figure 3.2 Expansion Connector
Table 3.2 Expansion Connector Pin Designations
Pin Signal Name Pin Signal Name Pin Signal Name
A1 +5 V B1 Ground C1 Ground
A2 +5 V B2 Ground C2 Ground
A3 +5 V B3 FADDR12 C3 FADP00
A4 Ground B4 FADDR13 C4 FADP01
A5 Ground B5 FADDR14 C5 FADP02
A6 Ground B6 FADDR15 C6 FADP03
A7 INTP0 B7 FADDR16 C7 FADP04
A8 INTP1 B8 FADDR17 C8 FADP05
A9 INTP2 B9 FADDR18 C9 FADP06
A10 INTP3 B10 FADDR19 C10 FADP07
A11 INTP4 B11 Ground C11 FADP08
A12 INTP5 B12 FADDR20 C12 FADP09
A13 T0_OUTN B13 FADDR21 C13 FADP10
A14 T1_OUTN B14 FADDR22 C14 FADP11
A15 Ground B15 FADDR23 C15 FADP12
A16 NC1B16 AFADDR24 C16 FADP13
A17 BOOTCFG0 B17 FADDR25 C17 FADP14
A18 BOOTCFG1 B18 FADDR26 C18 FADP15
Position #1
Row C
Row B
Row A
A1 Indicator
Position #50
3-6 Board Design and Layout
A19 BOOTCFG2 B19 Ground C19 Ground
A20 NC1B20 SDCASN C20 SDWEN
A21 NC1B21 SDDDMP0 C21 SDDMP1
A22 CWAITP B22 SDCSN0 C22 SDRASN
A23 RSTOUTN B23 FADDR01 C23 FADDRP00
A24 RESETN B24 FADDR03 C24 FADDRP02
A25 Ground B25 FADDR05 C25 FADDRP04
A26 NC1B26 FADDR07 C26 FADDRP06
A27 GP0 B27 FADDR09 C27 FADDRP08
A28 GP1 B28 FADDR11 C28 FADDRP10
A29 GP2 B29 FADDR28 C29 FADDRP27
A30 GP3 B30 SDCSN1 C30 SDCLK0
A31 GP4 B31 SDDMP2 C31 Ground
A32 GP5 B32 SDDMP3 C32 FADP16
A33 Ground B33 Ground C33 FADP17
A34 GPWEN0 B34 FRAMEN C34 FADP18
A35 GPWEN1 B35 IRDYN C35 FADP19
A36 GPWEN2 B36 TRDYN C36 FADP20
A37 GPWEN3 B37 STOPN C37 FADP21
A38 GPRDN B38 DEVSELN C38 FADP22
A39 Ground B39 PBCLK C39 FADP23
A40 GPI00 B40 Ground C40 Ground
A41 GPI01 B41 CEBEN0 C41 FADP24
A42 GPI02 B42 CEBEN1 C42 FADP25
A43 GPI03 B43 CEBEN2 C43 FADP26
Table 3.2 Expansion Connector Pin Designations (Cont.)
Pin Signal Name Pin Signal Name Pin Signal Name
External Interfaces 3-7
3.2.2 DIMM Connector (J3)
A 100-pin DIMM connector (J3), allows you to install a DIMM (Dual Inline
Memory Module) on the board. The connector accommodates DIMMs
populated with SDRAM or EDO devices. Figure 3.3 shows the pin
numbers for this connector and Table 3.3 lists the pin assignments. In
Table 3.3 on page 3-8, “NC” in the Signal Name column signifies No
Connection on the listed pin.
Figure 3.3 DIMM Connector Pin Numbers
A44 NC1B44 CEBEN3 C44 FADP27
A45 Ground B45 SDONEP C45 FADP28
A46 Ground B46 FALEP C46 FADP29
A47 Ground B47 EXP_GNTN C47 FADP30
A48 +3.3 V B48 EXP_REQN C48 FADP31
A49 +3.3 V B49 Ground C49 Ground
A50 +3.3 V B50 Ground C50 Ground
1. Not connected.
Table 3.2 Expansion Connector Pin Designations (Cont.)
Pin Signal Name Pin Signal Name Pin Signal Name
50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 08 06 04 02
49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 09 07 05 03 01
100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52
99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51
PinsPins 1
51
50
100
Keys
3-8 Board Design and Layout
Table 3.3 DIMM Connector Pin Assignments
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
1 Ground 26 Ground 51 Ground 76 Ground
2 FADP00 27 +3.3 V 52 FADP08 77 +3.3 V
3 FADP01 28 SDWEN 53 FADP09 78 SDCASN
4 FADP02 29 SDCSN0 54 FADP10 79 SDCSN1
5 FADP03 30 SDCSN0 55 FADP11 80 SDCSN1
6 +3.3 V 31 +3.3 V 56 +3.3 V 81 +3.3 V
7 FADP04 32 NC257 FADP12 82 NC2
8 FADP05 33 NC258 FADP13 83 NC2
9 FADP06 34 NC259 FADP14 84 NC2
10 FADP07 35 NC260 FADP15 85 NC2
11 SDDMP0 36 Ground 61 SDDMP1 86 Ground
12 Ground 37 SDDMP2 62 Ground 87 SDDMP3
13 FADDRP00 38 FADP16 63 FADDRP01 88 FADP24
14 FADDRP02 39 FADP17 64 FADDRP03 89 FADP25
15 FADDRP04 40 FADP18 65 FADDRP05 90 FADP26
16 FADDRP06 41 FADP19 66 FADDRP07 91 FADP27
17 FADDRP08 42 +3.3 V 67 FADDRP09 92 +3.3 V
18 FADDRP10 43 FADP20 68 FADDRP27 (BA0)1
FADDRP11 (A11) 93 FADP28
19 FADDRP28 44 FADP21 69 FADDRP11 94 FADP29
20 NC245 FADP22 70 NC295 FADP30
21 +3.3 V 46 FADP23 71 +3.3 V 96 FADP31
22 NC247 Ground 72 SDRASN 97 Ground
23 NC248 GPI01 73 SDCASN 98 Ground
24 NC249 GPI00 74 NC299 Ground
25 SDCLK0 50 +3.3 V 75 SDCLK0 100 Ground
1. The signal on pin 68 depends upon the setting of JP17. Refer to Section 2.2.14, “EDO/SDRAM
Selection (JP17), page 2-13.
2. Not connected.
External Interfaces 3-9
3.2.3 Serial Port Connector (J10)
A 9-pin serial port connector (J10) provides connections for serial port
devices. Figure 3.4 shows the pin numbers for this connector and
Table 3.4 lists the pin assignments. The PROM Monitor initializes the
serial port to operate at 9600 baud with eight bits of data, no parity bit,
and one stop bit.
Figure 3.4 Serial Port Connector
RX Ground
RTS CTS
12345
9876
TX DTR
Not connected
DCD Data Carrier Detect
Transmitted Data
Received Data
Request to Send Clear to Send
Data Terminal Ready
DSR Data Set Ready
Table 3.4 Serial Port Connector Pin Assignments
Pin Signal Name Description
1 DCD Data Carrier Detect (Not Connected)
2 RX Received Data
3 TX Transmitted Data
4 DTR Data Terminal Ready (Not Connected)
5 GND Ground
6 DSR Data Set Ready (Not Connected)
7 RTS Request to Send
8 CTS Clear to Send
9 Not Connected
3-10 Board Design and Layout
3.2.4 RS-232 Serial Connector for SerialICE-1 Debug Interface(J9)
A DB-9 connector (J9) allows you to debug the board using the
SerialICE-1 debug Interface through an RS-232 cable. Pins 1 and 2 of
jumper JP15 need to be shorted to route the RS-232 TX signal to the
ICERXP pin of the LR4103 ICEport. Figure 3.5 shows the pin numbers
for this connector and Table 3.5 lists the signal assignments.
Figure 3.5 RS-232 SerialICE-1 Connector
RX Ground
RTS CTS
12345
9876
TX DTR
Not connected
DCD Data Carrier Detect
Transmitted Data
Received Data
Request to Send Clear to Send
Data Terminal Ready
DSR Data Set Ready
Table 3.5 RS-232 SerialICE-1 Connector Pin Assignments
Pin Signal Name Description
1 DCD Data Carrier Detect (Not Connected)
2 RX Received Data
3 TX Transmitted Data
4 DTR Data Terminal Ready (Not Connected)
5 GND Ground
6 DSR Data Set Ready (Not Connected)
7 RTS Request to Send (Not Connected)
8 CTS Clear to Send (Not Connected)
9 Not Connected
External Interfaces 3-11
3.2.5 SerialICE-1 Connector (J8)
A 10-pin header (J8) allows you to debug the board using SerialICE-1.
Pins 2 and 3 of jumper JP15 need to be shorted to route the CONN_RXP
signal to the ICERXP pin of the LR4103 ICEport. Figure 3.6 shows the
pin numbers for this connector and Table 3.6 lists the signal assignments.
Figure 3.6 SerialICE-1 Connector
Table 3.6 SerialICE-1 Header Pin Assignments
Pin Signal Name Description
1 CLK_OUT Supplies clock output from the oscillator (U6).
2 Ground.
3 Ground.
4 CLK_IN Provides clock source for the LR4103 ICEport
5 Ground
6 Ground
7 SI_RESET System Reset
8 CONN_RXP Received Serial Data
9 +5V +5V
10 ICE_TXP Transmitted Serial Data
13579
246810
Input from Oscillator
Ground
Ground
SI_RESET
+5 V
Ground
ICECLKP
Ground
CONN_RXP
ICE_TXP Input
3-12 Board Design and Layout
3.2.6 Ethernet Connector (J7)
The Ethernet 10BASE-T connector (J7) is a standard RJ45 connector
that allows you to connect the board to Ethernet. Figure 3.7 shows the
pin numbers for this connector and Table 3.7 lists the pin assignments.
Figure 3.7 Ethernet 10BASE-T Connector
123456
TD Transmitted Data Return RD Received Data Return
Not connected Not connected
78
Not connected
Not connected
RJ45
RD+ Received Data
TD+ Transmitted Data
Table 3.7 Ethernet Connector Pin Assignments
Pin Name Description
1 TD+ Transmitted Data
2TDTransmitted Data Return
3 RD+ Received Data
4 NC Not Connected
5 NC Not Connected
6RDReceived Data Return
7 NC Not Connected
8 NC Not Connected
External Interfaces 3-13
3.2.7 EJTAG Connectors
The BDMR4103 has two EJTAG connectors used to debug the board.
The connectors are at locations J4 and J5. This section provides an
overview of EJTAG functions and describes the two EJTAG connectors.
3.2.7.1 Overview of EJTAG Functions
EJTAG is an on-chip debug solution from the MIPS licensees/partners.
EJTAG provides a nonintrusive leading-edge debug tool for the LSI Logic
MiniRISC®and TinyRISC microprocessors in PC and workstation
environments. EJTAG is intended to establish a debug standard among
MIPS partners and simplify the development of systems based on MIPS
microprocessors.
EJTAG allows you to debug user code for the MIPS16 ASE (application
specific extension) and MIPS I/II/III ISA (instruction set architecture). The
revision of the EJTAG specification implemented by LSI Logic is EJTAG
Revision 1.5.3.
The EJTAG functions associated with the BDMR4103 evaluation board
are implemented as hardware. These functions include:
EJTAG interface and memory
Software breakpoints
Single stepping
DMA support
Instruction, data, and processor breakpoints
PC trace (J5)
Profiling
3.2.7.2 EJTAG Connector (J4)
The 16-pin EJTAG connector (J4) allows you to use a subset of the
EJTAG functions, including downloading data and programs to memory
and run control. The connector does not support PC trace. Figure 3.8
shows the pin numbers for this EJTAG connector and Table 3.8 lists the
pin assignments.
3-14 Board Design and Layout
Figure 3.8 EJTAG Connector J4
13579
2468
10 12 14 16
11 13 15
Table 3.8 EJTAG Connector J4 Pin Assignment
Pin Signal Name Input/Output Description
1 TDO O TDO (test data output) performs different functions,
depending on whether or not PC trace mode is turned
on. Connector J4 does not support PC trace, so the
functions of this signal are the same as those when
PC trace mode is turned off. That is, serial output data
is shifted from the JTAG instruction of the data register
to pin 1 (TDO) on the falling edge of the test clock,
TCK. When no data is shifted out, this pin is in a
3-state (high impedance) condition.
2, 5, 8, 10,
11, 14, 15 Not connected.
3 TDI/DINT I TDI (test data input)/DINT(debug interrupt).
4 TRST I TRST (test reset) is an active-low, asynchronous,
reset signal that resets the EJTAG module
independently of the processor logic.
6 3.3 V I 3.3 V power.
7 TCK I TCK (test clock) is the input clock used to shift data
into or out of the instruction register or data register.
9 TMS I TMS (test mode select) is decoded by the TAP
controller to control test operation. The signal is
sampled on the rising edge of TCK.
12, 16 Ground
13 EJTAG_RESET I This signal is a board level reset signal.
External Interfaces 3-15
3.2.7.3 EJTAG Connector (J5)
The 52-pin EJTAG connector (J5) supports the same EJTAG functions
as the connector at J4. In addition, it supports PC trace. Figure 3.9
shows the pin numbers for the connector and Table 3.9 lists the pin
assignments.
Figure 3.9 EJTAG Connector J5
Table 3.9 EJTAG Connector J5 Pin Assignments
Pin # Signal Name Input/Output Description
1 TRST I TRST (test reset) is an active-low, asynchronous, reset
signal that resets the EJTAG module independently of
the processor logic.
3 TDI/DINT I PC trace mode off: Serial input data (TDI, test data
input) is shifted into the JTAG Instruction register or
Data register on the rising edge of the TCK clock,
depending on the TAP (test access port) controller
state.
PC trace mode on: An active-LOW level on this pin
(DINT, debug interrupt) is used as an interrupt to switch
off PC trace mode. This signal is sampled at the TCK
positive edge or asynchronous to TCK.
5 TDO/TPC O PC trace mode off: Serial output data (TDO) is shifted
from the JTAG instruction of the data register to this pin
on the falling edge of the test clock, TCK. When no
data is shifted out, this pin is in a 3-state (off) condition.
PC trace mode on: This pin provides a nonsequential
program counter (TPC) on each DCLK clock.
7 TMS I TMS (test mode select) is decoded by the TAP
controller to control test operation. The signal is
sampled on the rising edge of TCK.
9 TCK I TCK (test clock) is the input clock used to shift data into
or out of the instruction register or data register.
2 4 6 8 10 12 14 16 18 20 44 46 48 50 52
43 45 47 49 51
1 3 5 7 9 11 13 15 17 19
3-16 Board Design and Layout
11 EJTAG_RESET I This signal is a board level reset signal.
PCST1_[2:0] O During PC trace mode, the status of the CPU is
encoded for every CPU cycle, using this group of three
status bits. PCST1_[2:0] contains the most recent
status bits.
13 PCST1_ 0 PC status trace set 1, bit 0.
15 PCST1_1 PC status trace set 1, bit 1.
17 PCST1_2 PC status trace set 1, bit 2.
19 DCLK O PC trace clock output. This clock qualifies the address
and status information contained on the TPC and
PCST pins.
21 TPC2 O PC trace out 2. This pin provides a nonsequential
program counter (TPC) bit on each DCLK when M
(where M is the number of address bits output for each
DCLK) is greater than one.
PCST2_[2:0] O During PC trace mode, the status of the CPU is
encoded for every CPU cycle, using this group of three
status bits. When N (as in DCLK is 1/N processor
clock) is greater than 1, PCST2_[2:0] contains the
second most recent status bits.
23 PCST2_ 0 PC status trace set 2, bit 0.
25 PCST2_1 PC status trace set 2, bit 1.
27 PCST2_2 PC status trace set 2, bit 2.
29 TPC3 O PC trace out 3. This pin provides a nonsequential
program counter (TPC) bit on each DCLK, when M
(where M is the number of address bits output for each
DCLK) is greater than 2.
Table 3.9 EJTAG Connector J5 Pin Assignments (Cont.)
Pin # Signal Name Input/Output Description
External Interfaces 3-17
PCST3_[2:0] O During PC trace mode, the status of the CPU is
encoded for every CPU cycle using this group of three
status bits. When N (as in DCLK is 1/N processor
clock) is greater than 2, PCST3_[2:0] contains the third
most recent status bits.
31 PCST3_ 0 PC status trace set 3, bit 0.
33 PCST3_1 PC status trace set 3, bit 1.
35 PCST3_2 PC status trace set 3, bit 2.
37 TPC4 O PC trace out 4. This pin provides a nonsequential
program counter (TPC) on each DCLK, when M (where
M is the number of address bits output for each DCLK)
is greater than 2.
PCST4_[2:0] O During PC trace mode, the status of the CPU is
encoded for every CPU cycle using this group of three
status bits. When N (as in DCLK is 1/N processor
clock) equals 4, PCST4_[2:0] contains the fourth most
recent status bits.
39 PCST4_ 0 PC status trace set 4, bit 0.
41 PCST4_1 PC status trace set 4, bit 1.
43 PCST4_2 PC status trace set 4, bit 2.
45 TPC5 O PC trace out 5. This pin provides a nonsequential
program counter (TPC) on each DCLK, when M (where
M is the number of address bits output for each DCLK)
equals 8.
47 TPC6 O PC trace out 6. This pin provides a nonsequential
program counter (TPC) on each DCLK, when M (where
M is the number of address bits output for each DCLK)
equals 8.
49 TPC7 O PC trace out 7. This pin provides a nonsequential
program counter (TPC) on each DCLK, when M (where
M is the number of address bits output for each DCLK)
equals 8.
Table 3.9 EJTAG Connector J5 Pin Assignments (Cont.)
Pin # Signal Name Input/Output Description
3-18 Board Design and Layout
3.2.8 PAL Programming Connector (J11)
An 8-pin connector (J11) allows you to program the PAL (U42).
Figure 3.10 shows the pin numbers for this connector and Table 3.10 lists
the pin assignments.
Figure 3.10 PAL Programming Connector
51 TPC8 O PC trace out 8. This pin provides a nonsequential
program counter (TPC) on each DCLK, when M (where
M is the number of address bits output for each DCLK)
equals 8.
The following pins are ground: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50, 52
Table 3.9 EJTAG Connector J5 Pin Assignments (Cont.)
Pin # Signal Name Input/Output Description
Edge of Board
8
7
6
5
4
3
2
1
External Interfaces 3-19
3.2.9 Power Supply Connector (J1)
The BDMR4103 Evaluation Board has a standard 5 V, 4.0 A DC power
supply connector (Figure 3.11), at location J1.
Figure 3.11 Power Supply Connector
LSI Logic supplies a switching AC adapter with a standard power inlet
that lets you connect the board to AC power. The adapter takes inputs
from 100240 V AC, 5060 Hz, and outputs +5 V DC at 4.0 amps.
The red LED (D5) comes on when power is applied to the board.
Table 3.10 PAL Programming Connector Pin Assignments
Pins Signal Name Description
1 3.3 V 3.3 V Power Input
2 SDO Serial Data Out
3 SDI Serial Data In
4 ISP_EN Program Enable
5 Not Connected
6 ISP_MODE In-System Programmable Mode
7 Ground Ground
8 ISP_SCLK PAL Program Clock Input
5 V
Ground
3-20 Board Design and Layout
3.3 Indicators
This section describes the following indicators on the BDMR4103 board:
Power LED
Ethernet LEDs
Debug LED
7-segment display
Figure 3.12 shows the positions of these indicators on the board.
Figure 3.12 Indicator Positions
3.3.1 Power LED
The red power LED (D5) comes on when power is applied to the board
and stays on as long as power is being applied.
U1
Red Power
LED (D5)
Yellow
Debug
LED (D6)
Ethernet
LEDs (D1–D4)
7-Segment
Display (U35)
Indicators 3-21
3.3.2 Ethernet LEDs
There are four LEDs on the edge of the evaluation board, to the left of
the Ethernet connector, as shown in Figure 3.13. These indicators come
on during Ethernet activity. Table 3.11 summarizes the Ethernet indicator
functions
Figure 3.13 Ethernet Indicator Positions
3.3.3 Debug LED
The yellow LED (D6) indicates the board is in debug mode. The LED
lights when the DM bit in the CP0 debug register of the LR4103 is set.
The DM bit is part of the EJTAG debugging system. Refer to
Section 3.2.7.1, “Overview of EJTAG Functions, on page 3-13.
Table 3.11 Ethernet Indicator Functions
Indicator Location Function
TX D1 Activated to indicate data is being transmitted.
RX D2 Activated to indicate data is being received.
LNK D3 Activated when Ethernet link integrity is good.
COL D4 Activated when a collision occurs; that is, when
two Ethernet devices are trying to transmit at the
same time. (This is not the default function of this
LED2 output from the AM79C970. The Ethernet
controller initialization code should enable this
function.)
D1 D2 D3 D4
Ethernet Indicators
TX RX COLLNK
Edge of
Evaluation
Board
Ethernet 10BASE-T
Connector
Green Green Yellow Red
3-22 Board Design and Layout
3.3.4 7-Segment Display
The 7-segment display (U35) shown in Figure 3.14 is attached to a
memory-mapped latch (register), at location U34. A read operation to the
register returns the current value stored in the register and displayed on
the segment display. A write operation to the register changes the value
shown on the segment display. Table 3.12 lists the data bit assignments
for each segment. When the related bit is cleared to ‘0, the segment
turns on, when the related bit is set to ‘1, the segment turns off. The
7-segment display is at address 0x1E00 0020 in the system memory
map and must be accessed with byte operations.
Figure 3.14 7-Segment Display
Table 3.12 7-Segment Display Settings
Data Bit Segment
D0 a
D1 b
D2 c
D3 d
D4 e
D5 f
D6 g
D7 Decimal point
a
b
c
d
e
f
Decimal Point
Example
D0 = 1
D1 = 1
D2 = 0
D3 = 0
D4 = 0
D5 = 0
D6 = 0
D7 = 1
a (D0)
b (D1)
c (D2)
d (D3)
e (D4)
f (D5)
gg (D6)
Segment off
Segment on
No decimal (D7)
Decimal
Point
System Memory 3-23
3.4 System Memory
The BDMR4103 Evaluation Board accommodates a variety of memory
devices, including SDRAM DIMM, SRAM (static RAM), and boot PROM.
This section describes the different memory types and usage. Figure 3.1
on page 3-2 shows the position of the different memory modules on the
board.
3.4.1 Synchronous DRAM Dual Inline Memory Module (SDRAM DIMM)
The BDMR4103 Evaluation Board uses the 16 Mbyte SDRAM DIMM
installed in the DIMM socket as the main system memory. The software
LSI Logic provides initializes the FBM (FbusMACRO) to address the
SDRAM DIMM at memory location 0x0000 0000. The FBM provides a
glueless interface to the SDRAM DIMM. The LR4103 microprocessor
supports other SDRAM DIMM configurations, as well as EDO DRAM. If
you use DRAM other than the 16 Mbyte SDRAM DIMM, you must modify
the FBM configuration code.
If an external PCI master needs access to the SDRAM, the SDRAM
clock must be set to 33 MHz. CPU to SDRAM accesses also occur at
33 MHz in this case.
3.4.2 Static RAM (SRAM)
The evaluation board also contains 128 Kbytes of SRAM. The software
LSI Logic provides initializes the FBM to address the SRAM at memory
location 0x0E00 0000. The Ethernet controller uses the SRAM devices
to hold its transmit and receive buffers.
This memory is used by an external PCI interface to store temporary
values without constraining the SDRAM clock to 33 MHz.
You can also use the SRAM to store programs or data.
3.4.3 Boot EPROMs
The BDMR4103 board is shipped with an AM29F080, 1 Mbyte, FLASH
EPROM installed at location U12. The board also contains a DIP socket,
at location U25, in which an optional 32-pin UV EPROM may be
installed. The socket accommodates EPROMs up to 1 Mbyte, and the
EPROM installed in this socket sits over the top of the FLASH EPROM
at location U12.
3-24 Board Design and Layout
The boot EPROMs are addressed at the MIPS boot vector address,
which is 0x1FC0 0000. The order in which the boot EPROMs are
addressed decides which EPROM acts as the boot EPROM. This is
determined by jumper JP9. If JP9 is not installed, the AM29F080 at U12
is selected as the boot device. If JP9 is installed, the UV EPROM at U25
is selected as the boot device. The PAL at U42 maps the addresses of
the EPROMs to select the boot and alternate device.
Installing jumper JP8 inverts address bit 19 (A19), the most significant
address bit, to the boot EPROM. This allows you to install two boot
programs in the same 1 Mbyte boot EPROM. Each boot program must
be less than 512 Kbytes. The addressing of the nonboot EPROM is not
affected by jumper JP8. Table 3.13 lists boot EPROM addresses with
JP8 installed and JP8 not installed.
3.5 Memory Map
Table 3.14 shows the BDMR4103 memory map. Note that the LR4103
microprocessor contains a programmable memory controller, known as
the FBusMACRO, and that all address mappings shown in Table 3.14
can be altered by software. However, the addresses shown in Table 3.14
are those that LSI Logic uses for any software delivered with the
BDMR4103 Evaluation Board.
All memory and peripheral devices on the BDMR4103 board can be
accessed in either user or kernel mode. In user mode, addresses in
programs (virtual addresses) must be in
kuseg
, that is, in the range
0x0000 0000 to 0x7FFF FFFF. Kernel-mode programs typically use
virtual addresses in
kseg0
(0x8000 0000 to 0x9FFF FFFF) for cacheable
locations, and
kseg1
(0xA000 0000 to 0xBFFF FFFF) for noncacheable
locations.
Table 3.13 Boot EPROM Addressing
LR4103 Address Boot EPROM Address
with JP8 Installed Boot EPROM Address
with JP8 Not Installed
0x1FC0 0000 0x80000 0x00000
0x1FC0 8000 0x00000 0x80000
Memory Map 3-25
Some device selects are partially decoded off chip, using a general
purpose chip select, gp[5:0], and an address offset. These selects are
noted as gpx + offset. This method of decoding chip selects was used
to leave some gp[x] selects free for expansion.
Table 3.14 Physical Memory Map
Address Range Controlling Chip
Select Device Name
0x1FE0 0020
0x1FE0 0000 FAPI AM79C970A Ethernet Controller
0x1FD0 0000
0x1FDF FFFF gp0 + 0x10 0000 1 Mbyte EPROM (U25) or FLASH EPROM (U12)
(EPROM type depends on setting of jumper JP9)
0x1FC0 0000
0x1FCF FFFF gp0 1 Mbyte EPROM (U25) or FLASH EPROM (U12)
(EPROM type depends on setting of jumper JP9)
Unused
0x1E00 003F
0x1E00 0030 gp4 + 0x30 RTC Interrupt Clear
0x1E00 002F
0x1E00 0020 gp4 + 0x20 7-Segment Display
0x1E00 001F
0x1E00 0000 gp4 + 0x0 16550 UART
Unused
0x0E01 FFFF
0x0E00 0000 gp3 128 Kbyte SRAM
Unused
0x00FF FFFF
0x0000 0000 gp2 16 Mbyte SDRAM
3-26 Board Design and Layout
3.6 Two-Wire Serial Bus Peripheral Devices
The BDMR4103 board contains three peripheral devices that use a
standard two-wire serial bus. They are
A real-time clock (U37)
A 1 Kbyte EEPROM (U13)
A serial presence detect (SPD), which is on the DRAM DIMM
The LR4103 microprocessor does not contain any dedicated two-wire
serial bus support hardware, but instead communicates with the two-wire
serial bus peripheral devices using the general purpose I/O pins,
gpIO[1:0], which are driven by software. This section describes each of
the peripheral devices.
The supported devices use a bidirectional two-wire bus and data
transmission protocol. Devices sending data onto the bus are described
as transmitters and the devices receiving data are the receivers. The
device that controls the message is the master and the devices
controlled by the master are slaves. The slave devices must be controlled
by a master device that generates a serial clock (SCL), controls bus
access, and generates start and stop conditions.
3.6.1 Real-Time Clock (RTC)
The BDMR4103 board is equipped with a DALLAS Semiconductor
DS 1307 real-time clock at U37. This RTC provides a battery-backed
clock and date function for the evaluation board. You can also program
the RTC to supply a periodic interrupt to the LR4103. The falling edge of
the SQW (Square Wave) output from the RTC is used to set a latch in
the PLD (programmable logic device), which then asserts an interrupt
(int5) to the LR4103 microprocessor. The interrupt is cleared by writing
to location gp4 + 0x30 (0x1E00 0030).
Two-Wire Serial Bus Peripheral Devices 3-27
Table 3.15 shows the address space for the RTC.
Table 3.16 shows the RTC registers.
Table 3.15 Real-Time Clock Addressing
Device ID Address Read/Write
1101 0b000 1 = Read
0=Write
Table 3.16 RTC Registers
Register
Name Address Register Bits Range
765 43210
Seconds 0x00 CH110 Seconds Seconds 00–59
Minutes 0x01 10 Minutes Minutes 00–59
Hours 0x02 12/24 10/AM
or PM 10 Hour Hour 0112 +
AM/PM
0023
Day 0x03 Day 17
Date 0x04 10 Date Date 0128/29
0130
0131
Month 0x05 10
Month Month 0112
Year 0x06 10 Year Year 00–99
Control 0x07 OUT2 SQWE3 RS1 RS0
RAM 0x08–
0x3F 56 8-bit registers
1. Clock Halt. When HIGH, the oscillator is disabled. When LOW, the oscillator is enabled.
2. Output control. This bit controls the output level of the SQW/OUT pin when the oscillator is disabled.
If SQWE is LOW, the level on the SQW/OUT pin is HIGH if OUT is HIGH and LOW if OUT is LOW.
3. Square Wave Enable. When HIGH, enables oscillator output. Frequency is controlled by the Rate
Select bits of the Control register (RS[1:0]). Available frequencies are 1 Hz (RS[1:0] = 00),
4.096 KHz (RS[1:0] = 01), 8.192 KHz (RS[1:0] = 10), and 32.768 KHz (RS[1:0] = 11).
3-28 Board Design and Layout
For detailed information about the RTC, refer to the DALLAS
Semiconductor datasheet for the
DS1307/DS1308 64 X 8 Serial Real
Time Clock
.
3.6.2 EEPROM
The BDMR4103 Evaluation Board is equipped with an NM24C08 1 Kbyte
EEPROM that provides nonvolatile storage for board identification and
configuration information. Table 3.17 shows the address of the EEPROM.
3.6.3 Serial Presence Detect (SPD)
The 100-pin DIMM installed in the DIMM socket (J3) is equipped with an
SPD EEPROM. The SPD EEPROM contains information about the types
and configuration of the memory devices installed on the DIMM. You can
use the information in the SPD EEPROM to configure the BDMR4103
board to operate with different types of DIMMs. Table 3.18 shows the
address of the SPD EEPROM.
0
Table 3.17 EEPROM Addressing
Device ID Address Read/Write
1010 0b1xx 1 = Read
0=Write
Table 3.18 SPD EEPROM Addressing
Device ID Address Read/Write
1010 0b000 1 = Read
0=Write
Device Registers 3-29
3.6.4 LR4103 Interrupts
Table 3.19 shows how the interrupts from the evaluation board are
connected to the LR4103 microprocessor.
3.7 Device Registers
This section describes the BDMR4103 Evaluation Board devices that
have registers. They are:
PC16550D UART (U24)
Am79C970A Ethernet Controller (U19)
The real-time clock (U37) also has registers, which are described in
Table 3.16,onpage 3-27.
Table 3.19 BDMR4103 Interrupts
Interrupt
Number Source Cleared By
0 LR4103 DBE/FBDSTOP Writing to the DBE bit in SCR1 or the
FBDSTOP bit in SCR2 of the LR4103.
1 LR4103 Timer 0 Writing to the bit in Timer 0.
2 SerialICE-1 Debugger Writing to the bit in S1.
3 16550 UART or
LR4103 Timer 1 Clearing the source in the UART or
writing to the bit in Timer 1
4 Ethernet Controller Clearing the source in the Ethernet
Controller
5 Real-Time Clock Writing to gp4 + 0x30 (0x1E000030)
3-30 Board Design and Layout
3.7.1 PC16550D UART Registers
Table 3.20 lists the registers in the National Semiconductor UART at
location U24. For detailed information about the UART, refer to the
PC16550D Universal Asynchronous Receiver/Transmitter with FIFOs
datasheet from National Semiconductor Corporation.
Table 3.20 UART Registers
Address Register Name Access1
1. RO = Read Only, R/W = Read/Write, WO = Write Only
0x1E00 0000 gp4 + 0 Receiver Buffer Register RO
0x1E00 0000 gp4 + 0 Transmitter Holding Register WO
0x1E00 0001 gp4 + 1 Interrupt Enable Register R/W
0x1E00 0002 gp4 + 2 Interrupt Identification Register R/W
0x1E00 0002 gp4 + 2 FIFO Control Register WO
0x1E00 0003 gp4 + 3 Line Control Register R/W
0x1E00 0004 gp4 + 4 Modem Control Register R/W
0x1E00 0005 gp4 + 5 Line Status Register R/W
0x1E00 0006 gp4 + 6 Modem Status Register R/W
0x1E00 0007 gp4 + 7 Scratchpad Register R/W
0x1E00 0000 gp4 + 0 Divisor Latch Register (LS) R/W
0x1E00 0001 gp4 + 1 Divisor Latch Register (MS) R/W
Device Registers 3-31
3.7.2 Am79C970A Ethernet Controller
Table 3.21 describes the user registers in the Am79C970A Ethernet
Controller. The PCI configuration registers are accessed with PCI
configuration cycles. The Am79C970A Ethernet Controller responds to a
configuration cycle with A16 = 1.
Table 3.21 Ethernet Controller User Registers
Address A[31:0] Access1Register Name
PCI Configuration Registers
0x1FE9 0000 RO PCI Vendor ID
0x1FE9 0002 RO PCI Device ID
0x1FE9 0004 R/W PCI Command
0x1FE9 0006 R/W PCI Status
0x1FE9 0008 RO PCI Revision ID
0x1FE9 0009 RO PCI Programming Interface
0x1FE9 000A RO PCI Subclass
0x1FE9 000B RO PCI Base-Class
0x1FE9 000C RO PCI Latency Timer
0x1FE9 000E RO PCI Header Type
0x1FE9 0010 R/W PCI I/O Base Address
0x1FE9 0014 R/W PCI Memory Mapped I/O Base Address
0x1FE9 0030 RO PCI Expansion ROM Base Address
0x1FE9 003C R/W PCI Interrupt Line
0x1FE9 003D RO PCI Interrupt Pin
0x1FE9 003E RO PCI MIN_GNT
0x1FE9 003F RO PCI MAX_LAT
3-32 Board Design and Layout
Refer to the
AM79C970A PCnet-PCI II Single-Chip Full Duplex Ethernet
Control for PCI Local Bus Product
datasheet from Advanced Micro
Devices Inc., for more information about the Ethernet Controller
registers.
I/O Registers2
0x1FE0 0010 R/W Register Data Port
0x1FE0 0014 R/W Register Address Port
0x1FE0 0018 R/W Reset
0x1FE0 001C R/W BCR Data Port
1. RO = Read Only, R/W = Read/Write
2. You should use PCI memory access from the FBM (FBusMACRO) to access the I/O registers. I/O
device addresses are determined by the values programmed in the PCI configuration registers.
Table 3.21 Ethernet Controller User Registers (Cont.)
Address A[31:0] Access1Register Name
TinyRISC
®
BDMR4103 Evaluation Board User’s Guide 4-1
Chapter 4
PAL Equations
This chapter provides the code listing for the Programmable Array Logic
(PAL) at location U42 on the BDMR4103 Evaluation Board.
The pin numbers in the equations refer to the pins on the PAL package
shipped on the BDMR4103 Evaluation Board.
The PAL performs the following tasks:
Decodes and controls external addresses for ROM devices
Both EPROMs on the evaluation board (the EPROM at U25 and the
Flash EPROM at U12) connect to chip select GP0 and are selected
by signal A20. Jumper JP9 selects the boot device and the
addressing order of each EPROM. Additionally, jumper JP8 sets
which boot program (regular or alternate) the selected EPROM uses.
If JP8 is installed, A19 is inverted and the alternate boot program is
selected. The setting of JP8 does not affect the nonboot ROM. Refer
to Section 2.2, “Jumper Settings, for more information.
Decodes external addresses for devices connected to chip select
GP4
Devices connected to GP4 include the UART, seven-segment
display, and the real-time clock interrupt register. An address offset
is required for these devices. Refer to Section 3.5, “Memory Map,
for each device’s offset value.
Combines reset signals
The PAL gathers reset signals from other sources and combines
them into a single board-level reset request.
4-2 PAL Equations
Sets interrupts from RTC
The PAL sets a latch using the falling edge of the RTC’s square ware
output. The latch is used as an interrupt for the LR4103. Write to the
latch to clear it.
Arbitrates the PCI bus
The PAL allows multiple PCI bus masters to connect to the LR4103.
You can only connect one PCI bus master to the LR4103.
The code in this chapter was up to date at the time of publication. To
verify that you have the latest code, you should contact LSI Logic
Corporation.
module core_logic
title 'lr4103 core logic'
U42 device 'ispLSI';
PLSI PROPERTY 'PART ispLSI2032v-100LT44';
"define pins and nodes
pbclk pin 5; "CLK"
jmp0 pin 2;
jmp1 pin 3;
addr20 pin 37; "used to select between eprom/flash"
addr19 pin 36; "invert a19 to allow 2 boot
"programs in 1 rom"
addr05 pin 35; "used to select between uart/display"
addr04 pin 31; "used to select between rtc_int/display"
gp4 pin 32; "uart/display select"
gp0 pin 33; "eprom/flash select"
rdn pin 42;
we0 pin 44;
resetn pin 4;
flash_sel pin 23;
dip_sel pin 22;
rom_a19 pin 21;
bd_sel pin 20; "buffered data select"
uart_sel pin 26;
read_display pin 12; "7-seg display rd
write_display pin 13; "7-seg display wr
4-3
"*** Arbiter signals ***"
enet_req pin 14 ;
enet_gnt pin 15 istype 'reg_D';
exp_req pin 9 ;
exp_gnt pin 10 istype 'reg_D';
req pin 25 istype 'reg_D';"system req"
gnt pin 24; "system gnt"
sqw_out pin 16; "square wave out from RTC
intp5 pin 34; "interrupt to uP
arb0 node istype 'buffer, reg_D';
arb1 node istype 'buffer, reg_D';
arb2 node istype 'buffer, reg_D';
si_reset pin 41;
ejtag_reset pin 38;
pb_reset pin 43;
rtc_sync1 node istype 'reg_D';
rtc_sync2 node istype 'reg_D';
rtc_sync3 node istype 'reg_D';
rtc_intff node istype 'reg_SR';
4-4 PAL Equations
PLSI PROPERTY 'OPENDRAIN pb_reset';
"**************************************************************************
**"
"constants and state definitions
h,l,x,ck,z = 1,0,.X.,.C.,.Z.;
ARBITER = [arb2,arb1,arb0];
IDLE_ENET = [0,0,0];
IDLE_EXP = [0,0,1];
REQ_ENET = [1,0,0];
REQ_EXP = [1,0,1];
GNT_ENET = [0,1,0];
GNT_EXP = [0,1,1];
RESET = !resetn;
equations
ARBITER.clk = pbclk;
req.clk = pbclk;
enet_gnt.clk= pbclk;
exp_gnt.clk= pbclk;
rtc_sync1.clk= pbclk;
rtc_sync2.clk= pbclk;
rtc_sync3.clk= pbclk;
rtc_intff.clk= pbclk;
!flash_sel = !gp0 & (( jp9 & !addr20 ) # (!jp9 & addr20));
!dip_sel = !gp0 & (( jp9 & addr20 ) # (!jp9 & !addr20));
rom_a19 = ((jp8 # addr20) & addr19) # ((!jp8 & !addr20) & !addr19);
!bd_sel = ( !gp0 # !gp4);
!uart_sel = (!gp4 & !addr05);
!read_display = (!gp4 & addr05 & !addr04 & !rdn );
!write_display = (!gp4 & addr05 & !addr04 & !we0) # (RESET);
4-5
!pb_reset = !si_reset # !ejtag_reset;
pb_reset.en = !si_reset # !ejtag_reset;
rtc_sync1 := sqw_out;
rtc_sync2 := rtc_sync1;
rtc_sync3 := rtc_sync2;
rtc_intff.s = ( !rtc_sync2 & rtc_sync3);"set ff on falling edge
rtc_intff.r = ( !gp4 & addr05 & addr04 ) # (RESET);
intp5 = rtc_intff;
STATE_DIAGRAM ARBITER
state IDLE_ENET:
if (!enet_req) then REQ_ENET with
req := 0;
enet_gnt :=1;
exp_gnt :=1;
endwith;
else if (!exp_req) then REQ_EXP with
req := 0;
enet_gnt :=1;
exp_gnt :=1;
endwith;
else IDLE_ENET with
req := 1;
enet_gnt :=1;
exp_gnt :=1;
endwith;
state IDLE_EXP:
if (!exp_req) then REQ_EXP with
req := 0;
enet_gnt :=1;
exp_gnt :=1;
endwith;
else if (!enet_req) then REQ_ENET with
req := 0;
enet_gnt :=1;
exp_gnt :=1;
endwith;
4-6 PAL Equations
else IDLE_EXP with
req := 1;
enet_gnt :=1;
exp_gnt :=1;
endwith;
state REQ_ENET:
if ( !gnt & !enet_req) then GNT_ENET with
req := 0;
enet_gnt :=0;
exp_gnt :=1;
endwith;
else if ( !enet_req )then REQ_ENET with
req := 0;
enet_gnt :=1;
exp_gnt :=1;
endwith;
else IDLE_EXP with
req := 1;
enet_gnt :=1;
exp_gnt :=1;
endwith;
state REQ_EXP:
if ( !gnt & !exp_req) then GNT_EXP with
req := 0;
enet_gnt :=1;
exp_gnt :=0;
endwith;
else if ( !exp_req )then REQ_ENET with
req := 0;
enet_gnt :=1;
exp_gnt :=1;
endwith;
else IDLE_ENET with
req := 1;
enet_gnt :=1;
exp_gnt :=1;
endwith;
4-7
else if ( !exp_req )then REQ_ENET with
req := 0;
enet_gnt :=1;
exp_gnt :=1;
endwith;
else IDLE_ENET with
req := 1;
enet_gnt :=1;
exp_gnt :=1;
endwith;
state GNT_ENET:
if (!gnt & !enet_req) then GNT_ENET with
req := 0;
enet_gnt :=0;
exp_gnt :=1;
endwith;
else IDLE_EXP with
req := 1;
enet_gnt :=1;
exp_gnt :=1;
endwith;
state GNT_EXP:
if (!gnt & !exp_req) then GNT_EXP with
req := 0;
enet_gnt :=1;
exp_gnt :=0;
endwith;
else IDLE_EXP with
req := 1;
enet_gnt :=1;
exp_gnt :=1;
endwith;
end
4-8 PAL Equations
TinyRISC
®
BDMR4103 Evaluation Board User’s Guide 5-1
Chapter 5
Schematics
This section contains the following schematics for the BDMR4103
Evaluation Board:
Section 5.1, “Microprocessor and Clock Circuitry”
Section 5.2, “ROMs, SRAMs, and Address Latches”
Section Figure 5.3, “Ethernet and DRAM Circuitry”
Section 5.4, “Miscellaneous Circuitry and Connectors”
Expansion Connector and Boot Device Selection Circuitry
Section 5.6, “Power and Reset Circuitry”
Section 5.7, “EJTAG Connectors”
The section also provides brief functional descriptions of key
components.
Designations in parentheses (J9, U6, and so on) refer to the location of
the components on the board.
5-2 Schematics
5.1 Microprocessor and Clock Circuitry
The microprocessor and clock circuitry shown in Figure 5.1 performs the
following functions:
The LR4103 microprocessor (U1) provides a full-speed evaluation
target.
A crystal (X1) provides the main clock for the LR4103
microprocessor.
The oscillator (U5) provides an alternate clock for the
microprocessor. This clock is used when an input frequency other
than 25 MHz is needed.
Jumpers JP1–6, and JP14 control various LR4103 functions. Refer
to Section 2.2, “Jumper Settings” for further information about these
jumpers.
Microprocessor and Clock Circuitry 5-3
Figure 5.1 Microprocessor and Clock Circuitry
9
&38B9''&25(
'&%$
RI
$ % & '
6,=( 5(9(1*
-2+1 .$/'816.,
&
'$7( 3$*(
7,7/(
352-(&7

&
&38B9'',2
&38B9''&25(
*1'
9&&
1&6=
&38
<
:
<
+
*
%
&
$
&
$
$
%
(
'
%
*
*
7
5
/
/
.
-
5
3
1
1
0
0
1
&
&
*
.
$
3
'
%
%
&
'
'
(
(
)
)
*
+
-
:
<
:
<
:
<
:
<
:
<
:
<
:
<
:
.
.
/
/
0
0
1
1
3
3
5
5
7
7
8
8
9
9
:
<
<
9
<
:
<
:
<
:
$
9
9
9
9
8
7
9
9
9
9
8
9
9
8
9
<
:
)
$
9
9
<
:
:
<
:
<
0
:
%
$
$
%
/
.
(
%
'
-
%
%
&
8
8
7
5
%
7
3
-
-
-
.
.
3
$
%
$
)
)
*
*
+
+
)
+
$
%
&
&
'
(
$
%
&
&
%
$
(
$
%
+
*
<
&
-
$
'
:
3
:
1
3
<
0
5
&
%
$
8
8
62&.(7
23(1
5
5
.
.
5

-3
3,75673,7&.3,7063,7',B',173,7'2B73&3,5673,%5($.37'&/.3775,*,13775,*287
3,%5($.
3,567
3,7'2B73&
3,7',B',17
3,706
3,7&.
37'&/.
3775,*,1
3775,*287
6'&61
6'&61
6'&$61
6''03
6''03
6''03
6'5$61
6':(1
6''03
6'&61>@6''03>@6'&/.6':(16'5$616'&$61
6'&/.







.
8
6'&/.
5

5
.

5
&
8)
3)
&
;
,&(&/.3,&(5;3,&(7;3
,&(7;3
,&(&/.3
,&(5;3

-3

-3
*3>@*3,2>@*35'1*3:(1>@9B5(6(715672871&:$,73
&:$,73
*3
9B5(6(71
*3:(1
*3:(1
*3:(1
*35'1
*3,2
*3,2
*3,2
*3,2
*3
*3
*3
*3
*3
*3:(1
5672871
-3
)$/(3
&%(1
&%(1
&%(1
6'21(3
*171
5(41
'(96(/1
67231
75'<1
,5'<1
)5$0(1
3%&/.
&%(1
,173
,173>@7>@B2871
,173
,173
,173
,173
7B2871
7B2871
,173
)$''53>@
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3>@

-3

-3

-3
0
5
-3
3&67B
7&.
706
7567
73&
73&
73&
3&67B
3&67B
3&67B
3&67B
3&67B
3&67B
3&67B
3&67B
3&67B
3&67B
73&
73&
73&
73&
'&/.
7'273&
7',',17
3&67B
'&/.7'273&3&67>@B>@73&>@75677',',177067&.567'(%8*03
'(%8*03
&
3)
5
5

3%&/.)5$0(1,5'<175'<167231'(96(/15(41*1716'21(3&%(1>@)$/(3
3,7567
0+=
.
1&
287
26&
8
&%(1
)$''53
)$'3
)$'3
)$'3
7B2871
7B2871
,17
,17
,17
,17
331$872)'
33'$7$
33'$7$
33'$7$
3,7&.
3,7567
3&67>@
3&67>@
3&67>@
3&67>@
3&67>@
3&67>@
73&
73&
73&
73&
73&
73&
7567
6&$1B(1$%/(3
6&$1B02'(3
',9$
',9$
;7$/
'(%8*03
,''71
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
5(6(71
*3:(1
*3:(1
*3:(1
*3:(1
*35'1
*3,2
*3,2
*3,2
*3,2
*3
*3
*3
*3
*3
*3
)$/(3
&%(1
&%(1
&%(1
*171
5(41
'(96(/1
67231
75'<1
,5'<1
)5$0(1
3%&/.3
6'&$61?6'2(1
6''03?6'&$61
(;7$/
3//9''
3//966
6(/(&7B3//1
',9&
',9&
%,*B(1',$13
&6+7673
6&$1B5$0:(3
6&$1B,13
3021B2873
6&$1B2873
-7$*$/623
7&.
706
7',B',17
7'2B73&
-7$*B7'2
'&/.
73&
3&67>@
3&67>@
3&67>@
3&67>@
3&67>@
3&67>@
,&(&/.3
,&(5;3
,&(7;3
3,706
3,7',B',17
3,7'2B73&
3,567
3,%5($.
37'&/.
3775,*,1
3775,*287
331,1,7
33'$7$
33'$7$
33'$7$
33'$7$
33'$7$
3316752%(
33%86<
331$&.
3316(/(&7,1
336(/(&7
331)$8/7
33(5525
,17
,17
3//(1
3//(1$56
6'&/.3
)$'3
)$'3
5(6(7B2871
&:$,73
6'21(3
6'&61?6'5$61
6'&61?6'5$61
6''03?6'&$61
6''03?6'&$61
6''03?6'&$61
6':(1
6'5$61
71
6(/B&.2871
3(1$%/(1
&21752/ $''5(66 $'
3&,
'5$0
0,6&
,177,0(5
&/2&.6 (-7$*
6(5,$/
,&(
0(025< ,17(5)$&(
/5
5-4 Schematics
5.2 ROMs, SRAMs, and Address Latches
The ROMSs, SRAMs and address buffers shown in Figure 5.2 perform
the following functions:
Four 32 Kbyte SRAM devices (U26, U27, U28, and U29) provide the
BDMR4103 board with 128 Kbytes of SRAM, organized as 32 Kbytes
x 32 bits of memory.
A 1 Mbyte Flash EPROM (U12) is used as the boot device for the
board. This device is shipped with the board. Jumper J9 determines
whether this device or the EPROM at location U25 is the boot device.
When JP9 is not installed, U12 is the boot PROM.
You can store two boot programs in this EPROM, provided that
neither program is larger than 512 Kbytes. Jumper J8 selects
between any two programs installed.
Refer to Section 2.2.7, “Boot Device Selection (JP9), for more
information about JP9, and to Section 2.2.6, “Alternate Boot Program
Selection (JP8), for more information about JP8. Refer to
Section 3.4.3, “Boot EPROMs, for more information on this subject.
A socket (U25) houses an optional 1 Mbyte of EPROM. When
installed, the EPROM sits over the top of Flash EPROM (U12). You
can use U25 as an alternate boot device for the board by installing
jumper JP9.
You can store two boot programs in this EPROM, provided that
neither program is larger than 512 Kbytes. Jumper J8 selects
between any two programs installed.
The SN74LCX16244 buffer (U22) buffers the lower order address
bits FADDRP[11:0] for all devices except the DRAM DIMM. This
buffering is provided to reduce the loading and trace length of these
high-speed signals.
The LCX245 buffer (U30) buffers the data to and from the EPROMs,
the 7-segment display, and the UART. This buffering is provided to
reduce the loading and trace length of these high-speed signals.
ROMs, SRAMs, and Address Latches 5-5
Figure 5.2 ROMs, SRAMs, and Address Latches
'&%$
RI
$ % & '
6,=( 5(9(1*
-2+1 .$/'816.,
&
'$7( 3$*(
7,7/(
352-(&7

&
$
$
$
$
$
$
$
$
$
$
$
$
$
$
:(
2(
&6
'
'
'
'
'
'
'
'
$
65$0 .[
$
$
$
$
$
$
$
$
$
$
$
$
$
$
:(
2(
&6
'
'
'
'
'
'
'
'
$
65$0 .[
$
$
$
$
$
$
$
$
$
$
$
$
$
$
:(
2(
&6
'
'
'
'
'
'
'
'
$
65$0 .[
$
$
$
$
$
$
$
$
%
%
%
%
%
%
%
%
* ',5
/&;
2(
2(
2
2
2
2
2
2
2
2
,
,
,
,
,
,
,
,
2(
2(
2
2
2
2
2
2
2
2
,
,
,
,
,
,
,
,
61/&;
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
'4
'4
'4
'4
'4
'4
'4
'4
5<%<
&(
2(
5(6(7
:(
) 7623
0[ )ODVK
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
'4
'4
'4
'4
'4
'4
'4
'4
&(
2(
& ',3
0[ (3520
$
$
$
$
$
$
$
$
$
$
$
$
$
$
:(
2(
&6
'
'
'
'
'
'
'
'
$
65$0 .[
5206 65$0

















8





















8
























8





























8









8
%'$7$>@
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53>@
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53 %$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
%$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53>@
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
%B5'1
%B5'1
%B5'1
%B5'1
%B:(1 %B:(1
*3>@*3,2>@*35'1*3:(1>@)$/(35(6(71
*3
*35'1
*3:(1
*3
*35'1
*3:(1
*3:(1
5(6(71
*3:(1
*35'1
*3
*35'1
*3
*35'1
*3:(1
520B$
520B$
520B$
%'B6(/1
)/$6+B6(/1
',3B6(/1

















8

















8

















8
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3>@
5-6 Schematics
5.3 Ethernet and DRAM Circuitry
The Ethernet and DRAM circuitry shown in Figure 5.3 performs the
following functions:
Ethernet circuitry:
The Ethernet transformer (U10), in conjunction with the Ethernet
controller, connects the evaluation board to an Ethernet LAN
(local area network).
The AM79C970A Ethernet Controller (U19). The controller, in
conjunction with the transformer, connects the evaluation board
to an Ethernet LAN.
Refer to Section 3.7.2, “Am79C970A Ethernet Controller, for
more information about the controller.
The RJ45 connector (J7) provides the Ethernet hardware
connection.
The 100-pin socket (J3) accommodates any standard 100-pin
JEDEC DIMM. A 16 Mbytes SDRAM DIMM is supplied with the
board. However, the socket will also accommodate EDO DRAM.
Jumper JP17 is used to select between SDRAM and EDO devices.
The memory installed in the socket at J3 provides the main system
memory for the board.
Refer to Section 3.2.2, “DIMM Connector (J3), for further information
about the connector, and to Section 3.4.1, “Synchronous DRAM Dual
Inline Memory Module (SDRAM DIMM), for further information about
the DIMM. Refer to Section 2.2.14, “EDO/SDRAM Selection (JP17),
for information about the jumper settings.
Ethernet and DRAM Circuitry 5-7
Figure 5.3 Ethernet and DRAM Circuitry
5-
1&
1&
1&
1&
5'
5'
7'
7'
9
'&%$
RI
$ % & '
6,=( 5(9(1*
-2+1 .$/'816.,
&
'$7( 3$*(
7,7/(
352-(&7

&






/3) /3)
N
38/6( 3(
9
8)
9
&.(
$
$
$
$
$
$
$
$
$
$
$6'5
%$$('2
%$
&$6
&$6'40%
&$6'40%
&$6'40%
&$6'40%
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
'4
5$6
6$
6$
6$6&/
6'$
2(
5$6&6
5$6&6
&.
&.
&.(
5$6&6
5$6&6
:(
'4
$
 3,1 ',00
9
9
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
$'
&%(
&%(
&%(
&%(
&/.
,'6(/
3$5
5;'
5;'
7;'
7;'
7;3
7;3
;7$/
;7$/
'(96(/
)5$0(
*17
,17$
,5'<
/2&.
3(55
5(4
567
6(55
6723
75'<
7',
7'2
7&.
706
/1.67
/('
/('
/('
9''
9''
9''
9''
9''
9''
9''%
9''%
9''%
9''%
966
966
966
966
966
966
966
966
966
966
966
966%
966%
966%
966%
966%
966%
966%
966%
$966
$966
$9''
$9''
$9''
$9''
966
6/((3
3&QHW
$0&$
1&
287
26&
6WDWXV
/1. 5; &2/ 7;
'5$0(7+(51(7
(WKHUQHW
8
0+=
































































































8



























































-
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3>@
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
-3
(1(7B6(55
(1(7B3(55
(1(7B3$5
(1(7B/2&.
5

&
8)
&;

5
'
<(//2:
'
5('






8

55

5

-
*5((1
'
*5((1
'
&;
8)
5672871
(1(7B5(41
3%&/.)5$0(1,5'<175'<167231'(96(/15(41*1716'21(3&%(1>@)$/(3
&%(1
3%&/.
)5$0(1
,5'<1
'(96(/1
75'<1
67231
&%(1
&%(1
&%(1
,173
(1(7B*171
*3,2
*3,2>@
*3,2
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53>@
6'&61
6'&$61
6'5$61
6'&61>@6''03>@6'&/.6':(16'5$616'&$61
6''03
6''03
6''03
6''03
6'&61
6':(1
6'&/.
5-8 Schematics
5.4 Miscellaneous Circuitry and Connectors
Figure 5.4 shows the following miscellaneous circuitry and connectors:
Lattice ISPLSI2032 PLD (U42) (programmable logic device).
DS1307 real-time clock (U37). Refer to Section 3.6.1, “Real-Time
Clock (RTC), for further information.
An NM24C08 1 Kbyte EEPROM (U13). Refer to Section 3.6.2,
“EEPROM, for further information.
7-segment display (U35) and the associated data buffer (U34). Refer
to Section 3.3.4, “7-Segment Display, for further information.
The PC16550 UART (universal asynchronous receiver transmitter)
(U24) performs serial-to-parallel and parallel-to-serial data
conversions on data received by and transferred from the board. For
additional information about the UART, refer to the National
Semiconductor datasheet,
PC16550D Universal Asynchronous
Receiver/Transmitter with FIFOs
.
The MAX3245 (U14) RS232 transceiver provides signal voltage level
translation.
The SerialICE-1 header (J8) allows you to debug the board using
SerialICE-1 inputs. Refer to Section 3.2.5, “SerialICE-1 Connector
(J8), for further information.
The RS232 SerialICE-1 port (J9) allows you to debug the board
using SerialICE-1 inputs. Refer to Section 3.2.4, “RS-232 Serial
Connector for SerialICE-1 Debug Interface(J9), for further
information.
The RS232 serial port (J10) allows you to connect serial devices to
the board. Refer to Section 3.2.3, “Serial Port Connector (J10), for
further information.
The header (J11) is used to program the PAL (U42). Refer to
Section 3.2.8, “PAL Programming Connector (J11), for further
information.
Jumpers JP8 (boot program selection), JP9 (boot device selection),
JP15 (SerialICE-1 input data selection), and JP16 (SerialICE-1 clock
selection). Refer to Section 2.2, “Jumper Settings, for further
information about these jumpers.
The 1.8432 MHz oscillator (U6), provides an alternate clock source
for the SerialICE-1 debugger.
Miscellaneous Circuitry and Connectors 5-9
Figure 5.4 Miscellaneous Circuitry and Connectors
9 9
9
9
9
1&
287
26&
/&;
'&%$
RI
$ % & '
6,=( 5(9(1*
-2+1 .$/'816.,
&
'$7( 3$*(
7,7/(
352-(&7

&
/&;
&76
'&'
'65
'75
5,
576
5;
6*
7;
/&;
/&;
; ;
64:287
9%$7
6'$
6&/
'6
9
6&/
$ $ $
6'$
10&
9
&/.







7',
7'2
,63(1
706
7&.



















/$77,&( LVS/6,Y
$
%
%
%
%
%
%
%
%
$
$
$
$
$
$
$
/($%2(%$
&($%
2($%/(%$
&(%$
)&7
'3
$1 $1
%
&
'
(
*
)
$
J
I
H
G
F
E
D
'
'
'
'
'
'
'
05
:5
,17537
&6
$
$
$
$'6
:5
5'
&6
&6
%$8'287
7;5'<
5;5'<
'',6
287
287
5,
'&'
'65
'75
&76
5&/.
;287 ;,1
'
5'
576
6287
6,1
3&
&
&
&
&
)25&(21
*1'
5,15287
5,15287
5,1
5287
5,1
5287
5,1
5287
7,1 7287
7,1 7287
7,1
7287
9
9
9&&
)25&(2))
,19$/,'
0$;
&76
'&'
'65
'75
5,
576
5;
6*
7;
/&;
6(5,$/ 32576(5,$/ ,&(',63/$<
6HULDO 3RUW
6HULDO ,FH
,QYHUW 520 $
%227 )520 ',3-3
-3

-
8
-
5$B0$/(










 






8

 



























8


8








.8













8





























8
-03
-03
520B$
)/$6+B6(/1
',3B6(/1
%'B6(/1
5(41
(1(7B*171
(;3B*171
3%B5(6(7
,173
,&(5;3
,&(&/.3
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$
%'$7$>@
*3,2
*3,2
*3,2>@
%$''53
8$57B6(/1
8$57B6(/1

8
.
5
64:287
;.+=
%
9B/,7+,80
8
&211B5;3

8
&;
8)
;
0+=

8
-3
-3
3)
&
8)
&
8)
&
3)
&
8)
&
,63B(1
3%&/.
6,B5(6(7
(-7$*B5(6(7
(;3B5(41
6,B5(6(7
(1(7B5(41
%B:(1
*3
5672871
5($'B',631
*3
-
5$B0$/(
8
*171
,&(7;3,&(7;3

8
%B5'1

-3

-3
.
5
5
0
5
.
5
.
)$''53
)$''53
8
0+=
:5,7(B',631
,63B6&/.
6',
,63B02'(
6'2
%$''53
%$''53
%$''53
%$''53>@
,173
5(6(73
%B5'1
%B:(1
8)
&
8)
&
-
.
5
%$''53
5-10 Schematics
5.5 Expansion Connector and Boot Device Selection Circuitry
The circuitry shown in Figure 5.5 performs the following functions:
A 150-pin expansion connector (J2) allows you to expand design and
debugging capabilities to include external logic. Refer to
Section 3.2.1, “Expansion Connector (J2), for further information.
At reset, the 74LCX541 (U32) provides the boot device chip select
number and the boot device width to the LR4103. The buffer is
enabled with RSTOUTN.
Expansion Connector and Boot Device Selection Circuitry 5-11
Figure 5.5 Expansion Connector and Boot Device Selection Circuitry
9
9
'&%$
RI
$ % & '
6,=( 5(9(1*
-2+1 .$/'816.,
&
'$7( 3$*(
7,7/(
352-(&7

&
B',1 B',1
9
**
<
<
<
<
<
<
<
<
$
$
$
$
$
$
$
$
/&;
B',1
(;3$16,21 &211(&725
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
-









8
,173>@7>@B2871
,173
,173
,173
,173
,173
7B2871
,173
,173
,173
,173
,173
,173
7B2871
,173
*3>@*3,2>@*35'1*3:(1>@5(6(715672871&:$,73
*3,2
*35'1
*3:(1
*3:(1
*3:(1
*3:(1
*3,2
*3,2
*3,2
*3,2
*3
*3
*3
*3
*3
5672871
*3
*3,2
*3,2
*3,2
*3:(1
*3:(1
*3:(1
*3:(1
*3
*3
*3
*3
*3
&:$,73
5672871
5(6(71
*3
*35'1
*3,2
)$'3
)$'3>@
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3
)$'3

-3
(;3B5(41
(1(7B5(41
64:287







8
.







8
.







8
.
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
-
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
-
(;3B*171
(;3B5(41
%227&)*
%227&)*
%227&)*
%227&)*
%227&)*
%227&)*
%227&)*>@
%227&)*
%227&)*
%227&)*
3%&/.)5$0(1,5'<175'<167231'(96(/15(41*1716'21(3&%(1>@)$/(3
'(96(/1
)$/(3
6'21(3
&%(1
&%(1
&%(1
&%(1
3%&/.
67231
75'<1
,5'<1
)5$0(1
&%(1
&%(1
&%(1
)5$0(1
'(96(/1
67231
75'<1
,5'<1
(1(7B6(55
(1(7B3(55
(1(7B3$5
(1(7B/2&.
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53
)$''53>@
6''03
6'&61
6'&61
6''03
6''03
6'&61>@6''03>@6'&/.6':(16'5$616'&$61
6':(1
6''03
6'5$61
6'&$61
6'&/.
5-12 Schematics
5.6 Power and Reset Circuitry
The power and reset circuitry shown in Figure 5.6 performs the following
functions:
The power connector (J1) supplies the board with DC power by
means of the switching AC adapter. Refer to Section 3.2.9, “Power
Supply Connector (J1), for further information.
The red Power LED (D5) comes on when power is applied to the
board, and it stays on while power is being applied.
The MAX708 device (U33) generates the reset signal for the board.
The voltage regulator (U16) provides the VDD core voltage. The
voltage regulator (U36) provides the 3.3 V power supply for the
board.
Heatsink HS1 provides the heatsink for the regulator at U36, and
HS2 provides the heatsink for the regulator at U16.
Test points TP1, TP2, TP3, TP4, TP5, and TP6 provide grounding
for an oscilloscope during testing.
0.1 µF decoupling capacitors.
Power and Reset Circuitry 5-13
Figure 5.6 Power and Reset Circuitry
8) 8)
$%
&%7'
8) 8)
8) 8)8) 8)8)8)8)8) 8) 8) 8) 8)
9
9
8)8)8)8)8)8)
8) 8) 8) 8) 8) 8) 8) 8)
8)8)8)8)8)
8)8)8)8)
8)
8)8)8)
+($76,1.
'&%$
RI
$ % & '
6,=( 5(9(1*
-2+1 .$/'816.,
&
'$7( 3$*(
7,7/(
352-(&7

&
+($76,1.
&38B9''&25(
8)
9
8)
8)
8) 8)
&38B9'',2
9
&38B9''&25(
&38B9'',2
9
287,1
*1'
/7&7
287,1
$'-
/7&7DGM
9&&
*1'
5(6(7
05
3),
3)2
5(6(7
0$;
$%
&%7'
8)8)
8)
32:(5 /(' 9 *HQHUDWLRQ FLUFXLW
32:(55(6(7

-3
'2B127B/2$'
5
23(1
&;
&; &;
&
8)
8)
&
8)
&
73

8
8
8
8
-
9B5(6(71
8)
&
8)
&

-3
&
8)
&
8)
&;&;
&;
&;
&;
5(6(71
5(6(73
'
5('

-3
+6

-3
B
5
5
B

5
+6
&; &; &;
&;
&; &; &; &;
&; &; &; &; &;
&;&;&;&;&;&;&;&;
&; &; &; &; &; &;
&
8)
&
8)
&
8)

6
3%B5(6(7
&;&;&;&;&; &; &; &; &;&; &;&;
&;&;
7373 73 73 73

8
&;&;
5-14 Schematics
5.7 EJTAG Connectors
The EJTAG connectors shown in Figure 5.7 performs the following
functions:
EJTAG connectors and debug indicator:
EJTAG connector (J4) provides basic EJTAG debugging
capabilities, including break and run control. Refer to
Section 3.2.7.2, “EJTAG Connector (J4), for additional
information.
EJTAG connector (J5) provides the same EJTAG debugging
capabilities as J4. In addition, it supports PC trace. Refer to
Section 3.2.7.3, “EJTAG Connector (J5), for further information.
The EJTAG connector (J6) is used only for factory testing.
The yellow LED (D6) comes on when the LR4103 is in debug
mode.
Refer to Section 3.2.7.1, “Overview of EJTAG Functions, for additional
information about EJTAG functions. For detailed EJTAG information, refer
to the EJTAG specification published by Philips Semiconductors and
MIPS licensees.
EJTAG Connectors 5-15
Figure 5.7 EJTAG Connectors
'&%$
RI
$ % & '
6,=( 5(9(1*
-2+1 .$/'816.,
&
'$7( 3$*(
7,7/(
352-(&7

&
9
9
9
*1'
9&&
1&6=
9
9
/&;
'(%8* $&7,9(
(-7$*









































 
-







-
'2B127B/2$'








8 23(1
5
23(1
.
5

5



 


-
37'&/.
3,7'2B73&
3,%5($.
3775,*,1
3,7',B',17
3,706
3,7&.
3,567
3775,*287
3,%5($.
3,7'2B73&
3,75673,7&.3,7063,7',B',173,7'2B73&3,5673,%5($.37'&/.3775,*,13775,*287
3,7567
3,7',B',17
3,706
3,7&.
3,567
3775,*,1
3775,*287
37'&/.
3,7567
3&67B
7',',17
7&.
706
(-7$*B5(6(7
'(%8*03
(-7$*B5(6(7
7&.
706
7',',17
7567
7567
7'273&
7'273&
3&67B
3&67B
'&/.
3&67B
3&67B
3&67B
73&
3&67B
3&67B
3&67B
73&
3&67B
3&67B
3&67B
73&
73&
73&
73&
73&
'&/.7'273&3&67>@B>@73&>@75677',',177067&.(-7$*B5(6(7'(%8*03
(-7$*B5(6(7
7',',17
706
7&.
7567

8
-03
-03
5B%8)B7'2







8
8







.
8
'
<(//2:
5B3,706
5B3,7&.
5B3,567
5B3,7',B',17
5B3,7567
5B73& 5B73&
5B3&67B 5B3&67B
5B3&67B5B3&67B
5B3&67B 5B3&67B
5B73& 5B73&
5B3&67B 5B3&67B
5B3&67B5B3&67B
5B73&
5B73&
5B3&67B
5B3&67B
5B3&67B
5B3&67B
5B3&67B
5B3&67B
5B73&
5B73&
5B73&
5B73&
5B73&
5B73&
5B73&
5B73&








8 








8 
5B3&67B5B3&67B







8
23(1
5B7'273&5B7'273&
5B3&67B
5B3&67B
5B3&67B
5B3&67B
5B3&67B
5B3&67B
5B'&/.
5B'&/.
23(1
5
5-16 Schematics
TinyRISC
®
BDMR4103 Evaluation Board User’s Guide 6-1
Chapter 6
Bill of Materials
Table 6.1 lists the bill of materials for the BDMR4103 Evaluation Board.
The reference numbers correspond to those used in the schematics. The
board contains a total of 190 components.
Note that, since different manufacturers categorize their products in
different ways, some of the categories shown in Table 6.1 may not be
relevant for all products.
Key to packaging information:
The numbers shown in the packaging information frequently refer to
the number of pins on the package. For example, 14PDIP indicates
a 14-pin dual inline package, 44 PLCC indicates a 44-pin plastic
leaded chip carrier, and so forth. In other cases, the number refers
to a standard packaging type, such as capacitor package 1206.
In the case of onboard devices, the numbers (C1, J1, and so forth)
represent board locations. Items designated ACC, are removable
accessory modules, such as the SDRAM DIMM, that are supplied
with the board.
6-2 Bill of Materials
Table 6.1 BDMR4103 Bill of Materials
Qty. Reference
Designator(s) Device Name Package Value/Type Manufacturer Manufacturer’s Part
Number
1 ACC1 16 Mbytes SDRAM
DIMM 100-pin DIMM Micron MT2LSDT432UG-10
1 ACC2 Power Supply 5 V @ 4 A Phihong PSA-30U050
1 B1 Lithium Battery Battery 3 V Panasonic BR1225-1HC
3 C1, C2, C11 Capacitors 0805 20 pF
1 C3 Capacitor 1206 0.47 µF–
10 C4, C5, C13–
16, C18-21 Tantalum Capacitors 22 µF–
3 C6, C8, C9 1206 Capacitors 1206 0.33 µF–
2 C7, C10 0805 Capacitors 0805 0.047 µF–
1 C12 0805 Capacitor 0805 47 pF
1 C17 Tantalum Capacitor 10 µF–
52 CX1–49,
CX60–62, Capacitors 0805 0.1 µF–
2 CX58, CX59 Capacitors 0805 0.01 µF–
2 D1, D2 Small LEDs 1206 Green Hewlett
Packard HSMG-C650
2 D3, D6 Small LEDs 1206 Yellow HSMY-C650
2 D4, D5 Small LEDs 1206 Red HSMR-C650
(Sheet 1 of 6)
6-3
2 HS1, HS2 Heatsinks TO-220-HS AAVID 577002B00000
1 J1 Power Plug R/A 2.1 mm Switchcraft RAPC722
1 J2 150-Pin DIN 41612
Connector Typec R/A Pins Amp 650907-5
1 J3 100-Pin DIMM Socket 100-Pin DIMM Molex 71251-5101
1 J4 16-Pin Header 16-Pin Header, 8 x 2,
0.1 x 0.1 ––
1 J5 52-Pin High-Speed
Header 52-Pin Header,
0.05 x 0.05 Mill-Max 852-10-052-30-001
1 J7 RJ45 Connector
1 J8 10-Pin Header 10-Pin Header,
0.1 x 0.1 ––
2 J9, J10 9-Pin D Subconnector MIL-C-24308 R/A Male
1 J11 8 x 1 Header 8-Pin .025 Square
1x8 ––
14 JP1–12, JP18 2-Pin Headers for
Jumpers 2-Pin .025 Square
4 JP14–17 3-Pin Headers for
Jumpers 3-Pin .025 Square
1 R1 Resistor 0805 10 M––
2 R2, R11 Resistors 0805 1.5 k––
Table 6.1 BDMR4103 Bill of Materials (Cont.)
Qty. Reference
Designator(s) Device Name Package Value/Type Manufacturer Manufacturer’s Part
Number
(Sheet 2 of 6)
6-4 Bill of Materials
1 R3 Resistor 0805 20 ––
5 R4–7, R17 Resistors 0805 130 ––
9 R8–10,
R20–23, R26 Resistors 0805 10 k––
1 R12 Resistor 0805 1 M––
1 R13 Resistor 0805 330 ––
2 R14 Resistor 0805 54.9 Ω±1%
1 R15 Resistor 0805 124 Ω±1%
1 R18 Resistor 0805 4.3 ––
1 R19, R28 Resistors 0805 0.0 Ω−
1 S1 SPST Switch 2-Pin DIP Switch Alcoswitch TP11CGPC0
6 TP1–6 Test Points .025 Square Pin
1 U1 LR4103
Microprocessor 256 PBGA LSI Logic
6 U2–3, U18,
U20, U38 16-Pin 15-Resistor
Arrays 16-Pin QSOP 4.7 kBourns 2QSP16-TJ2-XXX
1 U5 Oscillator 14-Pin DIP Socket
1 U6 Oscillator 14-Pin DIP 1.8432 MHz
Table 6.1 BDMR4103 Bill of Materials (Cont.)
Qty. Reference
Designator(s) Device Name Package Value/Type Manufacturer Manufacturer’s Part
Number
(Sheet 3 of 6)
6-5
4 U7–9 16-Pin 8-Resistor
Arrays 16-Pin QSOP 33 Bourns 2QSP16-TJ1-XXX
1 U10 Ethernet Transformer
10BASE-T Module 16-Pin Small Pulse PE-68025
1 U11 74LCX14 14-Pin SOIC National
Semiconductor 74LCX14M
1 U12 1 Mbyte FLASH ROM 40-Pin TSOP Advanced
Micro Devices AM29F080-90EC
1 U13 1 Kbyte EEPROM IIC 8-Pin SOIC Fairchild
Semiconductor NS24C08M8
1 U14 Max 3245 RS232
transceiver 28-Pin SSOP Maxim MAX3245CAI
1 U15 Small 3.3 V Oscillator 4-Pin SOJ 20 MHz
1 U16 Linear Adjustable Volt-
age Regulator TO-220 Linear LT1084CT
1 U17 Small 16-Pin 8-Resis-
tor Array 16-Pin QSOP 1 kBourns 2QSP16-TJ1-XXX
1 U19 PCNet PCI Device
(Ethernet Controller) 144-Pin TQFP Advanced
Micro Devices AM79C970AVC
1 U22 74LCX16244 (Address
Buffer) 48-Pin TSSOP National
Semiconductor 74LCX16244MTD
1 U24 UART 44-Pin PLCC National
Semiconductor PC16550DV
Table 6.1 BDMR4103 Bill of Materials (Cont.)
Qty. Reference
Designator(s) Device Name Package Value/Type Manufacturer Manufacturer’s Part
Number
(Sheet 4 of 6)
6-6 Bill of Materials
1 U25 32-Pin DIP Socket 32-Pin DIP
4 U26–29 32 x 8 SRAM 28SOJ300MIL IDT IDT71V254SA12Y
1 U30 74LCX245 20-Pin SOIC National
Semiconductor 74LCX245WM
2 U31, U39 Tiny UHS and Gate SOT23-5 Fairchild NC7SZ08M5
1 U32 74LCX541 20-Pin SOIC National
Semiconductor 74LCX541WM
1 U33 Max 708 8-Pin SOIC Maxim MAX708CSA
1 U34 74FCT543 24-Pin QSOP Quality
Semiconductor QS74FCT543ATQ
1 U35 7-Segment Display 10-Pin DIP Hewlett
Packard HDSP-F101
1 U36 3.3 V Linear Regulator TO-220 Linear LT1084CT-3.3
1 U37 IIC Real-Time Clock 8-Pin SOIC Dallas
Semiconductor DS1307Z
1 U41 Dual FET Bus Switch 8-Pin SOIC Texas
Instruments SN74CBTD3306D
1 U42 CPLD ISP
(PAL) 44-Pin TQFP Lattice
Semiconductor ISPLSI2032V-100LT44
1 X1 Crystal HC 28.75 MHz
Table 6.1 BDMR4103 Bill of Materials (Cont.)
Qty. Reference
Designator(s) Device Name Package Value/Type Manufacturer Manufacturer’s Part
Number
(Sheet 5 of 6)
6-7
1 X2 Crystal HC 14.7456
MHz ––
1 X3 Crystal Cylinder 32.768 KHz
Table 6.1 BDMR4103 Bill of Materials (Cont.)
Qty. Reference
Designator(s) Device Name Package Value/Type Manufacturer Manufacturer’s Part
Number
(Sheet 6 of 6)
6-8 Bill of Materials
Customer Feedback
We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.
If appropriate, please also fax copies of any marked-up pages from this
document.
Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.
Thank you for your help in improving the quality of our documents.
Customer Feedback
Reader’s Comments
Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333
Please tell us how you rate this document:
TinyRISC
®
BDMR4103
Evaluation Board User’s Guide
.
Place a check mark in the appropriate
blank for each category.
What could we do to improve this document?
If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).
Please complete the information below so that we may contact you
directly for clarification or additional information.
Excellent Good Average Fair Poor
Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations ____ ____ ____ ____ ____
Overall manual ____ ____ ____ ____ ____
Name Date
Telephone
Title
Company Name
Street
City, State, Zip
Department Mail Stop
Fax
U.S. Distributors
by State
A. E. Avnet Electronics
http://www.hh.avnet.com
B. M. Bell Microproducts,
Inc. (for HAB’s)
http://www.bellmicro.com
I. E. Insight Electronics
http://www.insight-electronics.com
W. E. Wyle Electronics
http://www.wyle.com
Alabama
Daphne
I. E. Tel: 334.626.6190
Huntsville
A. E. Tel: 256.837.8700
B. M. Tel: 256.705.3559
I. E. Tel: 256.830.1222
W. E. Tel: 800.964.9953
Alaska
A. E. Tel: 800.332.8638
Arizona
Phoenix
A. E. Tel: 480.736.7000
B. M. Tel: 602.267.9551
W. E. Tel: 800.528.4040
Tempe
I. E. Tel: 480.829.1800
Tucson
A. E. Tel: 520.742.0515
Arkansas
W. E. Tel: 972.235.9953
California
Agoura Hills
B. M. Tel: 818.865.0266
Granite Bay
B. M. Tel: 916.523.7047
Irvine
A. E. Tel: 949.789.4100
B. M. Tel: 949.470.2900
I. E. Tel: 949.727.3291
W. E. Tel: 800.626.9953
Los Angeles
A. E. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
A. E. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
A. E. Tel: 858.385.7500
B. M. Tel: 858.597.3010
I. E. Tel: 800.677.6011
W. E. Tel: 800.829.9953
San Jose
A. E. Tel: 408.435.3500
B. M. Tel: 408.436.0881
I. E. Tel: 408.952.7000
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
A. E. Tel: 818.594.0404
Westlake Village
I. E. Tel: 818.707.2101
Colorado
Denver
A. E. Tel: 303.790.1662
B. M. Tel: 303.846.3065
W. E. Tel: 800.933.9953
Englewood
I. E. Tel: 303.649.1800
Idaho Springs
B. M. Tel: 303.567.0703
Connecticut
Cheshire
A. E. Tel: 203.271.5700
I. E. Tel: 203.272.5843
Wallingford
W. E. Tel: 800.605.9953
Delaware
North/South
A. E. Tel: 800.526.4812
Tel: 800.638.5988
B. M. Tel: 302.328.8968
W. E. Tel: 856.439.9110
Florida
Altamonte Springs
B. M. Tel: 407.682.1199
I. E. Tel: 407.834.6310
Boca Raton
I. E. Tel: 561.997.2540
Bonita Springs
B. M. Tel: 941.498.6011
Clearwater
I. E. Tel: 727.524.8850
Fort Lauderdale
A. E. Tel: 954.484.5482
W. E. Tel: 800.568.9953
Miami
B. M. Tel: 305.477.6406
Orlando
A. E. Tel: 407.657.3300
W. E. Tel: 407.740.7450
Tampa
W. E. Tel: 800.395.9953
St. Petersburg
A. E. Tel: 727.507.5000
Georgia
Atlanta
A. E. Tel: 770.623.4400
B. M. Tel: 770.980.4922
W. E. Tel: 800.876.9953
Duluth
I. E. Tel: 678.584.0812
Hawaii
A. E. Tel: 800.851.2282
Idaho
A. E. Tel: 801.365.3800
W. E. Tel: 801.974.9953
Illinois
North/South
A. E. Tel: 847.797.7300
Tel: 314.291.5350
Chicago
B. M. Tel: 847.413.8530
W. E. Tel: 800.853.9953
Schaumburg
I. E. Tel: 847.885.9700
Indiana
Fort Wayne
I. E. Tel: 219.436.4250
W. E. Tel: 888.358.9953
Indianapolis
A. E. Tel: 317.575.3500
Iowa
W. E. Tel: 612.853.2280
Cedar Rapids
A. E. Tel: 319.393.0033
Kansas
W. E. Tel: 303.457.9953
Kansas City
A. E. Tel: 913.663.7900
Lenexa
I. E. Tel: 913.492.0408
Kentucky
W. E. Tel: 937.436.9953
Central/Northern/ Western
A. E. Tel: 800.984.9503
Tel: 800.767.0329
Tel: 800.829.0146
Louisiana
W. E. Tel: 713.854.9953
North/South
A. E. Tel: 800.231.0253
Tel: 800.231.5775
Maine
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953
Maryland
Baltimore
A. E. Tel: 410.720.3400
W. E. Tel: 800.863.9953
Columbia
B. M. Tel: 800.673.7461
I. E. Tel: 410.381.3131
Massachusetts
Boston
A. E. Tel: 978.532.9808
W. E. Tel: 800.444.9953
Burlington
I. E. Tel: 781.270.9400
Marlborough
B. M. Tel: 800.673.7459
Woburn
B. M. Tel: 800.552.4305
Michigan
Brighton
I. E. Tel: 810.229.7710
Detroit
A. E. Tel: 734.416.5800
W. E. Tel: 888.318.9953
Clarkston
B. M. Tel: 877.922.9363
Minnesota
Champlin
B. M. Tel: 800.557.2566
Eden Prairie
B. M. Tel: 800.255.1469
Minneapolis
A. E. Tel: 612.346.3000
W. E. Tel: 800.860.9953
St. Louis Park
I. E. Tel: 612.525.9999
Mississippi
A. E. Tel: 800.633.2918
W. E. Tel: 256.830.1119
Missouri
W. E. Tel: 630.620.0969
St. Louis
A. E. Tel: 314.291.5350
I. E. Tel: 314.872.2182
Montana
A. E. Tel: 800.526.1741
W. E. Tel: 801.974.9953
Nebraska
A. E. Tel: 800.332.4375
W. E. Tel: 303.457.9953
Nevada
Las Vegas
A. E. Tel: 800.528.8471
W. E. Tel: 702.765.7117
New Hampshire
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953
New Jersey
North/South
A. E. Tel: 201.515.1641
Tel: 609.222.6400
Mt. Laurel
I. E. Tel: 856.222.9566
Pine Brook
B. M. Tel: 973.244.9668
W. E. Tel: 800.862.9953
Parsippany
I. E. Tel: 973.299.4425
Wayne
W. E. Tel: 973.237.9010
New Mexico
W. E. Tel: 480.804.7000
Albuquerque
A. E. Tel: 505.293.5119
U.S. Distributors
by State
(Continued)
New York
Hauppauge
I. E. Tel: 516.761.0960
Long Island
A. E. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
A. E. Tel: 716.475.9130
I. E. Tel: 716.242.7790
W. E. Tel: 800.319.9953
Smithtown
B. M. Tel: 800.543.2008
Syracuse
A. E. Tel: 315.449.4927
North Carolina
Raleigh
A. E. Tel: 919.859.9159
I. E. Tel: 919.873.9922
W. E. Tel: 800.560.9953
North Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280
Ohio
Cleveland
A. E. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
A. E. Tel: 614.888.3313
I. E. Tel: 937.253.7501
W. E. Tel: 800.575.9953
Strongsville
B. M. Tel: 440.238.0404
Valley View
I. E. Tel: 216.520.4333
Oklahoma
W. E. Tel: 972.235.9953
Tulsa
A. E. Tel: 918.459.6000
I. E. Tel: 918.665.4664
Oregon
Beaverton
B. M. Tel: 503.524.1075
I. E. Tel: 503.644.3300
Portland
A. E. Tel: 503.526.6200
W. E. Tel: 800.879.9953
Pennsylvania
Mercer
I. E. Tel: 412.662.2707
Philadelphia
A. E. Tel: 800.526.4812
B. M. Tel: 877.351.2355
W. E. Tel: 800.871.9953
Pittsburgh
A. E. Tel: 412.281.4150
W. E. Tel: 440.248.9996
Rhode Island
A. E. 800.272.9255
W. E. Tel: 781.271.9953
South Carolina
A. E. Tel: 919.872.0712
W. E. Tel: 919.469.1502
South Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280
Tennessee
W. E. Tel: 256.830.1119
East/West
A. E. Tel: 800.241.8182
Tel: 800.633.2918
Texas
Arlington
B. M. Tel: 817.417.5993
Austin
A. E. Tel: 512.219.3700
B. M. Tel: 512.258.0725
I. E. Tel: 512.719.3090
W. E. Tel: 800.365.9953
Dallas
A. E. Tel: 214.553.4300
B. M. Tel: 972.783.4191
W. E. Tel: 800.955.9953
El Paso
A. E. Tel: 800.526.9238
Houston
A. E. Tel: 713.781.6100
B. M. Tel: 713.917.0663
W. E. Tel: 800.888.9953
Richardson
I. E. Tel: 972.783.0800
Rio Grande Valley
A. E. Tel: 210.412.2047
Stafford
I. E. Tel: 281.277.8200
Utah
Centerville
B. M. Tel: 801.295.3900
Murray
I. E. Tel: 801.288.9001
Salt Lake City
A. E. Tel: 801.365.3800
W. E. Tel: 800.477.9953
Vermont
A. E. Tel: 800.272.9255
W. E. Tel: 716.334.5970
Virginia
A. E. Tel: 800.638.5988
W. E. Tel: 301.604.8488
Haymarket
B. M. Tel: 703.754.3399
Springfield
B. M. Tel: 703.644.9045
Washington
Kirkland
I. E. Tel: 425.820.8100
Maple Valley
B. M. Tel: 206.223.0080
Seattle
A. E. Tel: 425.882.7000
W. E. Tel: 800.248.9953
West Virginia
A. E. Tel: 800.638.5988
Wisconsin
Milwaukee
A. E. Tel: 414.513.1500
W. E. Tel: 800.867.9953
Wauwatosa
I. E. Tel: 414.258.5338
Wyoming
A. E. Tel: 800.332.9326
W. E. Tel: 801.974.9953
Sales Offices and Design
Resource Centers
LSI Logic Corporation
Corporate Headquarters
1551 McCarthy Blvd
Milpitas CA 95035
Tel: 408.433.8000
Fax: 408.433.8989
NORTH AMERICA
California
Irvine
18301 Von Karman Ave
Suite 900
Irvine, CA 92612
Tel: 949.809.4600
Fax: 949.809.4444
Pleasanton Design Center
5050 Hopyard Road, 3rd Floor
Suite 300
Pleasanton, CA 94588
Tel: 925.730.8800
Fax: 925.730.8700
San Diego
7585 Ronson Road
Suite 100
San Diego, CA 92111
Tel: 858.467.6981
Fax: 858.496.0548
Silicon Valley
1551 McCarthy Blvd
Sales Office
M/S C-500
Milpitas, CA 95035
Tel: 408.433.8000
Fax: 408.954.3353
Design Center
M/S C-410
Tel: 408.433.8000
Fax: 408.433.7695
Wireless Design Center
11452 El Camino Real
Suite 210
San Diego, CA 92130
Tel: 858.350.5560
Fax: 858.350.0171
Colorado
Boulder
4940 Pearl East Circle
Suite 201
Boulder, CO 80301
Tel: 303.447.3800
Fax: 303.541.0641
Colorado Springs
4420 Arrowswest Drive
Colorado Springs, CO 80907
Tel: 719.533.7000
Fax: 719.533.7020
Fort Collins
2001 Danfield Court
Fort Collins, CO 80525
Tel: 970.223.5100
Fax: 970.206.5549
Florida
Boca Raton
2255 Glades Road
Suite 324A
Boca Raton, FL 33431
Tel: 561.989.3236
Fax: 561.989.3237
Georgia
Alpharetta
2475 North Winds Parkway
Suite 200
Alpharetta, GA 30004
Tel: 770.753.6146
Fax: 770.753.6147
Illinois
Oakbrook Terrace
Two Mid American Plaza
Suite 800
Oakbrook Terrace, IL 60181
Tel: 630.954.2234
Fax: 630.954.2235
Kentucky
Bowling Green
1262 Chestnut Street
Bowling Green, KY 42101
Tel: 270.793.0010
Fax: 270.793.0040
Maryland
Bethesda
6903 Rockledge Drive
Suite 230
Bethesda, MD 20817
Tel: 301.897.5800
Fax: 301.897.8389
Massachusetts
Waltham
200 West Street
Waltham, MA 02451
Tel: 781.890.0180
Fax: 781.890.6158
Burlington - Mint Technology
77 South Bedford Street
Burlington, MA 01803
Tel: 781.685.3800
Fax: 781.685.3801
Minnesota
Minneapolis
8300 Norman Center Drive
Suite 730
Minneapolis, MN 55437
Tel: 612.921.8300
Fax: 612.921.8399
New Jersey
Red Bank
125 Half Mile Road
Suite 200
Red Bank, NJ 07701
Tel: 732.933.2656
Fax: 732.933.2643
Cherry Hill - Mint Technology
215 Longstone Drive
Cherry Hill, NJ 08003
Tel: 856.489.5530
Fax: 856.489.5531
New York
Fairport
550 Willowbrook Office Park
Fairport, NY 14450
Tel: 716.218.0020
Fax: 716.218.9010
North Carolina
Raleigh
Phase II
4601 Six Forks Road
Suite 528
Raleigh, NC 27609
Tel: 919.785.4520
Fax: 919.783.8909
Oregon
Beaverton
15455 NW Greenbrier Parkway
Suite 235
Beaverton, OR 97006
Tel: 503.645.0589
Fax: 503.645.6612
Texas
Austin
9020 Capital of TX Highway North
Building 1
Suite 150
Austin, TX 78759
Tel: 512.388.7294
Fax: 512.388.4171
Plano
500 North Central Expressway
Suite 440
Plano, TX 75074
Tel: 972.244.5000
Fax: 972.244.5001
Houston
20405 State Highway 249
Suite 450
Houston, TX 77070
Tel: 281.379.7800
Fax: 281.379.7818
Canada
Ontario
Ottawa
260 Hearst Way
Suite 400
Kanata, ON K2L 3H1
Tel: 613.592.1263
Fax: 613.592.3253
INTERNATIONAL
France
Paris
LSI Logic S.A.
Immeuble Europa
53 bis Avenue de l'Europe
B.P. 139
78148 Velizy-Villacoublay
Cedex, Paris
Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19
Germany
Munich
LSI Logic GmbH
Orleansstrasse 4
81669 Munich
Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108
Stuttgart
Mittlerer Pfad 4
D-70499 Stuttgart
Tel: 49.711.13.96.90
Fax: 49.711.86.61.428
Italy
Milan
LSI Logic S.P.A.
CentroDirezionaleColleoniPalazzo
Orione Ingresso 1
20041 Agrate Brianza, Milano
Tel: 39.039.687371
Fax: 39.039.6057867
Japan
Tokyo
LSI Logic K.K.
Rivage-Shinagawa Bldg. 14F
4-1-8 Kounan
Minato-ku, Tokyo 108-0075
Tel: 81.3.5463.7821
Fax: 81.3.5463.7820
Osaka
Crystal Tower 14F
1-2-27 Shiromi
Chuo-ku, Osaka 540-6014
Tel: 81.6.947.5281
Fax: 81.6.947.5287
Sales Offices and Design
Resource Centers
(Continued)
Korea
Seoul
LSI Logic Corporation of
Korea Ltd
10th Fl., Haesung 1 Bldg.
942, Daechi-dong,
Kangnam-ku, Seoul, 135-283
Tel: 82.2.528.3400
Fax: 82.2.528.2250
The Netherlands
Eindhoven
LSI Logic Europe Ltd
World Trade Center Eindhoven
Building ‘Rijder’
Bogert 26
5612 LZ Eindhoven
Tel: 31.40.265.3580
Fax: 31.40.296.2109
Singapore
Singapore
LSI Logic Pte Ltd
7 Temasek Boulevard
#28-02 Suntec Tower One
Singapore 038987
Tel: 65.334.9061
Fax: 65.334.4749
Sweden
Stockholm
LSI Logic AB
Finlandsgatan 14
164 74 Kista
Tel: 46.8.444.15.00
Fax: 46.8.750.66.47
Taiwan
Taipei
LSI Logic Asia, Inc.
Taiwan Branch
10/F 156 Min Sheng E. Road
Section 3
Taipei, Taiwan R.O.C.
Tel: 886.2.2718.7828
Fax: 886.2.2718.8869
United Kingdom
Bracknell
LSI Logic Europe Ltd
Greenwood House
London Road
Bracknell, Berkshire RG12 2UB
Tel: 44.1344.426544
Fax: 44.1344.481039
Sales Offices with
Design Resource Centers
International Distributors
Australia
New South Wales
Reptechnic Pty Ltd
3/36 Bydown Street
Neutral Bay, NSW 2089
Tel: 612.9953.9844
Fax: 612.9953.9683
Belgium
Acal nv/sa
Lozenberg 4
1932 Zaventem
Tel: 32.2.7205983
Fax: 32.2.7251014
China
Beijing
LSI Logic International
Services Inc.
Beijing Representative
Office
Room 708
Canway Building
66 Nan Li Shi Lu
Xicheng District
Beijing 100045, China
Tel: 86.10.6804.2534 to 38
Fax: 86.10.6804.2521
France
Rungis Cedex
Azzurri Technology France
22 Rue Saarinen
Sillic 274
94578 Rungis Cedex
Tel: 33.1.41806310
Fax: 33.1.41730340
Germany
Haar
EBV Elektronik
Hans-Pinsel Str. 4
D-85540 Haar
Tel: 49.89.4600980
Fax: 49.89.46009840
Munich
Avnet Emg GmbH
Stahlgruberring 12
81829 Munich
Tel: 49.89.45110102
Fax: 49.89.42.27.75
Wuennenberg-Haaren
Peacock AG
Graf-Zepplin-Str 14
D-33181 Wuennenberg-Haaren
Tel: 49.2957.79.1692
Fax: 49.2957.79.9341
Hong Kong
Hong Kong
AVT Industrial Ltd
Unit 608 Tower 1
Cheung Sha Wan Plaza
833 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: 852.2428.0008
Fax: 852.2401.2105
Serial System (HK) Ltd
2301 Nanyang Plaza
57 Hung To Road, Kwun Tong
Kowloon, Hong Kong
Tel: 852.2995.7538
Fax: 852.2950.0386
India
Bangalore
Spike Technologies India
Private Ltd
951, Vijayalakshmi Complex,
2nd Floor, 24th Main,
J P Nagar II Phase,
Bangalore, India 560078
Tel: 91.80.664.5530
Fax: 91.80.664.9748
Israel
Tel Aviv
Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61392
Tel: 972.3.6458777
Fax: 972.3.6458666
Japan
Tokyo
Daito Electron
Sogo Kojimachi No.3 Bldg
1-6 Kojimachi
Chiyoda-ku, Tokyo 102-8730
Tel: 81.3.3264.0326
Fax: 81.3.3261.3984
Global Electronics
Corporation
Nichibei Time24 Bldg. 35 Tansu-cho
Shinjuku-ku, Tokyo 162-0833
Tel: 81.3.3260.1411
Fax: 81.3.3260.7100
Technical Center
Tel: 81.471.43.8200
Marubeni Solutions
1-26-20 Higashi
Shibuya-ku, Tokyo 150-0001
Tel: 81.3.5778.8662
Fax: 81.3.5778.8669
Shinki Electronics
Myuru Daikanyama 3F
3-7-3 Ebisu Minami
Shibuya-ku, Tokyo 150-0022
Tel: 81.3.3760.3110
Fax: 81.3.3760.3101
Yokohama-City
Innotech
2-15-10 Shin Yokohama
Kohoku-ku
Yokohama-City, 222-8580
Tel: 81.45.474.9037
Fax: 81.45.474.9065
Macnica Corporation
Hakusan High-Tech Park
1-22-2 Hadusan, Midori-Ku,
Yokohama-City, 226-8505
Tel: 81.45.939.6140
Fax: 81.45.939.6141
The Netherlands
Eindhoven
Acal Nederland b.v.
Beatrix de Rijkweg 8
5657 EG Eindhoven
Tel: 31.40.2.502602
Fax: 31.40.2.510255
Switzerland
Brugg
LSI Logic Sulzer AG
Mattenstrasse 6a
CH 2555 Brugg
Tel: 41.32.3743232
Fax: 41.32.3743233
Taiwan
Taipei
Avnet-Mercuries
Corporation, Ltd
14F, No. 145,
Sec. 2, Chien Kuo N. Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2516.7303
Fax: 886.2.2505.7391
Lumax International
Corporation, Ltd
7th Fl., 52, Sec. 3
Nan-Kang Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2788.3656
Fax: 886.2.2788.3568
Prospect Technology
Corporation, Ltd
4Fl., No. 34, Chu Luen Street
Taipei, Taiwan, R.O.C.
Tel: 886.2.2721.9533
Fax: 886.2.2773.3756
Wintech Microeletronics
Co., Ltd
7F., No. 34, Sec. 3, Pateh Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2579.5858
Fax: 886.2.2570.3123
United Kingdom
Maidenhead
Azzurri Technology Ltd
16 Grove Park Business Estate
Waltham Road
White Waltham
Maidenhead, Berkshire SL6 3LW
Tel: 44.1628.826826
Fax: 44.1628.829730
Milton Keynes
Ingram Micro (UK) Ltd
Garamonde Drive
Wymbush
Milton Keynes
Buckinghamshire MK8 8DF
Tel: 44.1908.260422
Swindon
EBV Elektronik
12 Interface Business Park
Bincknoll Lane
Wootton Bassett,
Swindon, Wiltshire SN4 8SY
Tel: 44.1793.849933
Fax: 44.1793.859555
Sales Offices with
Design Resource Centers