7
1
2
3
45
6
8
NC
ANODE
CATHODE
NC GND
V
CC
V
O
NC
SHIELD
TRUTH TABLE
(POSITIVE LOGIC)
LED
ON
OFF
V
O
HIGH
LOW
Description
The ACPL-4800 fast speed optocoupler contains a GaAsP
LED and photo detector with built-in Schmitt trigger to
provide logic-compatible waveforms, eliminating the need
for additional wave shaping. The totem pole output elimi-
nates the need for a pull up resistor and allows for direct
drive Intelligent Power Module or gate drive.
Functional Diagram
Features
Performance Specied for Fast IPM Applications over
Industrial Temperature Range: -40°C to 100°C
Wide Operating VCC Range: 4.5 to 20 Volts
Typical Propagation Delays 150 ns
Maximum Pulse Width Distortion
PWD = 250 ns
Propagation Delay Dierence
Min. –100 ns, Max. 250 ns
30 kV/µs Minimum Common Mode Transient Immunity
at VCM = 1000 V
Hysteresis
Totem Pole Output (No Pull-up Resistor Required)
Safety Approval:
UL 1577, 3750 Vrms / 1 minute
CSA File CA88324, Notice #5
IEC/EN/DIN EN 60747-5-2, VIORM = 630 Vpeak
Applications
IPM Interface Isolation
Isolated IGBT/MOSFET Gate Drive
AC and Brushless DC Servo Motor Drives
Low Power Inverters
General Digital Isolation
Note: The connection of a 0.1 µF
bypass capacitor between pins 5
& 8 is recommended.
ACPL-4800
High CMR Intelligent Power Module and
Gate Drive Interface Optocoupler
Data Sheet
Schematic
I
F
SHIELD
V
F
V
CC
V
O
GND
I
CC
I
O
+
-
2
3
8
5
6
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and /or degradation which may be induced by ESD.
2
Package Outline Drawings
DIP-8 Package
1.080 ± 0.320
(0.043 ± 0.013)
2.54 ± 0.25
(0.100 ± 0.010)
0.51 (0.020) MIN.
0.65 (0.025) MAX.
4.70 (0.185) MAX.
2.92 (0.115) MIN.
5˚ TYP. 0.254 + 0.076
- 0.051
(0.010 + 0.003)
- 0.002)
7.62 ± 0.25
(0.300 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
1.78 (0.070) MAX.
1.19 (0.047) MAX.
A XXXXZ
YYWW
DATE CODE
DIMENSIONS IN MILLIMETERS AND (INCHES).
5678
4321
OPTION CODE*
UL
RECOGNITION
UR
TYPE NUMBER
* MARKING CODE LETTER FOR OPTION NUMBERS
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
3.56 ± 0.13
(0.140 ± 0.005)
Ordering Information
ACPL-4800 is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance
Notice #5, File CA 88324.
Part number
Option
Package Surface Mount Gull Wing Tape& Reel
IEC/EN/DIN EN
60747-5-2 Quantity
RoHS
Compliant
ACPL-4800
-000E
300mil DIP-8
50 per tube
-300E X X 50 per tube
-500E X X X 1000 per reel
-060E X 50 per tube
-360E X X X 50 per tube
-560E X X X X 1000 per reel
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
ACPL-4800-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging
with IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.
Example 2:
ACPL-4800-000E to order product of 300mil DIP package in tube packaging and RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
3
0.635 ± 0.25
(0.025 ± 0.010) 12˚ NOM.
9.65 ± 0.25
(0.380 ± 0.010)
0.635 ± 0.130
(0.025 ± 0.005)
7.62 ± 0.25
(0.300 ± 0.010)
5
6
7
8
4
3
2
1
9.65 ± 0.25
(0.380 ± 0.010)
6.350 ± 0.25
(0.250 ± 0.010)
1.016 (0.040)
1.27 (0.050)
10.9 (0.430)
2.0 (0.080)
LAND PATTERN RECOMMENDATION
1.080 ± 0.320
(0.043 ± 0.013)
3.56 ± 0.13
(0.140 ± 0.005)
1.780
(0.070)
MAX.
1.19
(0.047)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.051
(0.010 + 0.003)
- 0.002)
DIP-8 Package with Gull Wing Surface Mount Option 300
4
Solder Reow Temperature Prole (Gull Wing Surface Mount Option 300 Parts)
Note: Non-halide ux should be used
0
TIME (SECONDS)
TEMPERATURE (˚C)
200
100
50 150100 200 250
300
0
30
SEC.
50 SEC.
30
SEC.
160˚C
140˚C
150˚C
PEAK
TEMP.
245˚C
PEAK
TEMP.
240¡C
PEAK
TEMP.
230˚C
SOLDERING
TIME
200˚C
PREHEATING TIME
150˚C, 90 + 30 SEC.
2.5˚C ± 0.5˚C/SEC.
3˚C + 1˚C/-0.5˚C
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
PREHEATING RATE 3˚C + 1˚C/-0.5˚C/SEC.
REFLOW HEATING RATE 2.5˚C ± 0.5˚C/SEC.
Recommended Pb-Free IR Prole
217˚C
RAMP-DOWN
6˚C/SEC. MAX.
RAMP-UP
3˚C/SEC. MAX.
150 - 200 ˚C
260 +0/-5˚C
t 25˚C to PEAK
60 to 150 SEC.
20-40 SEC.
TIME WITHIN 5˚C of ACTUAL
PEAK TEMPERATURE
tp
ts
PREHEAT
60 to 180 SEC.
tL
TL
Tsmax
Tsmin
25
Tp
TIME (SECONDS)
TEMPERATURE (˚C)
NOTES:
THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX.
Tsmax = 200˚C, Tsmin = 150˚C
Note: Non-halide ux should be used
5
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics (Option 060)
Description Symbol Characteristic Unit
Installation classication per DIN VDE 0110/1.89, Table 1
for rated mains voltage 300 Vrms I-IV
for rated mains voltage 450 Vrms I-III
Climatic Classication 55/85/21
Pollution Degree (DIN VDE 0110/1.89) 2
Maximum Working Insulation Voltage VIORM 630 Vpeak
Input to Output Test Voltage, Method b*
VIORM x 1.875=VPR,100% Production Test with tm=1 sec, Partial discharge < 5 pC
VPR 1181 Vpeak
Input to Output Test Voltage, Method a*
VIORM x 1.5=VPR, Type and Sample Test, tm=60 sec, Partial discharge < 5 pC
VPR 945 Vpeak
Highest Allowable Over-voltage(Transient Over-voltage tini = 10 sec) VIOTM 6000 Vpeak
Safety-limiting values - maximum values allowed in the event of a failure.
Case Temperature TS175 °C
Input Current IS, INPUT 230 mA
Output Power (refer to Thermal Derating Curve) PS, OUT-
PUT
600 mW
Insulation Resistance at TS, VIO = 500 V RS>109 W
* Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/DIN
EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test proles.
Note:
Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.
Insulation and Safety Related Specications
Parameter Symbol 8-Pin DIP Unit Conditions
Minimum External Air
Gap(External Clearance)
L(101) 7.1 mm Measured from input terminals to output terminals,
shortest distance through air.
Minimum External Track-
ing (External Creepage)
L(102) 7.4 mm Measured from input terminals to output terminals,
shortest distance path along body.
Minimum Internal Plastic
Gap (Internal Clearance)
0.08 Through insulation distance, conductor to conductor,
usually the direct distance between the photo emitter
and photo detector inside the optocoupler cavity.
Minimum Internal Tracking
(Internal Creepage)
NA mm Measured from input terminals to output terminals,
along internal cavity.
Tracking Resistance
(Comparative Tracking
Index)
CTI 200 mm DIN IEC 112/VDE 0303 Part 1
Isolation Group IIIa Material Group (DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classication is Class A in accordance with CECC 00802.
6
Absolute Maximum Rating
Parameter Symbol Min. Max. Units Note
Storage Temperature TS-55 125 °C
Operating Temperature TA-40 100 °C
Average Forward Input Current IF(AVG) 10 mA
Peak Transient Input Current IF(TRAN)
( 1 µs Pulse Width, 300 pps) 1.0 A
( 200 µs Pulse Width, < 1% Duty Cycle) 40 mA
Reverse Input Voltage VR5 V
Average Output Current IO25 mA
Supply Voltage VCC 0 25 V
Output Voltage VO-0.5 25 V
Total Package Power Dissipation PT210 mW 1
Lead Solder Temperature (Through Hole Parts Only) 260 °C for 10 sec., 1.6 mm below seating plane
Solder Reow Temperature Prole (Surface Mount Parts Only) See Package Outline Drawings section
Parameter Symbol Min. Max. Units
Power Supply Voltage VCC 4.5 20 V
Forward Input Current (ON) IF(ON) 6 10 mA
Forward Input Voltage (OFF) VF(OFF) - 0.8 V
Operating Temperature TA-40 100 C
OUTPUT POWER - PS, INPUT CURRENT - I S
0
0
TA - CASE TEMPERATURE - oC
20050
400
12525 75 100 150
600
800
200
100
300
500
700
175
PS (mW)
IS (mA)
Recommended Operating Conditions
Thermal Derating Curve
7
Electrical Specication
-40°C TA 100°C, 4.5V VCC 20V, 6mA IF(ON) 10 mA, 0V VF(OFF) 0.8 V, unless otherwise specied.
All Typicals at TA = 25°C.
Parameter Sym. Min. Typ. Max. Units Test Conditions Fig. Note
Logic Low
Output Voltage
VOL 0.5 V IOL = 6.4 mA 1, 3
Logic High
Output Voltage
VOH 2.4 VCC - 1.1V V IOH = -2.6 mA 2, 3,
7
2.7 IOH = -0.4 mA
Output Leakage
Current(VOUT =
VCC+0.5V)
IOHH 100 µA Vcc = 5 V IF = 10mA
500 Vcc = 20 V
Logic Low
Supply Current
ICCL 1.9 3.0 mA Vcc = 5.5 V VF = 0 V
IO = Open
2.0 3.0 Vcc = 20 V
Logic High
Supply Current
ICCH 1.5 2.5 mA Vcc = 5.5 V IF = 10 mA
IO = Open
1.6 2.5 Vcc = 20 V
Logic Low Short Circuit
Output Current
IOSL 25 mA VO = Vcc = 5.5 V VF=0V 2
50 VO = Vcc = 20 V
Logic High Short
Circuit Output Current
IOSH -25 mA VCC = 5.5 V IF=6mA
VO=GND
2
-50 VCC = 20 V
Input Forward Voltage VF1.5 1.7 V TA = 25 C IF=6mA 4
1.85
Input Reverse
Breakdown Voltage
BVR5 V IR = 10 µA
Input Diode
Temperature Coecient
DVF
DTA
-1.7 mV/
°C
IF = 6 mA
Input Capacitance CIN 60 pF f = 1 MHz, VF = 0 V 3
8
Switching Specications (AC)
-40°C TA 100°C, 4.5V VCC 20V, 6mA IF(ON) 10 mA, 0V VF(OFF) 0.8V.
All Typicals at TA = 25°C, IF(ON) = 6 mA unless otherwise specied.
Parameter Sym. Min. Typ. Max. Units Test Conditions Fig. Note
Propagation Delay Time
to Logic Low Output
Leve
tPHL 150 350 ns With Peaking Capacitor 5,6 5
Propagation Delay Time
to Logic High Output
Level
tPLH 110 350 ns With Peaking Capacitor 5,6 5
Pulse Width Distortion PWD 250 ns | tPHL - tPLH | 8
Propagation Delay Dif-
ference Between Any 2
Parts
PDD -100 250 ns 10
Output Rise Time (10-
90%)
tr16 ns 5,8
Output Fall Time (90-
10%)
tf20 ns 5,8
Logic High Common
Mode Transient Immu-
nity
|CMH| -30000 V/µs |VCM| = 1000 V, IF = 6.0 mA,
VCC = 5 V, TA = 25 C
9 6
Logic Low Common
Mode Transient Immu-
nity
|CML| 30000 V/µs |VCM| = 1000 V, VF = 0 V, VCC
= 5 V, TA = 25 C
9 6
Package Characteristics
* The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage
rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level
safety specication or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage, publication number 5963-2203E.
Notes:
1. Derate total package power dissipation, PT, linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.
2. Duration of output short circuit time should not exceed 10 ms.
3. Input capacitance is measured between pin 2 and pin 3.
4. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
5. The tPLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the
output pulse. The tPHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing
edge of the output pulse.
6. CMH is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, VO > 2.0 V. CML
is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, VO < 0.8 V.
7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for one second (leakage detec-
tion current limit, II-O 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN
60747-5-2 Insulation Characteristics Table, if applicable.
8. Pulse Width Distortion (PWD) is dened as |tPHL - tPLH | for any given device.
9. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.
10. The dierence between tPLH and tPHL between any two devices under the same test condition.
Parameter Sym. Min. Typ. Max. Units Test Conditions Fig. Note
Input-Output Momentary
Withstand Voltage*
VISO 3750 Vrms RH < 50%, t = 1 min.TA
= 25°C
4,7
Input-Output Resistance RI-O 1012 WVI-O = 500 Vdc 4
Input-Output Capacitance CI-O 0.6 pF f = 1 MHz, VI-O = 0 Vdc 4
9
Figure 5. Test Circuit for tPLH,tPHL,tr,tf
Figure 1. Typical Logic Low Output Voltage vs. Temputer Figure 2. Typical Logic High Output Current vs. Temputer
Figure 3. Typical Output Voltage vs. Forward Input Current Figure 4. Typical Input Diode Forward Characteristic
0.1
0.11
0.12
0.13
0.14
0.15
-50 0 50 100 150
V
OL
- LOW LEVEL OUTPUT VOLTAGE - V
TA - TEMPERATURE - ˚C
VCC = 4.5/20V
VF = 0V
IO = 6.4mA
VCC = 4.5V
VCC = 20V
-25
-20
-15
-10
-5
0
-50 0 50 100 150
TA - TEMPERATURE - ˚C
IOH - HIGH LEVEL OUTPUT CURRENT - mA
VCC = 4.5V
IF = 6mA
VO = 2.4V
VO = 2.7V
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
012345
IF - INPUT CURRENT - mA
Vo - OUTPUT VOLTAGE - V
IO = -2.6mA
TA = 25C
VCC = 4.5V
IO = 6.4mA
IF - FORWARD CURRENT - mA
1.1
0.001
VF - FORWARD VOLTAGE - V
1.0
1000
1.3
0.01
1.51.2 1.4
0.1
TA = 25 ˚C
10
100 IF
+
-
VF
THE PROBE AND JIG CAPACITANCES
ARE INCLUDED IN C1 AND C2.
R1
IF (ON)
1.10 k
3 mA
681
5 mA
ALL DIODES ARE 1N916 OR 1N3064.
IF (ON)
50 % I F (ON)
0 mA
tPLH tPHL VOH
1.3 V
VOL
INPUT I F
OUTPUT VO
330
10 mA
Figure 6. Typical Propagation Delays vs.Temperature. Figure 7. Typical Logic High Output Voltage vs. Supply Voltage
Figure 8. Typical Propogation Delay vs. Supply Voltage
50
70
90
110
130
150
170
190
210
230
-60 -40 -20 0 20 40 60 80 100 120
TA - TEMPERATURE - C
Tp - PROPAGATION DELAY - ns
tPLH
VCC = 20V
IF = 10mA
tPHL
0
5
10
15
20
25
0 5 10 15 20 25
V
CC
- SUPPLY VOLTAGE - V
Vo - OUTPUT VOLTAGE - V
T
A
= 25
o
C
I
O
= -2.6mA
0
20
40
60
80
100
120
140
160
180
200
0 5 10 15 20 25
VCC - SUPPLY VOLTAGE - V
T
P
- PROPAGTION DELAY - ns
tPHL
IF (mA)
10
6
tPLH
IF (mA)
6
10
TA = 25oC
V
CM
(PEAK)
OUTPUT V
O
0 V
V
OH
|V
CM
|
V
OL
V
O
(MAX.)
V
O
(MIN.)
SWITCH AT A: I
F
= 5 mA
SWITCH AT B: V
F
= 0 V
7
1
45
6
8
0.1 µF
BYPASS
OUTPUT V
O
MONITORING
NODE
V
CC
R
IN
2
3
V
FF
A
B
-+
V
CM
PULSE GENERATOR
-
+
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.
Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved.
AV01-0193EN - June 13, 2007
Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms