(c) Siemens AG 2016 Fuse Systems SENTRON Configuration Manual Edition 10/2015 siemens.com/lowvoltage (c) Siemens AG 2016 (c) Siemens AG 2016 Fuse Systems 2 Introduction 8 NEOZED fuse systems NEOZED fuse links 15 DIAZED fuse systems 24 32 Cylindrical fuse systems Cylindrical fuse links and cylindrical fuse holders Fuse holders in size 10 x 38 mm and Class CC 36 Class CC fuse systems 40 Busbar systems 45 68 69 3NA, 3ND LV HRC fuse systems LV HRC fuse links LV HRC signal detectors LV HRC fuse bases and accessories 78 147 168 SITOR seimconductor fuses LV HRC design Cylindrical fuse design NEOZED and DIAZED design 172 Configuration 186 186 191 Photovoltaic fuses Introduction PV cylindrical fuses PV cumulative fuses For further technical product information: Siemens Industry Online Support: www.siemens.com/lowvoltage/productsupport Entry type: Application example Certificate Characteristic Download FAQ Manual Product note Software archive Technical data Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Introduction Overview Standards 8 MINIZED switch disconnectors, bases, Fuse system: fuse links from 2 A to 63 A of operaIEC 60269-3; tional class gG and accessories. DIN VDE 0636-3 Everything you need for a complete system. Safety switching devices Used in Industry Application Residential buildings NEOZED fuse systems Page Non-residential buildings Devices IEC/EN 60947-3 DIN VDE 0638; DIN EN 60947-3 (VDE 0660-107) DIAZED fuse systems 15 Fuse links from 2 A to 100 A in various operational classes, base versions with classic screw base connections. A widely used fuse system. IEC 60269-3; DIN VDE 0635; DIN VDE 0636-3; CEE 16 Line protection or protection of switching devices. IEC 60269-1, -2, -3; NF C 60-200; NF C 63-210, -211; NBN C 63269-2, CEI 32-4, -12 -- Cylindrical fuse systems Cylindrical fuse links and cylindrical 24 fuse holders The fuse holders with touch protection ensure the safe "no-voltage" replacement of fuse links. Auxiliary switches can be retrofitted. Fuse holders in size 10 x 38 mm and 32 Class CC Fuse holders: File No. E171267 For installing fused loaded motor starter IEC 60269-1, -2; combinations. IEC 60947-4; UL 4248-1, File No. E171267 CSA 250269, 6225-01 Auxiliary switches: UL 508, File No. E334003 Class CC fuse systems 36 These comply with American standard and have UL and CSA approval, for customers exporting OEM products and mechanical engineers. Fuse holders: UL 4248-1, E171267 CSA 22.2 Modern design with touch protection Fuse links: according to BGV A3 for use in "branch UL 248-4, circuit protection". File No. E258218, CSA 231237, 1422-02 and 1422-82 Busbar systems 40 Busbars for NEOZED fuse bases, DIN EN 60439-1 NEOZED fuse disconnectors, MINIZED (VDE 0660-500) switch disconnectors, DIAZED fuse systems and for the cylindrical fuse systems. Compact cylindrical fuse holders for busbars. 2 Siemens * 10/2015 UL 4248-1, E337131 (c) Siemens AG 2016 Fuse Systems Page Application Standards Non-residential buildings Residential buildings Industry Introduction Devices Used in LV HRC fuse links 45 Fuse links from 2 A to 1250 A for selective line protection and system protection in non-residential buildings, industry and power utilities. IEC 60269-1, -2; EN 60269-1; DIN VDE 0636-2; CSA 16325 - 1422-02 LV HRC signal detectors 68 Signal detectors for when a fuse is tripped on all LV HRC fuse links with combination or front indicators with non-insulated grip lugs. -- 3NA, 3ND LV HRC fuse systems Plus the comprehensive accessory range required for LV HRC fuse systems. LV HRC fuse bases and accessories 69 Fuse bases for screw or snap-on IEC 60269-1, -2; mounting onto standard mounting rails, EN 60269-1; available as 1-pole or 3-pole version. DIN VDE 0636-2 UL 4248-1, File No. E171267-IZLT2 (only downstream from branch circuit protection) CSA C22.2 No. 4248.1-07 SITOR semiconductor fuses LV HRC design 78 Fuse links in LV HRC design and a huge variety of models support a wide range of applications from 500 V to 1500 V and 150 A to 1600 A. Fuses with slotted blade contacts, bolt-on links or female thread, and special designs. UL 4248-13, File No. E167357-JFHR2 -- -- Cylindrical fuse design 147 Fuse links, fuse holders - usable as fuse switch disconnectors and fuse bases up to 600/690 V AC and 400/700 V DC from 1 A to 100 A in the sizes 10 x 38 mm, 14 x 51 mm and 22 x 58 mm. Fuse links: UL 4248-13, File No. E167357-JFHR2 CSA 248170, 1422-30 -- -- Fuse holders: UL 4248-1, File No. E171267- IZLT CSA 248170, 6225-01 NEOZED and DIAZED design 168 NEOZED fuse links for 400 V AC and 250 V DC and DIAZED for 500 V AC and 500 V DC. -- -- -- PV cylindrical fuses 186 Fuses with a rated voltage of 1000 V DC and operational class gPV for the protection of photovoltaic modules, their connecting cables and other components. IEC 60269-6 PV cumulative fuses 191 Fuses with a rated voltage of 1000 V IEC60269-6 and 1500 V DC, a rated current of 63 A to 630 A and operational class gPV for the protection of connecting cables and other components. Photovoltaic fuses Siemens * 10/2015 3 (c) Siemens AG 2016 Fuse Systems Introduction Overview Rated voltage Un The rated voltage is the designated voltage of the fuse and is used to determine its test conditions and operational voltage limits. For LV HRC and SITOR fuse links, the rated voltage is always the rms value of an AC voltage. For wind power plants and some industrial applications, a higher voltage tolerance is demanded of the LV HRC and SITOR fuses than the tolerance of +5 % defined in the standard. On request, you can obtain a manufacturer's declaration for the rated voltage of 690 V +10 %. In the case of NEOZED and DIAZED fuse links, a distinction is made between AC and DC voltage values. Rated current In The rated current of a fuse link is the designated current of the fuse link and is the current up to which it can be continuously loaded under prescribed conditions without adverse affects. Rated frequency The rated frequency is the frequency for which the fuse link is rated with regard to power dissipation, current, voltage, characteristic curve and breaking capacity. Faster arcing and precise arc quenching are the requirements for a reliable breaking capacity. Operational classes Fuses are categorized according to function and operational classes. The first letter defines the function class and the second the object to be protected: 1st letter Several fuses are usually connected in series in a system. Selectivity ensures that only the faulty electric circuit and not all operating processes are interrupted in a system in serious cases. a = Partial range protection (accompanied fuses): Fuse links that carry currents at least up to their specified rated current and can switch currents above a specific multiple of their rated current up to their rated breaking current. Siemens fuses of operational class gG, at an operational voltage of up to 400 V AC and a ratio of 1:1.25, are interselective, i.e. from rated current level to rated current level. This is achieved by means of the considerably smaller band of scatter of 5 % of the time/current characteristics, which far exceeds the demand for a ratio of 1:1.6 specified in the standard. g = Full range protection (general purpose fuses): Fuse links that can continuously carry currents up to at least their specified rated current and can switch currents from the smallest melting current through to the breaking current. Overload and short-circuit protection. Selectivity It is therefore possible to use smaller conductor cross-sections due to the lower rated currents. 2nd letter G = Cable and line protection (general applications) M = Switching device protection in motor circuits (for protection of motor circuits) Breaking capacity The rated breaking capacity is the highest prospective shortcircuit current Ip that the fuse link can blow under prescribed conditions. A key feature of these fuses is their high rated breaking capacity with the smallest footprint. The basic demands and circuit data for tests - voltage, power factor, actuating angle, etc. - are specified in both national (DIN VDE 0636) and international (IEC 60269) regulations. However, for a constant fail-safe breaking capacity, from the smallest non-permissible overload current through to the highest short-circuit current, a number of quality characteristics need to be taken into account when designing and manufacturing fuse links. These include the design of the fuse element with regard to dimensions and punch dimension and its position in the fuse body, as well as its compressive strength and the thermal resistance of the body. The chemical purity, particle size and the density of the quartz sand also play a key role. The rated breaking capacity for AC voltage for NEOZED fuses - and the majority of DIAZED fuses - is 50 kA, and in the case of our LV HRC fuses (NH type), it is even 120 kA. The various type ranges of SITOR semiconductor fuses have different switching capacities ranging from 50 to 100 kA. R, S = Semiconductor protection/thyristor protection (for protection of rectifiers) L = Cable and line protection (in acc. with the old, no longer valid DIN VDE) B = Mine equipment protection Tr = Transformer protection The designations "slow" and "quick" still apply to DIAZED fuses. These are defined in IEC/CEE/DIN VDE. In the case of "quick" characteristics, the fuse blows in the breaking range faster than those of operational class gG. In the case of DIAZED fuse links for DC railway network protection, the "slow" characteristic is particularly suitable for switching off direct currents with greater inductance. Both characteristics are also suitable for the protection of cables and lines. Full range fuses (gG, gR, quick, slow) reliably break the current in the event of non-permissible overload and shortcircuit currents. Partial range fuses (aM, aR) exclusively serve short-circuit protection. . 4 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Introduction The following operational classes are included in the product range: gG aM (DIN VDE/IEC) = Full-range cable and line protection (DIN VDE/IEC) = Partial-range switching device protection aR (DIN VDE/IEC) = Partial-range semiconductor protection gR (DIN VDE/IEC) = Full-range semiconductor protection gS (DIN VDE/IEC) = Full-range semiconductor protection and cable and line protection quick (DIN VDE/IEC/CEE) = Full-range cable and line protection slow (DIN VDE) = Full range cable and line protection Characteristic curves (time/current characteristic curves) The time/current characteristic curve specifies the virtual time (e.g. the melting time) as a function of the prospective current under specific operating conditions. Melting times of fuse links are presented in the time/current diagrams with logarithmic subdivision as a function of their currents. The melting time characteristic curve extends from the lowest melting current, which still just causes the melting conductor to melt asymptotically to the I2t line of equal Joulean heat values in the range of higher short-circuit currents, which specifies the constant melting heat value I2t. For the sake of simplicity, the time/current characteristics diagrams omit the I2t lines (c). 9 10 t [s] Virtual time tv The virtual time is the time span calculated when an I2t value is divided by the square of the prospective current: i dt = -----------2 tv Ip 2 The time/current characteristic curve specifies the prospective current Ip and the virtual melting time tvs. Prospective short-circuit current Ip The prospective short-circuit current is the rms value of the line-frequency AC component, or the value of direct current to be expected in the event of a short-circuit occurring downstream of the fuse, were the fuse to be replaced by a component of negligible impedance. Let-through current characteristic curves The let-through current characteristic curve specifies the value of the let-through current at 50 Hz as a function of the prospective current. The let-through current Ic is the maximum instantaneous value of the current reached during a switching operation of a fuse. The fuse element of the fuse links melts so quickly at very high currents that the surge short-circuit current Ip is prevented from occurring. The highest instantaneous value of the current reached during the breaking cycle is called the let-through current Ic. The current limits are specified in the current limiting diagrams, otherwise known as let-through current diagrams. 5 10 U a 1 10 b Us: Arc voltage I201_06996a c 101 min 102 10 3 104 [A] General representation of the time/current characteristic curve of a fuse link of operational class gL/gG t Smallest melting current Melting time/current characteristic Breaking time characteristic curve I2t line The curve of the characteristic depends on the outward heat transfer from the fuse element. DIN VDE 0636 specifies tolerance-dependent time/current ranges within which the characteristic curves of the fuse must lie. Deviations of 10 % are permissible in the direction of the current axis. With Siemens LV HRC fuse links of operational class gG, the deviations work out at less than 5 %, a mark of our outstanding production accuracy. For currents up to approx. 20 In, the melting time/current characteristic curves are the same as the breaking time characteristic curves. In the case of higher short-circuit currents, the two characteristic curves move apart, influenced by the respective arc quenching time. The difference between both lines (= arc quenching time) also depends on the power factor, the operational voltage and the breaking current. c: Maximum let-through current ts: Pre-arcing time tL: Arcing time P: Peak short-circuit current P c I201_06997b Imin: a: b: c: ts tL t Oscillograph of a short-circuit current breaking operation through a fuse link The Siemens characteristic curves show the mean virtual melting time characteristic curves recorded at an ambient temperature of (20 5) C. They do not apply to preloaded fuse links. Siemens * 10/2015 5 (c) Siemens AG 2016 Fuse Systems Introduction Current limiting Rated power dissipation As well as a fail-safe rated breaking capacity, the current-limiting effect of a fuse link is of key importance for the cost effectiveness of a system. In the event of short-circuit breaking by a fuse, the short-circuit current continues to flow through the network until the fuse link is switched off. However, the short-circuit current is only limited by the system impedance. Rated power dissipation is the power loss during the load of a fuse link with its rated current under prescribed conditions. The simultaneous melting of all the bottlenecks of a fuse element produce a sequence of tiny partial arcs that ensure a fast breaking operation with strong current limiting. The current limitation is also strongly influenced by the production quality of the fuse - which in the case of Siemens fuses is extremely high. For example, an LV HRC fuse link, size 2 (224 A) limits a short-circuit current with a possible rms value of approximately 50 kA to a letthrough current with a peak value of approx. 18 kA. This strong current limitation provides constant protection for the system against excessive loads. c The cost effectiveness of a fuse depends largely on the rated power dissipation (power loss). This should be as low as possible and have low self-heating. However, when assessing the power loss of a fuse, it must also be taken into account that there is a physical dependence between the rated breaking capacity and the rated power dissipation. On the one hand, fuse elements need to be very thick in order to achieve the lowest possible resistance value, on the other, a high rated breaking capacity requires the thinnest possible fuse elements in order to achieve reliable arc quenching. Siemens fuses have the lowest possible rated power dissipation while also providing the highest possible load breaking reliability. These values lie far below the limit values specified in the r egulations. This means a low temperature rise, reliable breaking capacity and high cost effectiveness. 100 A 50 A I 2t value 10 A The I 2t value (joule integral) is the integral of the current squared over a specific time interval: 6A t1 2 I201_06998a I t = eff Current limiting diagram Let-through current diagram of LV HRC fuse links, size 00 Operational class gL/gG Rated currents 6 A, 10 A, 50 A, 100 A Legend tvs = Virtual melting time Ic = Max. let-through current Irms=rms value of the prospective short-circuit current I2ts= Melting I2t value I2ta= Breaking I2t value In = Rated current Pv = Rated power dissipation = Temperature rise kA = Correction factor for I2t value Uw = Recovery voltage Us = Peak arc voltage Ip = Peak short-circuit current $ = Peak short-circuit current with largest DC component % = Peak short-circuit current without DC component U = Voltage i = Current ts = Melting time tL = Arc quenching time 6 Siemens * 10/2015 t i dt 2 0 Specifies the I 2t values for the melting process (I 2ts) and for the breaking cycle ((I 2tA, , - sum of melting and quenching I 2t value). The melting I 2t value, also known as the total I 2t value or breaking I 2t value, is particularly important when dimensioning SITOR semiconductor fuses. This value depends on the voltage and is specified with the rated voltage. Peak arc voltage Us The peak arc voltage is the maximum value of the voltage that occurs at the connections of the fuse link during the arc quenching time. Residual value factor RV The residual value factor is a reduction factor for determining the permissible load period of the fuse link with currents that exceed the permissible load current In' (see rated current In). This factor is applied when dimensioning SITOR semiconductor fuses. Varying load factor VL The varying load factor is a reduction factor for the rated current with varying load states. This factor is applied when dimensioning SITOR semiconductor fuses. Recovery voltage Uw The recovery voltage (rms value) is the voltage that occurs at the connections of a fuse link after the power is cut off. (c) Siemens AG 2016 Fuse Systems Introduction More information Load capability with increased ambient temperature Assignment of cable and line protection The time/current characteristic curve of the NEOZED/DIAZED and LV HRC fuse links is based on an ambient temperature of 20 C 5 C in accordance with DIN VDE 0636. When used in higher ambient temperatures (see diagram) a reduced load-carrying capacity must be planned for. At an ambient temperature of 50 C, for example, an LV HRC fuse link should be dimensioned for only 90 % of the rated current. While the short-circuit behavior is not influenced by an increased ambient temperature, it is influenced by overload and operation at rated value. When gG fuses are assigned for cable and line protection against overloading, the following conditions must be met in order to comply with DIN VDE 0100 Part 430: Current carrying capacity [%] 120 I201_06648c (1) IB = In = Iz (rated current rule) (2) I2 = 1.45 x Iz (tripping rule) IB: Operational current of electrical circuit In: Rated current of selected protective device Iz: Permissible current carrying capacity of the cable or line under specified operating conditions I2: Tripping current of the protective device under specified operating conditions ("high test current"). 100 90 These days, the factor 1.45 has become an internationally accepted compromise of the protection and utilization ratio of a line, taking into account the breaking response of the protective device (e.g. fuse). 80 60 In compliance with the supplementary requirements for DIN VDE 0636, Siemens fuse links of operational class gG comply with the following condition: 40 "Load breaking switching with I2=1.45 x In during conventional test duration under special test conditions in accordance with the aforementioned supplementary requirements of DIN VDE 0636". 20 0 0 20 40 50 60 80 100 120 This therefore permits direct assignment. Ambient temperature [C] Influence of the ambient temperature on the load capability of NEOZED/DIAZED and LV HRC fuses of operational class gG with natural convection in the distribution board. Siemens * 10/2015 7 (c) Siemens AG 2016 Fuse Systems NEOZED Fuse Systems NEOZED fuse links Overview The NEOZED fuse system is primarily used in distribution technology and industrial switchgear assemblies. The system is easy to use and is also approved for domestic installation. The MINIZED switch disconnectors are primarily used in switchgear assemblies and control engineering. They are approved for switching loads as well as for safe switching in the event of short circuits. The MINIZED D02 is also suitable for use upstream of the meter in household applications in compliance with the recommendations of VDEW according to TAB 2007. Fuse bases D01 with terminal version BB * Incoming feeders, clamp-type terminal B * Outgoing feeders, clamp-type terminal B Fuse bases D02, with terminal version SS * Incoming feeders, saddle terminal S * Outgoing feeders, saddle terminal S 8 Siemens * 10/2015 Due to its compact design, the MINIZED D01 fuse switch disconnector is primarily used in control engineering. The NEOZED fuse bases are the most cost-effective solution for using NEOZED fuses. All NEOZED bases must be fed from the bottom to ensure that the threaded ring is insulated during removal of the fuse link. The terminals of the NEOZED bases are available in different versions and designs to support the various installation methods. Fuse bases D02, with terminal version KS * Incoming feeders, screw head contact K * Outgoing feeders, saddle terminal S (c) Siemens AG 2016 Fuse Systems NEOZED Fuse Systems NEOZED fuse links Technical specifications NEOZED fuse links 5SE2 IEC 60269-3; DIN VDE 0636-3 Standards gG Operational class V AC 400 V DC 250 Rated current In A 2 ... 100 Rated breaking capacity kA AC 50 kA DC 8 Rated voltage Un Using adapter sleeves Non-interchangeability Resistance to climate C Up to 45 at 95 % rel. humidity Ambient temperature C -5 to +40, humidity 90 % at 20 MINIZED switch disconnectors MINIZED fuse Fuse bases, switch discon- made of ceramic nectors D02 D01 D01 D02 D03 D01/02 5SG71 5SG76 5SG15 5SG55 5SG16 5SG56 5SG18 5SG1.01 5SG5.01 5SG1.30 5SG1.31 5SG5.30 16/63 16/63 DIN VDE 0638; EN 60947-3 (VDE 0660-107) Standards Comfort bases Fuse bases IEC 60269-3; DIN VDE 0636-3 IEC/EN 60947-3 Main switch characteristic, EN 60204-1 Yes -- -- Insulation characteristic EN 60664-1 Yes -- -- Rated voltage Un V AC 230/400, 240/415 400 * 1P V DC 65 48 250 * 2P in series V DC 130 110 250 Rated current In A 63 16 16 Rated insulation voltage V AC 500 400 -- Rated impulse withstand voltage KV AC 6 2.5 -- IV IV -- A 63 16 -- Overvoltage category 63 100 Utilization category acc. to VDE 0638 * AC-22 Utilization category acc. to EN 60947-3 * AC-22 A A -- 16 -- * AC-22 B A 63 -- -- * AC-23 B A 35 -- -- * DC-22 B A 63 -- -- Sealable When switched on Yes Yes, with sealable screw caps Mounting position Any, preferably vertical Reduction factor of In with 18 pole * Side-by-side mounting 0.9 -- * On top of one another, with vertical standard mounting rail 0.87 -- Degree of protection acc. to IEC 60529 IP20, with connected conductors1) Terminals With touch protection acc. to BGV A3 Yes Ambient temperature C Terminal versions No Yes -5 to +40, humidity 90 % at 20 -- -- B K, S K/S -- -- Conductor cross-sections * Solid and stranded mm2 1.5 ... 35 1.5 ... 16 1.5 ... 4 1.5 ... 25 10 ... 50 0.75 ... 35 1.5 ... 35 * Flexible, with end sleeve mm2 1.5 ... 35 1.5 1.5 1.5 10 -- -- * Finely stranded, with end sleeve mm2 -- -- 0.75 ... 25 -- -- -- -- Tightening torque Nm 2.5 ... 3 2.5 1.2 3.5/2.5 3.5 3 1) 2 Degree of protection IP20 is tested according to regulations using a straight test finger (from the front), with the device mounted and equipped with a cover, housing or some other enclosure. Siemens * 10/2015 9 (c) Siemens AG 2016 Fuse Systems NEOZED Fuse Systems NEOZED fuse links Dimensional drawings 5SG71.3 MINIZED D02 switch disconnectors, with draw-out technology 54 6 4 2 6 4 2 4 2 5 N 108 81 45 90 N I2_12122 5 3 1 5 3 1 3 1 44 70 1P 1P+N 2P 3P 3P+N Locking cap for MINIZED D02 switch disconnectors 5 4 5 6 44 27 81 I201_17072 2 45 3 90 1 55 70 79 5SG76 MINIZED D01 fuse switch disconnectors, with draw-out technology 45 I201_07988a 88 70 18 36 54 72 6 44 64 107 1P 1P+N, 2P 3P 3P+N Fuse bases with touch protection BGV A3 (VBG4), molded plastic With cover 64 5SG1301, 5SG1701 10 5SG5301, 5SG5701 Siemens * 10/2015 26,6 5SG1330, 5SG1331, 5SG1730, 5SG1731 79,8 5SG5330, 5SG5730 45 71,5 45 44 I2_12123 83 6,2 58,7 I201_07536b Sizes D01/D02, with combined terminal, can be busbar mounted 4 44 47,2 59,2 Protective caps (c) Siemens AG 2016 Fuse Systems NEOZED Fuse Systems NEOZED fuse links NEOZED fuse bases made of ceramic Sizes D01/D02/D03 touch protection cover screw cap d g c i a 5SG15 I201_06258b h b k e 5SG55 Type Version Size Connection type Dimensions a b c d e g Not sealed/ sealed h i k Snap-on with cover 5SG1553 5SG1653 5SG1693 1-pole D01 D02 D02 BB SS KS 26.8 26.8 26.8 36 36 36 40 41 41 56 56 56 70 70 70 23/26.5 23/26.5 23/26.5 54 59 60 ---- ---- 5SG5553 5SG5653 5SG5693 3-pole D01 D02 D02 BB SS KS 80.8 80.8 80.8 36 36 36 40 41 41 56 56 56 70 70 70 23/26.5 23/26.5 23/26.5 54 59 60 ---- ---- Snap-on without cover 5SG1595 5SG1655 5SG1695 5SG1812 1-pole D01 D02 D02 D03 BB SS KS KS 26.8 26.8 26.8 44.9 36 36 36 50 40 41 41 44 56 56 56 54.5 70 70 70 76 23/26.5 23/26.5 23/26.5 44 54 59 60 86 ----- ----- 5SG5555 5SG5655 5SG5695 3-pole D01 D02 D02 BB SS KS 80.8 80.8 80.8 36 36 36 40 41 41 56 56 56 70 70 70 23/26.5 23/26.5 23/26.5 54 59 60 ---- ---- Screw-on without cover 5SG1590 5SG1650 5SG1810 1-pole D01 D02 D03 BB SS KS 26.8 26.8 44.9 36 36 50 40 41 46 56 56 54.5 70 70 76 23/26.5 23/26.5 44 54 59 86 20 20 32 22 22 32 5SG5550 5SG5650 5SG5690 3-pole D01 D02 D02 BB SS KS 80.8 80.8 80.8 36 36 36 40 41 41 56 56 56 70 70 70 23/26.5 23/26.5 23/26.5 54 59 60 74 74 74 22 22 22 Legend BB = Clamp-type terminal at incoming feeder Clamp-type terminal at outgoing feeder SS = Saddle terminal at incoming feeder Saddle terminal at outgoing feeder KS = Screw head contact at incoming feeder Saddle terminal at outgoing feeder Connection type: K = Screw head contact B = Clamp-type terminal S = Saddle terminal NEOZED covers made of molded plastic 45 71,5 I2_07537 NEOZED covers for NEOZED fuse bases, made of molded plastic 26,6 79,8 16 5SH5244 (A1) 5SH5245 (A2) 45 27 12 21 5SH5251 (A4) and 5SH5253 (A10) 45 60 I201_06207 45 70 45 70 I201_06206 I201_06209 NEOZED covers for NEOZED fuse bases, made of ceramic 81 12 21 5SH5252 (A5) and 5SH5254 (A11) 13 18 5SH5233 (A6) Siemens * 10/2015 11 (c) Siemens AG 2016 Fuse Systems NEOZED Fuse Systems NEOZED fuse links NEOZED screw caps b 5SH4 a Type Size Sealable For mounting depth Dimensions a b 5SH4116 5SH4163 5SH4316 5SH4363 D01 D02 D01 D02 -- 70 70 70 76 27.5 27.5 33 33 24 24 26.5 26.5 5SH4100 5SH4317 5SH4362 D03 D01 D02 ---- 70 70 70 37 29.5 30.5 44 25 25 Size/thread Rated current in A NEOZED fuse links Size n A D01/E14 2 ... 16 D02/E18 20 ... 63 D03/M30 80 ... 100 D01/E14 2 ... 16 Dimension Dimension Dimension Dimension d2 min d3 d4 max h 9.8 11 6 36 D02/E18 20 ... 63 13.8 15.3 10 36 D03/M30 80 ... 100 20.8 22.5 36 43 Circuit diagrams Graphical symbols 5SG71.3 MINIZED D02 switch disconnectors, with draw-out technology 1 1N 1 2 2 2N 1 3 2 4 1 3 5 2 4 6 1 3 5 N 2 4 6 N 5SG7113 5SG7153 5SG7123 5SG7133 5SG7133-8BA25 5SG7133-8BA35 5SG7133-8BA50 5SG7163 1P 1P+N 2P 3P 3P+N 5SG76 MINIZED D01 fuse switch disconnectors, with draw-out technology 1 1 N 2 1 3 1 3 5 2 N 2 4 5SG7610 5SG7650 5SG7620 5SG7630 5SG7660 1P 1P+N 2P 3P 3P+N NEOZED fuse bases/fuses in general 5SG1 5SG5 1P 3P 12 Siemens * 10/2015 2 4 6 1 3 5 N 2 4 6 N (c) Siemens AG 2016 Fuse Systems NEOZED Fuse Systems NEOZED fuse links Characteristic curves Series 5SE2 D01, D02, D03 gG 400 V AC/250 V DC 2 ... 100 A Melting I2t values diagram Time/current characteristics diagram I201_10887 4 6 1 0 6 4 2 5 1 0 6 2 s [A 2 s ] 6A 10 A 13 A 16 A 20 A 25 A 32 A 35 A 40 A 50 A 63 A 80 A 100 A 4A 104 6 4 2A vs [s] 2 I2 _ 1 0 8 8 9 Sizes: Operational class: Rated voltage: Rated current: 2 4 103 6 4 1 0 0 A 8 0 A 6 3 A 5 0 A 4 0 A 3 5 A 3 2 A 2 4 1 0 6 4 2 2 2 10 6 4 2 5 A 2 0 A 3 1 0 6 1 6 A 4 2 1 3 A 2 101 6 4 1 0 A 2 1 0 6 6 A 4 2 2 4 A 1 1 0 100 6 4 6 1 0 4 -1 s 1 0 -2 s 1 0 -3 s - 4 1 0 s 2 A 0 1 0 10-1 6 4 s 1 0 2 2 0 6 4 1 0 0 2 4 6 8 1 0 1 2 4 6 8 1 0 2 2 4 6 8 1 0 3 2 e ff 2 10-2 6 4 4 [A ] 6 8 1 0 4 Table see page 14. 6 8 10 1 4 2 4 6 8 10 2 2 6 8 10 3 2 p [A] 4 Current limiting diagram 1 0 0 A 8 0 A 6 3 A 5 0 A 4 0 A 3 5 A 3 2 A 2 5 A 2 0 A 1 6 A 1 3 A 1 0 A 6 A 4 A 2 6 4 2 3 1 0 I2 _ 1 0 8 8 8 1 4 1 0 c [A ] 2 2 A 6 4 2 1 0 2 6 4 1 0 1 2 4 6 8 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 4 6 8 1 0 e ff 5 2 4 [A ] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 13 (c) Siemens AG 2016 Fuse Systems NEOZED Fuse Systems NEOZED fuse links Series 5SE2 Sizes: Operational class: Rated voltage: Rated current: Type D01, D02, D03 gG 400 V AC/250 V DC 2 ... 100 A Pv In I2ts 1 ms I2ta 4 ms 230 V AC 400 V AC (t < 4 ms) A A2s A2s A2s A2s W K 2 4 6 1.6 1.3 1.7 19 14 19 5SE2310 5SE2013-2A 5SE2316 10 13 16 1.3 2.0 2.1 16 23 24 120 220 375 136 244 410 220 290 675 280 370 890 5SE2320 5SE2325 5SE2332 20 25 32 2.4 3.2 3.6 26 33 34 740 1210 2560 810 1300 2800 1250 1900 4300 1650 2600 5500 5SE2335 5SE2340 5SE2350 35 40 50 3.8 4.0 4.2 36 37 38 3060 4320 6750 3500 4800 7400 5100 7900 10500 6500 9500 13000 5SE2363 5SE2280 5SE2300 63 80 100 5.3 5.3 6.4 45 43 47 10000 13000 22100 10900 15400 30000 16000 25000 46000 20500 34500 60000 14 Siemens * 10/2015 5SE2302 5SE2304 5SE2306 1.2 12.5 46.7 1.4 13.6 48 2.9 22 58 3.9 30 75 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems Overview Benefits The DIAZED fuse system is one of the oldest fuse systems in the world. It was developed by Siemens as far back as 1906. It is still the standard fuse system in many countries to this day. It is particularly widely used in the harsh environments of industrial applications. The series is available with rated voltages from 500 V to 750 V. 3 1 4 2 5 The terminals of the DIAZED bases are available in different versions and designs to support the various installation methods. The high-performing EZR bus-mounting system for screw fixing is an outstanding feature. The busbars, which are particularly suited for bus-mounting bases, have a load capacity of up to 150 A with lateral infeed. DIAZED stands for Diametral gestuftes zweiteiliges Sicherungssystem mit Edisongewinde (diametral two-step fuse system with Edison screw). i201_18300 All DIAZED bases must be fed from the bottom to ensure an insulated threaded ring when the fuse link is being removed. Reliable contact of the fuse links is only ensured when used together with DIAZED screw adapters. 6 8 9 7 10 11 DIAZED cap for fuse bases 1 DIAZED collar for fuse bases 2 DIAZED fuse bases 3 DIAZED cover for fuse bases 4 5 9 DIAZED screw adapter 6 10 DIAZED fuse link 7 11 DIAZED screw cap 8 DIAZED fuse base (with touch protection BGV A3) DIII fuse bases with terminal version BS * Outgoing feeders (top), saddle terminal S * Incoming feeders (bottom), clamp-type terminal B NDZ fuse bases with terminal version KK * Outgoing feeders (top), screw head contact K * Incoming feeders (bottom), screw head contact K DIII fuse bases with terminal version BB * Outgoing feeders (top), clamp-type terminal B * Incoming feeders (bottom), clamp-type terminal B DIII fuse bases with terminal version SS * Outgoing feeders (top), saddle terminal S * Incoming feeders (bottom), saddle terminal S Siemens * 10/2015 15 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems Technical specifications 5SA, 5SB, 5SC, 5SD IEC 60269-3; DIN VDE 0635; DIN VDE 0636-3; CEE 16 Standards Operational class Acc. to IEC 60269; DIN VDE 0636 Characteristic Acc. to DIN VDE 0635 gG Slow and quick Rated voltage Un V AC V DC 500, 690, 750 500, 600, 750 Rated current In A 2 ... 100 Rated breaking capacity kA AC kA DC 50, 40 at E16 8, 1.6 at E16 Overvoltage category III II (DIAZED fuse bases made of molded plastic for use at 690 V AC / 600 V DC) Mounting position Any, preferably vertical Non-interchangeability Using screw adapter or adapter sleeves Degree of protection Acc. to IEC 60529 IP20, with connected conductors1) Resistance to climate C Up to 45, at 95 % rel. humidity Ambient temperature C -5 to +40, humidity 90 % at 20 1) Degree of protection IP20 is tested according to regulations using a straight test finger (from the front), with the device mounted and equipped with a cover, housing or some other enclosure. Terminal version B K S R DII DIII NDz DII DIII DIII DIV DII DIII mm2 mm2 mm2 1.5 10 10 2.5 25 25 1.0 6 6 1.5 10 10 2.5 25 25 2.5 25 25 10 50 50 1.5 35 35 1.5 35 35 Nm Nm Nm Nm 1.2 2.0 2.5 3.5 Size Conductor cross-sections * Rigid, min. * Rigid, max. * Flexible, with end sleeve Tightening torque * * * * Screw M4 Screw M5 Screw M6 Screw M8 16 Siemens * 10/2015 --3.0 -- (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems Dimensional drawings DIAZED fuse links 5SA1, 5SA2 Size/thread TNDz/E16, NDz/E16 Rated current in A 2 4 6 10 16 20 25 Dimension d 6 6 6 8 10 12 14 13,2 d I201_06251a 49 5SB1, 5SB2 I201_06247 d 22,5 Size/thread DII/E27 Rated current in A 2 4 6 10 16 20 25 Dimension d 6 6 6 8 10 12 14 49 I201_06248 d 28 5SB3, 5SB4 Size/thread DIII/E33 Rated current in A 32 35 50 63 Dimension d 16 16 18 20 Size/thread DIV/R11/4" Rated current in A 80 100 5 7 49 I201_06682 Dimension d d 34,5 5SC1, 5SC2 57 5SD6, 5SD8 Size/thread od o28 I201_06329a DIII/E33 Rated current in A 2 4 6 10 16 20 25 35 50 63 Dimension d 6 6 6 8 10 12 14 16 18 20 70 Siemens * 10/2015 17 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems DIAZED fuse bases made of ceramic Version Connection type 5SF1 Type d a I201_06242 g h b Oi c e Dimensions c KK 29 49 44.6 55 75 32 49 -- BB BB 38.4 41 38.4 41 46.6 53 46.6 53 83 83 34 34 63 63 -4.3 DIII/63 A 5SF1205 5SF1215 5SF1224 BS SS BS 45.5 46 45.5 46 45.5 46 47 47 47 54 54 54 83 83 83 43 43 43 78 78 78 --4.3 DIV/100 A 5SF1401 Flat terminal 68 -- 79 110 65 116 6.5 68 e 5SF4230 5 105 12 50 65 I2_06443a M6 80 max.113 DIAZED fuse bases made of molded plastic I201_11344 80 5SF1, 5SF5 a 18 b Siemens * 10/2015 6 43,6 Type Dimensions a b 5SF1060 5SF1260 40 50 --- 5SF5068 5SF5268 --- 120 150 h i b DII/25 A 5SF1005 5SF1024 d g a NDz/25 A 5SF1012 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems DIAZED EZR bus-mounting bases 5SF6005 5SF6205 18 5 18 11 14 31 max.83 34 max.49 I2_06445a 27 max.38,5 I2_06444a 51,5 55 22 34 16 41,5 45 30 16 20,5 37 31 5,3 11 14 31 max.83 DIAZED screw caps/cover rings made of molded plastic/ceramic Screw caps Cover rings 5SH1 5SH3 Screw caps Type Dimensions a b NDz/E16 5SH1112 36 24 DII/E27 5SH1221 5SH112 5SH122 42 45.5 43 DIII/E33 5SH1231 5SH113 5SH123 5SH1161 5SH1170 I201_13741a b b I201_06257 a Cover rings Size/thread a Type Dimensions a b 33 34 39 5SH3401 5SH332 17.5 17.5 39.5 41.5 42 45.5 47 40 43 45 5SH3411 5SH334 17.5 19 49.5 51.5 48 68 48 43 DIAZED caps made of molded plastic 5SH2 d Type Dimensions amax bmax cmax dmax NDz/E16 5SH201 33 68 51.7 75 DII/E27 5SH202 43 74.7 53.6 83 DIII/E33 5SH222 51 90.5 53.6 83 a c e I201_06242 g h b Oi Size/thread Siemens * 10/2015 19 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems Characteristic curves Series 5SA2 E16 Slow 500 V AC/500 V DC 2 ... 25 A Melting I2t values diagram I2_06069c vs[s] 10 4 6 4 2 6 4 2 10 3 10 6 I2_07545c Time/current characteristics diagram 2 s [A s] Size: Characteristics: Rated voltage: Rated current: 2 10 5 6 4 6 4 2 2 10 2 10 4 6 4 6 4 2 2 10 1 10 3 6 4 6 4 2 2 10 0 10 2 6 4 6 4 2 2 10 -1 10 1 6 4 6 4 16 A 25 A 2 2 2A 10 -2 4A 6 A 10 A 20 A 25 A 20 A 16 A 10 A 6A 4A 2A 10 0 10 0 6 4 10 -1s 10 0s 10 -2s 4 6 8 10 1 2 2 4 6 8 10 2 2 2 Type 2 4 6 8 10 1 2 4 6 8 10 2 4 6 8 10 4 2 4 ef [A] I2_07032b 10 5 6 4 1 2 2 10 4 25 A 20 A 16 A 10 A 6 4 2 2A 6 4 2 10 2 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 20 Siemens * 10/2015 Pv I2ts 1 ms 4 ms A W K A2s A2s 5SA211 5SA221 5SA231 2 4 6 0.85 1.3 1.9 15 17 14 5SA251 5SA261 5SA271 10 16 20 1.4 2.4 2.6 17 30 36 200 290 470 190 550 1990 5SA281 25 3.4 34 1000 2090 Type I2ta 230 V AC 320 V AC 500 V AC A2s A2s A2s 5SA211 5SA221 5SA231 6A 4A 10 3 In 6 8 10 3 Current limiting diagram c [A] 4 6 8 10 3 2 ef [A] 10 -3 10 0 6 10 - 4s 10 -3s 4 6.6 22 66 7.8 26 76 0.7 34 100 5SA251 5SA261 5SA271 240 890 1200 270 950 1350 340 1090 1620 5SA281 2400 2600 3450 1.2 8.5 40 2.3 13 80 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems Series 5SB2, 5SB4, 5SC2 DII, DIII, DIV gG 500 V AC/500 V DC 2 ... 100 A Melting I2t values diagram 2 103 6 4 106 6 4 2 105 6 4 2 103 6 4 2 101 6 4 6 4 102 6 4 2 10-1 2 101 6 4 6 4 10 A 6A 4A 100s 2A 2 10- 4s 10-1s 10-2s 10-3s 100 0 1 10 2 4 6 810 2 4 6 8 102 2 2 10-2 6 4 Type 2 4 6 8 101 2 4 6 8 102 4 6 8103 2 ef [A] 2 105 6 4 1 2 100 A 80 A 63 A 50 A 35 A 32 A 25 A 20 A 16 A 10 A 6A 4A 2A 2 104 6 4 2 103 I2_06055b Current limiting diagram c [A] 25 A 20 A 16 A 2 2 100 6 4 2 102 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 4 In Pv A W K 4 6 8 103 2 4 6 8 104 ef[A] I2ts 1 ms 4 ms A2s A2s 5SB211 5SB221 5SB231 2 4 6 2.6 2.0 2.2 15 13 14 5SB251 5SB261 5SB271 10 16 20 1.6 2.4 2.6 20 23 26 120 500 750 140 580 1100 5SB281 5SB4010 5SB411 5SB421 25 32 35 50 3.4 3.6 3.7 5.7 38 23 25 41 1600 2300 3450 6500 2000 2500 3000 5200 5SB431 5SC211 5SC221 63 80 100 6.9 7.5 8.8 48 33 46 11000 14600 28600 12000 16400 30000 Type I2ta 5SB211 5SB221 5SB231 102 80 A 63 A 50 A 35 A 32 A 104 6 4 6 4 6 100 A 2 2 102 2 10-3 100 I2_07552a I2_07551a vs[s] 2A 104 6 4 4A 6A 10 A 16 A 20 A 25 A 32 A 35 A 50 A 63 A 80 A 100 A Time/current characteristics diagram 2 s [A2s] Size: Operational class: Rated voltage: Rated current: 3.7 15 42 3.9 16 45 230 V AC 320 V AC 500 V AC A2s A2s A2s 6.6 22 66 8.8 28 85 10.7 34 100 5SB251 5SB261 5SB271 240 890 1200 300 1060 1450 340 1090 1620 5SB281 5SB4010 5SB411 5SB421 2400 3450 5200 9750 3150 4150 6200 12350 3450 4850 7200 14500 5SB431 5SC211 5SC221 16500 23000 44000 22200 28500 56000 26500 32500 65000 Siemens * 10/2015 21 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems Series 5SD8 DIII gG 690 V AC/600 V DC 2 ... 63 A Melting I2t values diagram I2_06412c Time/current characteristics diagram 6 4 10 6 6 4 2 s [A s] vs[s] 10 4 2 2 10 3 I2_06425b Size: Operational class: Rated voltage: Rated current: 2 10 5 6 4 6 4 2 2 10 2 10 4 63 A 6 4 6 4 50 A 2 2 10 1 10 3 6 4 6 4 4A 10 A 20 A 30 A 35 A 25 A 20 A 16 A 63 A 10 A 6A 2 2 2A 10 0 6A 16 A 25 A 50 A 10 2 6 4 6 4 2 2 10 -1 10 1 6 4 6 4 2 2 4A 10 0s 10 0 10 0 10 -2 6 4 2 10 -1s 10 -2s 4 6 8 10 1 2 10 -3s 2A 10 - 4s 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 ef [A] 2 Type 10 -3 10 0 2 4 6 8 10 1 2 6 8 10 2 4 2 4 6 8 10 3 ef [A] 2 c [A] 1 2 63 A 50 A 35 A 25 A 20 A 16 A 10 A 6A 104 6 4 I2_07101a Current limiting diagram 4A 2 103 2A 6 4 2 102 6 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 22 Siemens * 10/2015 4 In A Pv W I2ts I2ta 4 ms 242 V AC A2s A2s 5SD8002 5SD8004 5SD8006 2 4 6 1 1.2 1.6 4.4 40 88 7 62 140 5SD8010 5SD8016 5SD8020 10 16 20 1.4 1.8 2 240 380 750 380 600 1200 5SD8025 5SD8035 5SD8050 25 35 50 2.3 3.1 4.6 2000 3300 7000 3200 5100 11000 5SD8063 63 5.5 9500 15000 (c) Siemens AG 2016 Fuse Systems DIAZED fuse systems Series 5SD6 Size: Operational class: Rated voltage: Rated current: DIII Quick (railway network protection) 750 V AC/750 V DC 2 ... 63 A Melting I2t values diagram Time/current characteristics diagram I2 _ 0 6 0 4 8 a 6 v s 2 3 2 1 0 6 4 2 2 2 10 4 6 4 63 A 2 50 A 10 3 1 0 6 6 4 2 s [A s] [s ] 4 I2_06077b 10 5 4 1 0 35 A 6 4 4 2 25 A 2 20 A 10 2 1 1 0 16 A 10 A 6 4 6 4 4 A 2 1 0 1 0 A 2 A 0 6 A 2 0 A 3 0 A 1 6 A 6 3 A 2 5 A 2 5 0 A 10 1 6A 6 4 6 4 2 2 10 0 -1 1 0 4A 10 0s 6 4 6 4 2 2 10 -1s 10 -1 -2 1 0 2A 10 0 6 2 10 -2s 10 -3s 4 6 8 10 1 2 10 - 4s 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 ef [A] 4 2 1 0 Type -3 1 0 0 2 4 6 8 1 0 1 2 4 6 8 1 0 2 2 4 e ff [A ] 6 8 1 0 A c [A] 1 6 63 A 50 A 35 A 20/25 A 16 A 10 A 6A 2 4 2 I2_06411a Current limiting diagram 104 In Pv 3 W I2ts I2ta 4 ms 500 V AC A2s A2s 5SD601 5SD602 5SD603 2 4 6 2.8 4 4.8 0.7 4.5 10 2 13 29 5SD604 5SD605 5SD606 10 16 20 4.8 5.9 6.3 50 78 125 135 220 380 5SD607 5SD608 5SD610 25 35 50 8.3 13 16.5 265 550 1800 800 1600 5500 5SD611 63 18 3100 9600 4A 2A 103 6 4 2 102 102 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 2 ef[A] 4 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 23 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders Benefits Overview Cylindrical fuses are standard in Europe. There are a range of different cylindrical fuse links and holders that comply with the standards IEC 60269-1, -2 and -3, and which are suitable for use in industrial applications. In South West Europe they are also approved for use in residential buildings. The cylindrical fuse holders are also approved according to UL 512. The cylindrical fuse holders are tested and approved as fuse disconnectors according to the switching device standard IEC 60947-3. They are not suitable for switching loads. * Devices with pole number 1P+N are available in a single modular width. This reduces the footprint by 50 % * The sliding catch for type ranges 8 x 32 mm and 10 x 38 mm enables the removal of individual devices from the assembly * Space for a spare fuse in the plug-in module enables the fast replacement of fuses. This saves time and money and increases system availability * A flashing LED signals that a fuse link has been tripped. This enables fast detection during runtime Cylindrical fuse holders can be supplied with or without signal detectors. In the case of devices with signal detector, a small electronic device with LED is located behind an inspection window in the plug-in module. If the inserted fuse link is tripped, this is indicated by the LED flashing. The switching state of the fuse holder can be signaled over a laterally retrofitted auxiliary switch, which enables the integration of the fuses in the automation process. Technical specifications Cylindrical fuse links mm x mm Size 3NW63.. 3NW60.. 3NW61.. 3NW62.. 3NW80.. 3NW81.. 3NW82.. 8 x 32 10 x 38 14 x 51 22 x 58 10 x 38 14 x 51 22 x 58 IEC 60269-1, -2, -3; NF C 60-200; NF C 63-210, -211; NBN C 63269-2, CEI 32-4, -12 Standards gG Operational class aM Rated voltages Un V AC 400 400 or 500 Rated current In A 2 ... 20 0.5 ... 32 4 ... 50 kA AC kA AC -20 120 120 100 20 8 ... 100 0.5 ... 32 2 ... 50 120 120 100 20 10 ... 100 Rated breaking capacity * 500 V versions * 400 V versions Any, preferably vertical Mounting position Cylindrical fuse holders mm x mm Size 3NW73.. 3NW70.. 3NW71.. 3NW72.. 8 x 32 10 x 38 14 x 51 22 x 58 IEC 60269-1, -2, -3; NF C 60-200, NF C 63-210, -211; NBN C 63269-2-1; CEI 32-4, -12; UL 4248-1 Standards --- U s V AC V AC 400 400 690 600 Rated current In A AC 20 32 Rated breaking capacity kA 20 100 Acc. to UL Acc. to CSA Approvals Rated voltage Un Acc. to UL/CSA Breaking capacity * Utilization category Yes Sealable when installed Yes 50 100 2.5 ... 10 2.5 ... 25 2.5 ... 16 4 ... 10 4 ... 50 4 ... 35 6 ... 10 -- 2.0 2.5 Any, preferably vertical Mounting position IP20, with connected conductors1) Acc. to IEC 60529 Terminals with touch protection according to BGV A3 at incoming and outgoing feeder Yes C -5 to +40, humidity 90 % at +20 mm2 mm2 mm2 0.5 ... 10 0.5 ... 10 0.5 ... 102) * AWG (American Wire Gauge) AWG -- Tightening torque Nm 1.2 Ambient temperature --- AC-20B (switching without load), DC-20B No-voltage changing of fuse links Degree of protection U s Conductor cross-sections * Rigid * Stranded * Finely stranded, with end sleeve 1) Degree of protection IP20 is tested according to regulations using a straight test finger (from the front), with the device mounted and equipped with a cover, housing or some other enclosure. 2) Max. cross-section 10 mm2 with K28 crimper from Klauke. 24 Siemens * 10/2015 10 ... 20 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders Dimensional drawings 38 14,3 I2_06704c 22,2 31,5 I2_06701c 10,3 I2_06703c 8,5 I2_06702c 51 58 Size 8 x 32 mm 14 x 51 mm 22 x 58 mm 45 81 10 x 38 mm 54 54 36 18 44 2 18 64 3NW70, 3NW73 1P 1P + N 3P 3P+N I201_07853b 45 90 2P I201_12124 7 27 81 54 7 108 43 55 70 3NW71 1P 3P 3P+N I201_07869c 117 45 1P+N/2P 72 36 108 43 144 7 3NW72 1P 1P+N/2P 3P 70 3P+N 9 3NW7901 3NW7902 45 90 5 45 83 I201_15459 I201_10891 Auxiliary switches 49,8 48,5 9 6 44 64 3NW7903 Siemens * 10/2015 25 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders Circuit diagrams Graphical symbols 2 2 N 2 4 2 4 6 2 4 6 N 1 1 N 1 3 1 3 5 1 3 5 N 1P 1P+N Auxiliary switches 22 14 12 13/21 22 21 11 3NW7901 3NW7902 26 3NW7903 Siemens * 10/2015 2P 3P 3P+N (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders Characteristic curves 3NW60 series 10 x 38 mm gG 500 V AC (0.5 ... 25 A), 400 V AC (32 A) 2 ... 32 A Rated current: Melting I2t values diagram Time/current characteristics diagram I201_19158 t [A2s] 2 104 6 4 103 6 4 2 Virtual pre-arcing time vs [s] 104 6 4 6 4 102 6 4 32 A 25 A 2 2 20 A 102 101 6 4 16 A 6 4 2 10 A 12 A 2 100 6 4 8A 101 6A 6 4 2 4A 10-1 6 4 2A 10 10 2 100 1A 6 4 0,5 A -2 6 4 2 2 10-1 -3 6 4 6 4 2 2 10-2 10-4 2 4 6 8 101 2 4 6 8 102 2 4 6 8 103 2 Prospective short-circuit current p 4 2 103 6 4 2 m = 2,3 I201_19159 32 A 25 A 20 A 16 A 12 A 10 A 8A 6A p 102 6 4 2 4A 2A 1A 0,5 A 1 2 4 6 8 10 12 16 20 25 32 n Type 4 10 6 0,5 4 6 8104 [A] Current limiting diagram Peak current c [A] ta ts 103 2 2 500 V 400 V 230 V 2 I201_19160a Size: Operational class: Rated voltage: In Pv [A] I2ts I2ta 1 ms 230 V AC 400 V AC 500 V AC A W K A2s A2s A2s A2s 3NW6000-1 3NW6011-1 3NW6002-1 3NW6004-1 3NW6001-1 0.5 1 2 4 6 0.07 0.45 0.50 0.85 0.95 On req. On req. On req. On req. On req. 0.06 0.50 4 34 12.5 0.06 0.45 4.80 35.70 45.50 0.09 0.63 6.80 49.50 63 0.10 0.7 7.50 55 70 3NW6008-1 3NW6003-1 3NW6006-1 8 10 12 1.15 On req. 29 1.30 On req. 56 1.40 On req. 99 10 201 344 153 279 477 170 310 530 3NW6005-1 3NW6007-1 3NW6010-1 16 20 25 1.90 On req. 199 2.40 On req. 333 2.70 On req. 619 630 975 1560 873 1350 2160 970 1500 2400 3NW6012-1 32 2.80 On req. 1331 3250 4500 -- 101 5 3 6 101 2 4 6 102 2 4 6 103 2 4 6 105 4 6 104 2 Prospective short-circuit current p [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 27 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders 3NW61series 14 x 51 mm gG 500 V AC (4 ... 40 A), 400 V AC (50 A) 4 ... 50 A Melting I2t values diagram 16 A 20 A 25 A 32 A 40 A 50 A I2_06603b vs[s] 6 4 10 A 4A 6A 10 4 2 6 4 2 10 3 10 5 6 4 500 A 400 A 230 A 2 2 2 10 4 I2_06599c Time/current characteristics diagram 2 Rated current: [A s] Size: Operational class: Rated voltage: ta ts 6 4 2 2 10 2 10 3 6 4 6 4 2 2 10 1 10 2 6 4 6 4 2 2 10 0 10 1 6 4 6 4 2 2 10 -1 10 0 4 6 4 6 8 10 12 16 20 25 32 40 50 n [A] 2 10 -2 10 0 Type 2 4 6 8 10 1 2 6 8 10 2 4 4 6 8 10 3 ef [A] 2 Current limiting diagram I201_06560c 2 c [A] 4 10 4 2 1 6 50 A 40 A 32 A 25 A 20 A 16 A 12 A 10 A 4 2 8A 6A 4A 10 3 6 4 2 10 2 6 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 4 2 rms [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 28 Siemens * 10/2015 6 8 10 5 In A Pv W K I2ts I2ta 1 ms 230 V AC 400 V AC 500 V AC A2s A2s A2s A2s 3NW6104-1 3NW6101-1 3NW6108-1 4 6 8 1.9 2.5 2.4 19 25 18 5 48 110 16 85 200 20 100 250 26 120 350 3NW6103-1 3NW6106-1 3NW6105-1 10 12 16 0.8 1.0 1.6 12 16 27 230 390 600 420 600 1000 750 800 1400 1050 1200 1700 3NW6107-1 3NW6110-1 3NW6112-1 20 25 32 2.3 2.2 3.2 32.5 31.5 39.5 670 1300 2500 1400 2300 4100 1800 2800 5500 2100 3200 6500 3NW6117-1 3NW6120-1 40 50 4.5 4.8 48 55 3600 8000 6100 12200 8000 16000 9200 -- (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders 3NW62 series 22 x 58 mm gG 500 V AC (8 ... 80 A), 400 V AC (100 A) 8 ... 100 A Melting I2t values diagram Time/current characteristics diagram 8A 10 A 12 A 16 A 20 A 25 A 32 A 40 A 50 A 63 A 80 A 100 A 6 4 vs[s] I2_06604b 10 4 6 4 2 2 10 5 2 10 3 6 4 500 A 400 A 230 A 2 2 2 10 4 I2_06600c Rated current: [A s] Size: Operational class: Rated voltage: ta ts 6 4 2 2 10 2 10 3 6 4 6 4 2 2 10 1 10 2 6 4 6 4 2 2 10 0 10 1 6 4 6 4 2 2 10 -1 10 0 8 6 4 10 16 12 20 25 32 40 50 63 80 100 n [A] 2 Type 10 -2 10 1 2 6 8 10 2 4 2 6 8 10 3 4 4 6 8 10 4 ef [A] 2 Current limiting diagram 2 1 1 0 0 A 8 0 A 6 3 A 5 0 A 4 0 A 3 2 A 2 5 A 2 0 A 1 6 A 1 2 A 1 0 A c [A ] 2 I2 _ 0 6 5 5 8 b 4 4 1 0 6 4 2 In Pv A W K I2ts I2ta 1 ms 230 V AC 400 V AC 500 V AC A2s A2s A2s A2s 3NW6208-1 3NW6203-1 3NW6206-1 8 10 12 2.5 0.9 1.1 15 10.5 12 110 230 390 200 420 600 170 760 800 350 1050 1200 3NW6205-1 3NW6207-1 3NW6210-1 16 20 25 1.6 2.4 2.7 14.5 22.5 24 600 670 1300 1000 1200 2100 1400 1800 2800 1700 2200 3300 3NW6212-1 3NW6217-1 3NW6220-1 32 40 50 3.2 4.9 5.9 28 35 46 2450 3600 6800 4400 6200 11400 6100 8000 16200 7200 10000 20600 3NW6222-1 3NW6224-1 3NW6230-1 63 80 100 6.8 7.5 8.4 48 48 55 12500 18800 24700 30500 46000 64700 24000 43000 80000 30000 52500 -- 8 A 3 1 0 6 4 2 1 0 2 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 4 6 8 1 0 e ff 5 [A ] 2 4 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 29 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders 3NW630.-1 series 8 x 32 mm gG 400 V AC 2 ... 20 A Melting I2t values diagram I2_06605b 6 4 2 10 4 6 4 2 vs[s] 10 4 2 10 3 6 4 400 A 230 A 2 10 3 2 ta 2 ts I2_06601c Time/current characteristics diagram [A s] Size: Operational class: Rated voltage: Rated current: 6 4 2 2 10 2 10 2 6 4 2A 6A 6 4 16 A 2 4A 10 1 10 A 2 20 A 10 1 6 4 6 4 2 2 10 0 10 0 6 4 2 4 6 10 16 20 n [A] 2 10 -1 Type 6 4 2 10 -2 10 0 2 4 6 8 10 1 2 4 6 8 10 2 2 4 6 8 10 3 ef [A] 10 4 20 A c [A] 6 1 4 2 I2_06559b Current limiting diagram 16 A 2 10 A 10 3 6A 6 4A 2A 4 2 10 2 6 4 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 30 Siemens * 10/2015 4 In Pv A W K 3NW6302-1 3NW6304-1 3NW6301-1 2 4 6 2 1.5 1.5 27 19 20.5 3NW6303-1 3NW6305-1 3NW6307-1 10 16 20 0.7 1.1 1.7 15 29 34.5 I2ts I2ta 1 ms 400 V AC A2s A2s 1.6 5 48 230 600 790 6 21 85 530 1400 1800 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Cylindrical fuse links and cylindrical fuse holders 3NW8 series Size: 10 x 38 mm, 14 x 51 mm, 22 x 58 mm Operational class: aM Rated voltage: 500 V AC, 400 V AC (3NW8120-1, 3NW8230-1) Rated current: 0.5 ... 100 A 500 A 400 A 2 2 [A s] I2_06567b 6A 8A 10 A 12 A 16 A 20 A 25 A 32 A 40 A 50 A 63 A 80 A 100 A 4A 1A 2 10 2 2A 6 4 0,5 A vs[s] 10 3 I2_06995b Melting I2t values diagram Time/current characteristics diagram 2 2 10 5 6 4 6 4 2 2 10 1 10 4 6 4 6 4 2 2 10 0 10 3 6 4 6 4 2 2 10 -1 10 2 6 4 6 4 2 2 10 -2 10 1 6 4 6 4 2 2 10 -3 2 10 0 4 6 8 10 1 2 4 6 8 10 2 2 6 8 10 3 4 2 1 4 2 ef [A] 2 1 100 A 80 A 63 A 50 A 40 A 32 A 25 A 20 A 16 A 12 A 10 A 8A 6A 4A 2A 2 10 4 6 4 2 10 3 I2_06566b Current limiting diagram c [A] ts 1A 6 2 10 2 6 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 6 8 10 5 ef [A] 2 8 10 12 16 20 25 32 40 50 63 80 100 n [A] Type Size mm BK In A Un V Pv W 3NW8000-1 3NW8011-1 3NW8002-1 3NW8004-1 10 x 38 aM 0.5 1 2 4 500 0.1 0.1 0.1 0.3 3NW8001-1 3NW8008-1 3NW8003-1 3NW8006-1 6 8 10 12 0.4 0.6 0.6 0.8 3NW8005-1 3NW8007-1 3NW8010-1 3NW8012-1 165 20 25 32 0.9 1.1 1.2 1.8 3NW8102-1 3NW8104-1 3NW8101-1 3NW8108-1 0,5 A 4 4 6 14 x 51 2 4 6 8 400 690 1 0.3 0.3 0.5 3NW8103-1 3NW8106-1 3NW8105-1 3NW8107-1 10 12 16 20 0.6 0.6 1 1 3NW8110-1 3NW8112-1 3NW8117-1 3NW8120-1 25 32 40 50 1.3 1.9 2 3.7 3NW8208-1 3NW8203-1 3NW8206-1 3NW8205-1 22 x 58 8 10 12 16 500 690 No info. No info. No info. 0.9 3NW8207-1 3NW8210-1 3NW8212-1 3NW8217-1 20 25 32 40 1.1 1.4 2 2.5 3NW8220-1 3NW8222-1 3NW8224-1 3NW8230-1 50 63 80 100 2.6 4.1 4.9 5.6 500 Siemens * 10/2015 31 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Fuse holders in size 10 x 38 mm and Class CC Overview Benefits A key feature of our three-pole fuse holders is their ultra compact design. With a width of only 45 mm, they are ideal for use with fused motor starter combinations. Because the contactor and the fuse holder have the same 45 mm width, they are easy to mount on top of one another. The strong current-limiting fuses ensure a type 2 protection level (coordination according to IEC 60947-4, no damage protection) for the contactor. The UL version has an SCCR value of 200 kA. The accessories are generally UL-certified. * Compact design, especially for motor starter combinations * For IEC fuses of size 10 x 38 mm up to 32 A and Class CC UL fuses up to 30 A * Meets the requirements of UL 508 with regard to clearances * UL-approved microswitches, busbars and adapters for 60 mm busbar systems * Optical signal detector for fast fault locating Customers can mount an auxiliary switch which signals the switching state or prevents the fuse holder from switching off under load by interrupting the contactor control, thus increasing safety for the operator and process. Busbars and a matching three-phase feeder terminal complete the product range. Compact cylindrical fuse holder Class CC with signal detector and mounted auxiliary switch 32 Siemens * 10/2015 Installation configuration of a cylindrical fuse holder and a SIRIUS contactor on busbar device adapter for the 60 mm busbar system (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Fuse holders in size 10 x 38 mm and Class CC Technical specifications Cylindrical fuse holders Fuse holders 3NW70..-1 3NW75..-1HG mm x mm 10 x 38 Size Class CC Standards IEC 60269; UL4248-1; CSA UL4248-1; CSA Approvals * Acc. to UL * Acc. to CSA U, UL File Number E171267 s u, UL File Number E171267 s Rated voltage Un V AC 690 600 Rated current In A AC 32 30 Rated short-circuit strength kA 120 (at 500 V) 80 (at 690 V) 200 AC-20B (switching without load) -- Breaking capacity * Utilization category kV Rated impulse withstand voltage 6 III Overvoltage category 2 Pollution degree Max. power dissipation of the fuse link W 3 No-voltage changing of fuse links C -5 to +40, humidity 90 % at +20 Sealable when installed Yes Lockable with padlock Yes Mounting position Any, preferably vertical Any Current direction Degree of protection IP20, with connected conductors1) Acc. to IEC 60529 Yes Terminals with touch protection acc. to BGV A3 at incoming and outgoing feeder Ambient temperature C -5 to +40, humidity 90 % at +20 Conductor cross-sections * Finely stranded, with end sleeve * AWG cables (American Wire Gauge) mm2 AWG 1 ... 4 18 ... 10 Nm lb.in 1.5 13 PZ2 Tightening torque * Terminal screws 1) Degree of protection IP20 is tested according to regulations using a straight test finger (from the front), with the device mounted and equipped with a cover, housing or some other enclosure. Auxiliary switches 3NW7903-1 Standards IEC 60947 Approvals U, s, UL 508, UL File Number E334003 AC-12 DC-13 Rated voltage Un V AC V DC 250 -- -24 -120 -240 24 -- 120 -- 240 -- 240 -- Rated current In A 5 2 0.5 0.25 4 3 1.5 5 Utilization category AC-15 Acc. to UL Busbars 5ST260. 3NW70. .-1 For cylindrical fuse holders Pin spacing mm 3NW75. .-1HG 15 Standards EN 609741 (VDE 0660-100), IEC 60947-1:2004, UL 508, CSA 22.2 Approvals u, UL 4248-1, UL File Number E337131 Busbar material E-Cu 58 F25 PA66-V0 Partition material Lamp wire resistance/1.5 mm2 C 960 Overvoltage category III, degree of pollution 2 Insulation coordination Rated operating voltage Un * Acc. to UL * Acc. to IEC V AC V AC -690 600 -- Maximum busbar current In * Acc. to UL * Acc. to IEC A A -80 65 -- Siemens * 10/2015 33 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Fuse holders in size 10 x 38 mm and Class CC Terminals 5ST2600 3NW70. .-1 For cylindrical fuse holders mm Pin spacing 3NW75. .-1HG 15 Standards IEC 60999:2000, UL 508 Approvals u, UL 4248-1, UL File Number E337131 PA66-V0 Enclosure/cover material Lamp wire resistance/1 mm2 C 960 Temperature resistance PA66-V0, HDT B ISO 179, UL 94-V0/1.5 C 200 Overvoltage category III, degree of pollution 2 Insulation coordination Maximum operating voltage Umax * Acc. to UL * Acc. to IEC V AC V AC -690 600 -- Maximum electrical load Imax * Acc. to UL * Acc. to IEC A A -80 65 -- Rated current In A 63 Conductor cross-sections * Solid/stranded * Finely stranded, with end sleeve mm2 mm2 2.5 ... 35 2.5 ... 25 Tightening torque of clamping screw Nm 2.5 ... 3.5 34 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Cylindrical Fuse Systems Fuse holders in size 10 x 38 mm and Class CC Dimensional drawings I202_01414 3NW703.-1 3NW753.-1HG I202_01413 I202_01412 5ST260. 5ST2600 Circuit diagrams Circuit diagrams I202_01447 1 3 5 2 4 6 3NW703.-1 3NW753.-1HG 13 21 22 14 3NW7903-1 Siemens * 10/2015 35 (c) Siemens AG 2016 Fuse Systems Class CC fuse systems Overview * Characteristic: quick 3NW2...-0HG For a wide range of applications, for the protection of lighting installations, heating, control systems. * Characteristic: slow, current-limiting 3NW3...-0HG Slow for overloads and quick for short circuits. High current limitation for the protection of motor circuits. Class CC fuses are used for "branch circuit protection". The enclosed fuse holders are designed and tested to comply with the US National Electrical Code NEC 210.20(A). This means that when subject to continuous operation, only 80 % of the rated current is permissible as operational current. Note: An operational current of 100 % of the rated current (30 A) is only permissible short-time. The devices are prepared for the inscription labels of the ALPHA FIX terminal blocks 8WH8120-7AA15 and 8WH8120-7XA05. For class CC compact fuse holders for motor starter combinations, see page 32. Benefits * For switchgear assemblies and machine manufacturers who export their systems to the USA or Canada * Easier export due to UL and CSA approvals for typical applications * Modern design with touch protection to BGV A3 ensures safe installation. There are three different series: * Characteristic: slow 3NW1...-0HG For the protection of control transformers, reactors, inductances. Significantly slower than the minimum requirements specified by UL for Class CC Fuses of 12 s at 2 x In. Technical specifications Class CC fuse holders 3NW75.3-0HG UL 4248-1; CSA C22.2 UL 4248-1; UL File Number E171267; CSA C22.2 Standards Approvals Rated voltage Un Rated current In Rated conditional short-circuit current Breaking capacity * Utilization category Max. power dissipation of the fuse link * With cable, 6 mm2 * With cable, 10 mm2 Rated impulse withstand voltage Overvoltage category V AC A kA 600 30 200 AC-20B (switching without load) W W 3 4.3 kV 6 II Pollution degree No-voltage changing of fuse links Sealable when installed Mounting position Current direction 2 Yes Yes Any Any Degree of protection acc. to IEC 60529 Terminals with touch protection acc. to BGV A3 at incoming and outgoing feeder IP20 Yes 45 Ambient temperature Conductor cross-sections * Solid and stranded * AWG conductor cross-section, solid and stranded C mm AWG 1.5 ... 16 15 ... 5 Tightening torque Nm 2.5 (22 lb.in) 2 Class CC fuse links 3NW1...-0HG 3NW3...-0HG Slow Quick Slow, current limiting V AC 600 600 600 V DC -- -- 150 (3 .... 15 A) 300 (< 3 A, > 15 A) kA AC 200 Characteristic Rated voltage Rated breaking capacity 36 3NW2...-0HG UL 248-4; CSA C22.2 UL 248-4; UL File Number E258218; CSA C22.2 Standards Approvals Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Class CC fuse systems 45 81 O10,3 I201_13727 Dimensional drawings 38,1 18 3NW1. . .-0HG 3NW2. . .-0HG 3NW3. . .-0HG 36 54 7 37 49 58 3NW75.3-0HG Siemens * 10/2015 37 (c) Siemens AG 2016 Fuse Systems Class CC fuse systems 2 10 8 6 4 2 1 10 8 6 4 15 A 20 A 30 A 8A 10 A 5A 3A 2A 10 3 8 6 4 1A I202_02185 Virtual melting time t vs [s] 2 Virtual melting time t vmt [s] 7,5 A 2A 2,5 A 3A 4A 5A 6A Time/current characteristics diagram 1,5 A 3NW2...-0HG series Time/current characteristics diagram 0,6 A 0,8 A 1A 3NW1...-0HG series I201_12162a Characteristic curves 2 10 2 8 6 4 2 10 1 8 6 4 2 2 0 10 8 6 10 0 8 6 4 4 2 2 -1 10 -1 8 6 4 10 8 6 4 2 2 10 -2 10 0 10 2 4 6 8 10 1 2 4 6 8 10 2 Prospective short-circuit current 2 4 2 6 8 10 1 4 2 2 10 8 6 4 2 1 10 8 6 4 2 [A] 6A 8A 10 A 12 A 15 A 20 A 25 A 30 A 3A 4A 6 8 10 3 4 p 2 10 2 8 6 4 2 10 1 8 6 4 2 2 10 0 8 6 4 0 10 8 6 4 2 2 -1 10 -1 8 6 4 10 8 6 4 2 2 -2 10 100 2 4 6 8 101 2 4 6 8 102 2 Prospective short-circuit current 38 10 3 8 6 4 1A 15 A 20 A 30 A 8A 10 A 2 Virtual melting time t vmt [s] Time/current characteristics diagram I202_02186 3NW3...-0HG series Time/current characteristics diagram Virtual melting time t vs [s] 3NW1...-0HG series 103 8 6 4 6 8 10 2 4 Prospective short-circuit current p [A] I201_12163a 6 8 10 0 Siemens * 10/2015 4 6 8 103 p[A] 10 -2 10 0 2 4 6 8 10 1 2 4 6 8 10 2 2 Prospective short-circuit current 4 p [A] 6 8 10 3 (c) Siemens AG 2016 Fuse Systems Class CC fuse systems 3NW3...-0HG series Current limiting diagram I201_12164 c [A] 4 2 30 A 25 A 20 A 15 A 3 10 8 6 2,8 A 4 1,25 A 2 2 10 8 6 4 2 1 10 10 1 2 4 6 8 10 2 2 4 6 8 10 3 2 4 p [A] Siemens * 10/2015 39 (c) Siemens AG 2016 Fuse Systems Busbar systems Overview Busbars with pin-type connections can be used for NEOZED safety switching devices and fuse bases. Busbars in 10 mm2 and 16 mm2 versions are available. Busbars with fork plugs are used for the most frequently used NEOZED fuse bases made of ceramic. Benefits * Clear and visible conductor connection that can be easily checked when using the NEOZED D02 comfort base and which facilitates cable entry * Bus-mounting of NEOZED fuse bases made of molded plastic on 3-phase busbar with fork plug, which can be cut to length * Bus-mounting of NEOZED fuse bases made of ceramic on 3-phase busbar with fork plug, which can be cut to length * Bus-mounting of MINIZED D01 fuse switch disconnectors on 3-phase busbar with fork plug, can be cut to length * Clear and visible conductor connection that can be easily checked when using MINIZED D02 switch disconnectors. This facilitates cable entry and saves time * Bus-mounting of cylindrical fuse holders 8 x 32 mm and 10 x 38 mm with three-phase pin busbar that can be cut to length 40 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Busbar systems * Bus mounting with infeed through a connection terminal directly on the fuse holder up to a conductor cross-section of 25 mm * Bus-mounting of SITOR cylindrical fuse holders 10 mm x 38 mm with the same terminal connection as Class CC fuse holders with 3-phase pin busbar that can be cut to length Technical specifications 5ST, 5SH Standards EN 60439-1 (VDE 0660-500): 2005-01 Busbar material SF-Cu F 24 Partition material Plastic Cycoloy 3600, heat-resistant above 90 C, flame-retardant, self-extinguishing, free of dioxins and halogens V AC 400 A A 63 80 Rated impulse withstand voltage Uimp kV 4 Test pulse voltage (1.2/50) kV 6.2 Rated conditional short-circuit current Icc kA 25 Rated operational voltage Uc Rated current In * Cross-section 10 mm2 * Cross-section 16 mm2 Resistance to climate * Constant atmosphere * Humid heat Acc. to DIN 50015 Acc. to IEC 60068-2-30 23/83; 40/92; 55/20 28 cycles Insulation coordination * Overvoltage category * Pollution degree III 2 Maximum busbar current IS per phase * Infeed at the start of the busbar - Cross-section 10 mm2 - Cross-section 16 mm2 A A 63 80 * Infeed at the center of the busbar - Cross-section 10 mm2 - Cross-section 16 mm2 A A 100 130 Siemens * 10/2015 41 (c) Siemens AG 2016 Fuse Systems Busbar systems 5ST37. . - .HG busbars acc. to UL 508 5ST37. .-0HG 5ST37. .-2HG Standards UL 508, CSA C22.2 No. 14-M 95 Approvals UL 508 File No. E328403 CSA 5ST3770-0HG 5ST3770-1HG Operational voltage * Acc. to IEC * Acc. to UL 489 V AC V AC 690 600 Rated conditional short-circuit current kA 10 (RMS symmetrical 600 V for three cycles) * Dielectric strength * Surge strength kV/mm kV 25 > 9.5 Rated current A -- -- 115 A A 80 160 100 200 --- --- 25 -- -- Maximum busbar current IS per phase * Infeed at the start of the busbar * Infeed at the center of the busbar Insulation coordination * Overvoltage category * Pollution degree III 2 Busbar cross-section mm2 Cu 18 Any Infeed Conductor cross-sections AWG mm2 --- --- 10 ... 1/0 6 ... 35 14 ... 1 1.5 ... 50 Nm lbs/in --- --- 5 50 3.5 35 Terminals * Terminal tightening torque Infeed at the start of the busbar Infeed along the busbar or midpoint infeed 3 2 1 1 2 I201_13754a I201_13755 S 3 S1 S2 S The sum of the output current per branch must not be greater than the busbar current IS1,2/phase. 42 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Busbar systems Dimensional drawings 5ST37 Pin spacing in MW (modular width; 1 MW = 18 mm) Dimensions of side views in mm (approx.) 1 L2 15 L1 13 I201_13748 3,5 I201_13674 1,5 1 18 5ST3700 5ST3701 Single-phase Single-phase 1,5 1 L2 L3 L1 1,5 L2 L3 15 L1 5ST3704 5ST3705 Two-phase I201_13749 1 5ST3703 18 5ST3708 5ST3710 Three-phase 5ST3714 Three-phase 5ST2 I201_13750 3,5 Fork spacing in MW (modular width; 1 MW = 18 mm) Dimensions of side views in mm (approx.) 13 15,1 5ST2186 5ST2190 Single-phase 5ST2187 5ST2191 Two-phase 5ST2188 5ST2192 Three-phase Busbars for DIAZED EZR fuse bases 872 6 6 I201_13427a 6 I201_13426a 6 1030 13 52 6 97 970 2 5SH3500 13 960 3 5SH3501 5SH5 Fork spacing in MW (modular width; 1 MW = 18 mm), dimensions of side views in mm (approx.) 1,5 5 12 1,5 17 I201_13827 I201_13825 15 I201_13826 5SH5517 5SH5320 2 12 1,5 3 15 5SH5321 5SH5322 Siemens * 10/2015 43 (c) Siemens AG 2016 Fuse Systems Busbar systems 5ST37 . . - . HG busbars acc. to UL 508 5ST37 Pin spacing in MW (modular width; 1 MW = 18 mm) Dimensions of side views in mm (approx.) 1,5 1 2 I202_02123 L1 23 1,5 5 1 L2 15 21 L2 L3 L1 L2 L3 2,5 I202_02104 1,5 1,5 1,5 23 L1 1,5 1 I202_02122 1 5ST3705-0HG 5 5ST3701-0HG 5ST3703-0HG 15 21 1,5 2 L1 23 L2 1,5 I202_02105 L1 5ST3701-2HG 1,5 L2 L3 2 23 5ST3714-0HG I202_02106 5ST3710-0HG 21 21 5ST3705-2HG 5ST3710-2HG I202_02108 24 14 I202_02107 1 5 22 9,5 5ST3748-0HG 16 9,5 5ST3750-0HG I202_02111 30 I202_02110 18,5 60 28,5 3 40 5ST3770-0HG 5ST3770-1HG 8 5ST36 touch protection covers Pin spacing in MW (modular width; 1 MW = 18 mm) Dimensions of side views in mm (approx.) 5 85,2 R 0, 3,8 5,7 24 14 23,8 71,2 I202_02109 17,8 5ST3655-0HG 44 Siemens * 10/2015 18 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links Overview LV HRC fuse links are available in the following operational classes: * gG for cable and line protection * aM for short-circuit protection of switching devices in motor circuits * gR or aR for protection of power semiconductors * gS: The new gS operational class combines cable and line protection with semiconductor protection LV HRC fuse systems (NH type) are used for installation systems in non-residential, commercial and industrial buildings as well as in switchgear assemblies of power utilities. They therefore protect essential building parts and systems. LV HRC fuse systems (NH type) are fuse systems designed for operation by experts. There are no constructional requirements for non-interchangeability of rated current and touch protection. The components and auxiliary equipment are designed in such a way as to ensure the safe replacement of LV HRC fuse systems or isolation of systems. LV HRC fuse links of size 000 can also be used in LV HRC fuse bases, LV HRC fuse switch disconnectors, LV HRC fuse strips as well as LV HRC in-line fuse switch disconnectors of size 00. LV HRC fuse links are available in the sizes 000, 00, 0, 1, 2, 3, 4 and 4a. The fuse links 300 A, 355 A and 425 A comply with the standard but do not have the VDE mark. LV HRC components: 5 4 3 2 6 7 8 1 9 1 LV HRC fuse base from the SR60 busbar system 2 LV HRC fuse base for busbar mounting 3 LV HRC fuse base, 3-pole 4 LV HRC fuse base, 1-pole 5 LV HRC contact covers 6 LV HRC fuse link 7 LV HRC signal detector 8 LV HRC partition 9 LV HRC protective cover LV HRC fuse bases with swivel mechanisms, 10 - for screw fixing on mounting plate 11 - for screw fixing on busbar system 14 10 11 12 12 - for claw fixing on busbar 13 13 LV HRC protective cover for LV HRC fuse bases with 15 16 17 18 19 I201_13743a swivel mechanism 14 LV HRC swivel mechanism 15 LV HRC fuse base cover 16 LV HRC isolating blade with insulated grip lugs 17 LV HRC isolating blade with non-insulated grip lugs 18 LV HRC fuse puller with sleeve 19 LV HRC fuse puller Siemens * 10/2015 45 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links Technical specifications LV HRC fuse links Operational class Operational class gG aM 3NA6...-4 3NA6...-4KK 3NA383.-8 3NA6... 3NA6...-7 3NA7... 3NA7...-7 3NA3... 3NA3...-7 3NA6...-6 3NA7...-6 3NA3...-6 3ND1 3ND2 IEC 60269-1, -2; EN 60269-1; DIN VDE 0636 DIN VDE 0636-2; CSA 22.2 No.106, File Number 016325_0_00 (CSA approval of fuses 500 V for 600 V) Standards Approvals Rated voltage Un * Sizes 000 and 00 V AC V DC 400 -- 500 250 500 250 6901) 250 6901) 250 500 -- * Sizes 1 and 2 V AC V DC 400 -- 500 440 500 440 6901) 440 6901) 440 690 -- * Size 3 V AC V DC --- --- 500 440 --- 6901) 440 690 -- * Sizes 4 and 4a (IEC design) V AC V DC --- --- 500 440 --- --- --- Rated current In A 10 ... 400 2 ... 400 2 ... 1250 2 ... 315 2 ... 500 6 ... 630 Rated breaking capacity kA AC 120 kA DC -- Resistance to climate 1) 25 Non-corroding, silver-plated Contact pins C -20 ... +50 at 95% relative humidity Manufacturer's confirmation for 690 V +10 % rated voltage available on request. 46 Siemens * 10/2015 -- (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links Characteristic curves 3NA30 series 0 gG 500 V AC/440 V DC 6 ... 160 A Melting I2t values diagram I2_06088a 16 A 20 A 25 A 32 A 35 A 40 A 50 A 63 A 80 A 100 A 125 A 160 A 10 A 6 4 6A vs[s] 10 4 2 6 4 2 10 3 10 7 I2_06081b Time/current characteristics diagram 2 s [A s] Size: Operational class: Rated voltage: Rated current: 10 0s 2 10 -1s 10 6 6 4 6 4 2 2 10 2 10 5 6 4 6 4 2 2 10 1 10 4 6 4 6 4 10 -2s 10 -3s 10 - 4s 160 A 125 A 100 A 80 A 63 A 50 A 40 A 35 A 32 A 2 2 10 0 10 3 25 A 6 4 6 4 20 A 2 2 10 -1 10 2 10A 6 4 6 4 6A 2 2 10 -2 10 1 10 1 6 4 2 Type 2 4 6 8 10 2 2 6 8 10 3 4 2 4 6 8 10 4 ef [A] 2 1 160 A 125 A 100 A 2 10 4 80 A 63 A 50 A 40 A 35 A 32 A 25 A 20 A 6 4 2 16 A 10 3 10 A I2_06062a Current limiting diagram c [A] 2 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 ef [A] 10 -3 10 1 6A 6 4 2 10 2 16 A 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 4 In Pv A W K I2ts 1 ms A2s 4 ms A2s 3NA3001 3NA3003 3NA3005 6 10 16 1.5 1 1.9 6 9 11 46 120 370 50 130 420 3NA3007 3NA3010 3NA3012 20 25 32 2.3 2.7 3 13 15 13 670 1200 2200 750 1380 2400 3NA3014 3NA3017 3NA3020 35 40 50 3 3.4 4.5 17 17 24 3000 4000 6000 3300 4500 6800 3NA3022 3NA3024 3NA3030 63 80 100 5.8 7 8.2 27 34 37 7700 12000 24000 9800 16000 30600 3NA3032 3NA3036 125 160 10.2 13.5 38 44 36000 58000 50000 85000 Type I2ta 230 V AC A2s 400 V AC A2s 500 V AC A2s 3NA3001 3NA3003 3NA3005 80 180 580 110 265 750 150 370 1000 3NA3007 3NA3010 3NA3012 1000 1800 3400 1370 2340 4550 1900 3300 6400 3NA3014 3NA3017 3NA3020 4900 6100 9100 6750 8700 11600 9300 12100 16000 3NA3022 3NA3024 3NA3030 14200 23100 40800 19000 30700 56200 26500 43000 80000 3NA3032 3NA3036 70000 120000 91300 158000 130000 223000 Siemens * 10/2015 47 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA31, 3NA61, 3NA71 series 1 gG 500 V AC/440 V DC 16 ... 250 A Melting I2t values diagram I2_06063c 6 4 16 A 20 A 25 A 35 A 40 A 50 A 63 A 80 A 100 A 125 A 160 A 200 A 224 A 250 A vs[s] 10 4 2 2 10 6 6 4 6 4 2 2 10 2 10 5 6 4 6 4 2 2 10 1 10 4 6 4 6 4 2 2 10 0 10 3 6 4 6 4 2 2 10 -1 10 2 6 4 6 4 2 2 10 1 10 1 10 -2 6 4 2 250 A 224 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 40 A 35 A 10 0s 25 A 20 A 10 -1s 16 A 10 -2s 10 -3s 10 -4s 2 4 6 8 10 2 2 Type 10 -3 10 1 2 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 ef [A] Current limiting diagram 1 I2_06053b 4 c [A] 6 4 2 10 3 10 7 I2_06082b Time/current characteristics diagram 2 s [A s] Size: Operational class: Rated voltage: Rated current: 250 A 224 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 40 A 35 A 25 A 20 A 16 A 2 2 104 6 4 2 4 6 8 10 3 2 4 6 8 10 4 2 In Pv A W K 4 6 8 10 5 ef [A] I2ts 1 ms 4 ms A2s A2s 3NA3105, 3NA6105, 3NA7105 3NA3107, 3NA6107, 3NA7107 3NA3110, 3NA6110, 3NA7110 16 20 25 2.1 2.4 2.8 8 10 11 370 670 1200 420 750 1380 3NA3114, 3NA6114, 3NA7114 3NA3117, 3NA6117, 3NA7117 3NA3120, 3NA6120, 3NA7120 35 40 50 3.2 3.6 4.6 16 16 20 3000 4000 6000 3300 4500 6800 3NA3122, 3NA6122, 3NA7122 3NA3124, 3NA6124, 3NA7124 3NA3130, 3NA6130, 3NA7130 63 80 100 6 7.5 8.9 21 29 30 7700 12000 24000 9800 16000 30600 3NA3132, 3NA6132, 3NA7132 3NA3136, 3NA6136, 3NA7136 3NA3140, 3NA6140, 3NA7140 125 160 200 10.7 13.9 15 31 34 36 36000 50000 58000 85000 115000 135000 3NA3142, 3NA6142, 3NA7142 3NA3144, 3NA6144, 3NA7144 224 250 16.1 17.3 37 39 145000 170000 205000 230000 Type I2ta 230 V AC 400 V AC 500 V AC A2s A2s A2s 103 3NA3105, 3NA6105, 3NA7105 3NA3107, 3NA6107, 3NA7107 3NA3110, 3NA6110, 3NA7110 580 1000 1800 750 1370 2340 1000 1900 3300 6 3NA3114, 3NA6114, 3NA7114 3NA3117, 3NA6117, 3NA7117 3NA3120, 3NA6120, 3NA7120 4900 6100 9100 6750 8700 11600 9300 12100 16000 3NA3122, 3NA6122, 3NA7122 3NA3124, 3NA6124, 3NA7124 3NA3130, 3NA6130, 3NA7130 14200 23100 40800 19000 30700 56200 26500 43000 80000 3NA3132, 3NA6132, 3NA7132 3NA3136, 3NA6136, 3NA7136 3NA3140, 3NA6140, 3NA7140 70000 120000 218000 91300 158000 285000 130000 223000 400000 3NA3142, 3NA6142, 3NA7142 3NA3144, 3NA6144, 3NA7144 299000 420000 392000 551000 550000 780000 4 102 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 48 Siemens * 10/2015 4 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA31..-6, 3NA61..-6, 3NA71..-6 series 1 gG 690 V AC1)/440 V DC 50 ... 200 A Melting I2ts values diagram I201_06044b 2 10 3 250 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 6 4 2 102 6 4 108 6 4 2 vs[s] 10 4 6 4 I201_06043c Time/current characteristics diagram s [A2s] Size: Operational class: Rated voltage: Rated current: 2 10 0s 107 6 4 10 -1s 10 -2s 10 -3s 2 10 - 4s 10 6 6 4 2 2 250 A 200 A 10 5 6 4 101 6 4 160 A 125 A 100 A 80 A 2 2 104 6 4 100 6 4 63 A 50 A 2 2 10 3 6 4 10-1 6 4 2 2 102 102 10 -2 2 4 6 8103 2 4 6 8 104 2 4 6 8 105 2 6 4 2 Type 10 -3 10 1 2 4 6 8 10 2 2 6 8 10 3 4 2 Current limiting diagram I201_06042b c [A] 6 4 2 1 250 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 2 104 6 4 4 6 8 103 2 4 6 8 104 2 4 6 8 105 Pv A W K 2 I2ts 1 ms 4 ms A2s A2s 3NA3120-6, 3NA6120-6, 3NA7120-6 3NA3122-6, 3NA6122-6, 3NA7122-6 3NA3124-6, 3NA6124-6, 3NA7124-6 50 63 80 6.7 21 7.6 22 6.7 22 440 7600 13500 7400 10100 17000 3NA3130-6, 3NA6130-6, 3NA7130-6 3NA3132-6, 3NA6132-6, 3NA7132-6 3NA3136-6, 3NA6136-6, 3NA7136-6 100 125 160 8.7 28 10.5 29 13.8 33 21200 36000 58000 30500 50000 85000 3NA3140-6, 3NA6140-6, 3NA7140-6 200 16.6 35 Type I2ta 132000 144000 230 V AC 400 V AC 690 V AC A2s A2s A2s 3NA3120-6, 3NA6120-6, 3NA7120-6 3NA3122-6, 3NA6122-6, 3NA7122-6 3NA3124-6, 3NA6124-6, 3NA7124-6 9100 13600 24300 11200 17000 32000 1900 24000 55000 3NA3130-6, 3NA6130-6, 3NA7130-6 3NA3132-6, 3NA6132-6, 3NA7132-6 3NA3136-6, 3NA6136-6, 3NA7136-6 42400 69500 120000 52000 82200 155000 75000 130000 223000 3NA3140-6, 3NA6140-6, 3NA7140-6 211000 240000 360000 1) 2 2 In 6 8 10 4 4 rms [A] 103 102 4 6 8 106 rms [A] Manufacturer's confirmation for 690 V +10 % rated voltage available on request. 4 rms [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 49 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA32, 3NA62, 3NA72 series 2 gG 500 V AC/440 V DC 35 ... 400 A Melting I2t values diagram 6 4 2 10 3 10 9 2 6 4 2 2 10 2 10 7 6 4 6 4 2 2 10 1 10 6 6 4 6 4 2 2 10 0 10 5 6 4 6 4 2 2 10 -1 6 4 10 4 1 6 4 2 2 10 3 10 2 6 4 10 0s 10 8 6 4 10 -2 I2_06079b 2 50 A 63 A 80 A 100 A 125 A 160 A 200 A 224 A 250 A 300/315 A 355 A 400 A 6 4 35 A vs[s] 10 4 I2_06085a Time/current characteristics diagram 2 s [A s] Size: Operational class: Rated voltage: Rated current: 10 -1s 10 -2s 10 -3s 10 -4s 400 A 355 A 300/315 A 250 A 224 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 35 A 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 4 6 8 10 6 ef [A] 2 10 -3 4 Type 6 8 10 2 2 6 8 10 3 4 2 6 8 10 4 4 2 ef [A] c [A] 1 4 2 400 A 355 A 300/315 A 250 A 224 A 200 A 160 A 125 A 100 A 2 10 4 I2_06060a Current limiting diagram 6 80 A 63 A 35 A 4 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 50 Pv A W K I2ts 1 ms 4 ms A2s A2s 3NA3214, 3NA6214, 3NA7214 3NA3220, 3NA6220, 3NA7220 3NA3222, 3NA6222, 3NA7222 35 50 63 3.2 4.7 5.9 12 16 16 3000 6000 7700 3300 6800 9800 3NA3224, 3NA6224, 3NA7224 3NA3230, 3NA6230, 3NA7230 3NA3232, 3NA6232, 3NA7232 80 100 125 6.8 7.4 9.8 21 22 27 12000 24000 36000 16000 30600 50000 3NA3236, 3NA6236, 3NA7236 3NA3240, 3NA6240, 3NA7240 3NA3242, 3NA6242, 3NA7242 160 200 224 12.6 14.9 15.4 34 33 31 58000 85000 115000 135000 145000 170000 3NA3244, 3NA6244, 3NA7244 3NA3250, 3NA6250 3NA3252, 3NA6252, 3NA7252 250 300 315 17.9 19.4 21.4 38 34 35 205000 230000 361000 433000 361000 433000 3NA3254, 3NA6254 3NA3260, 3NA6260, 3NA7260 355 400 26.0 27.5 49 52 441000 538000 529000 676000 Type I2ta 50 A 6 10 3 10 2 In 4 Siemens * 10/2015 4 230 V AC 400 V AC 500 V AC A2s A2s A2s 3NA3214, 3NA6214, 3NA7214 3NA3220, 3NA6220, 3NA7220 3NA3222, 3NA6222, 3NA7222 4900 9100 14200 6750 11600 19000 9300 16000 26500 3NA3224, 3NA6224, 3NA7224 3NA3230, 3NA6230, 3NA7230 3NA3232, 3NA6232, 3NA7232 23100 40800 70000 30700 56200 91300 43000 80000 130000 3NA3236, 3NA6236, 3NA7236 3NA3240, 3NA6240, 3NA7240 3NA3242, 3NA6242, 3NA7242 120000 218000 299000 158000 285000 392000 223000 400000 550000 3NA3244, 3NA6244, 3NA7244 3NA3250, 3NA6250 3NA3252, 3NA6252, 3NA7252 420000 670000 670000 551000 901000 901000 780000 1275000 1275000 3NA3254, 3NA6254 3NA3260, 3NA6260, 3NA7260 800000 1155000 1060000 1515000 1500000 2150000 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA32..-6, 3NA62..-6, 3NA72..-6 series 2 gG 690 V AC1)/440 V DC 80 ... 315 A Melting I2t values diagram 10 4 vs[s] 6 4 2 6 4 2 10 3 10 9 2 10 2 6 4 2 10 8 10 0s 6 4 300/315 A 250 A 224 A 200 A 160 A 125 A 100 A 80 A 6 4 I2_07541a I2_07539a Time/current characteristics diagram 2 s [A s] Size: Operational class: Rated voltage: Rated current: 10 -1s 2 10 -2s 10 7 10 -3s 6 4 2 2 10 1 10 6 6 4 6 4 2 2 10 0 10 5 6 4 6 4 2 2 10 -1 10 4 6 4 6 4 10 - 4s 300/315 A 250 A 240 A 200 A 160 A 125 A 100 A 80 A 2 2 10 3 10 2 10 -2 6 4 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 2 Type 10 -3 10 2 2 6 8 10 3 4 2 6 8 10 4 4 4 6 8 10 5 ef [A] 2 Current limiting diagram 2 1 [A ] 6 I2 _ 0 7 5 4 0 a 5 1 0 3 1 5 2 5 0 2 2 4 2 0 0 1 6 0 1 2 5 1 0 0 8 0 A c 4 2 4 1 0 A A A A A A 4 2 3 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 4 6 8 1 0 e ff 5 [A ] 2 4 In Pv A W K 6.6 22 8.5 26 9.8 29 I2ts 1 ms 4 ms A2s A2s 3NA3224-6, 3NA6224-6, 3NA7224-6 3NA3230-6, 3NA6230-6, 3NA7230-6 3NA3232-6, 3NA6232-6, 3NA7232-6 80 100 125 3NA3236-6, 3NA6236-6, 3NA7236-6 3NA3240-6, 3NA6240-6, 3NA7240-6 3NA3242-6, 3NA6242-6, 3NA7242-6 160 13.3 31 200 16.1 33 224 19.9 38 58000 85000 132000 144000 125000 162000 3NA3244-6, 3NA6244-6, 3NA7244-6 3NA3250-6, 3NA6250-6, 3NA7250-6 3NA3252-6, 3NA6252-6, 3NA7252-6 250 23 44 300 25.6 38 315 28.2 42 180000 215000 300000 380000 300000 380000 Type I2ta A 6 1 0 4 6 8 10 6 ef [A] 13500 21200 36000 17000 30500 50000 230 V AC 400 V AC 690 V AC A2s A2s A2s 3NA3224-6, 3NA6224-6, 3NA7224-6 3NA3230-6, 3NA6230-6, 3NA7230-6 3NA3232-6, 3NA6232-6, 3NA7232-6 24300 42400 69500 32000 52000 82200 55000 75000 130000 3NA3236-6, 3NA6236-6, 3NA7236-6 3NA3240-6, 3NA6240-6, 3NA7240-6 3NA3242-6, 3NA6242-6, 3NA7242-6 120000 211000 300000 155000 240000 300000 223000 360000 450000 3NA3244-6, 3NA6244-6, 3NA7244-6 3NA3250-6, 3NA6250-6, 3NA7250-6 3NA3252-6, 3NA6252-6, 3NA7252-6 453000 480000 480000 350000 625000 625000 525000 940000 940000 1) Manufacturer's confirmation for 690 V +10 % rated voltage available on request. $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 51 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA33 series Size: Operational class: Rated voltage: Rated current: 3 gG 500 V AC/440 V DC 200 ... 630 A Melting I2t values diagram Time/current characteristics diagram 2 2 103 2 102 6 4 2 10 0s 10 8 10 -1s 10 -2s 6 4 630 A 500 A 425 A 400 A 355 A 300/315 A 250 A 224 A 200 A 6 4 I2_06070b 6 4 2 s [A s] I2_06051a vs[s] 10 9 104 6 4 10 -3s 2 10 -4s 10 7 6 4 2 630 A 10 6 500 A 425 A 400 A 355 A 300/315 A 250 A 224 A 200 A 6 4 2 10 5 6 4 2 10 4 6 4 2 10 3 10 2 1 2 630 A I2_06061a c [A] 10 5 4 6 8 10 3 4 6 8 10 5 2 4 6 8 10 6 ef [A] Pv A W K 3NA3340 3NA3342 3NA3344 200 224 250 14.9 15.4 17.9 32 31 36 115000 145000 205000 135000 170000 230000 3NA3350 3NA3352 3NA3354 300 315 355 19.4 21.4 26.0 19 22 26 361000 361000 441000 433000 433000 538000 3NA3360 3NA3362 3NA3365 400 425 500 27.5 26.5 36.5 28 34 41 529000 650000 785000 676000 970000 1270000 44.0 50 1900000 2700000 6 500 A 425 A 4 400 A 355 A 300/315 A 3NA3372 630 250 A 224 A 200 A Type I2ta 2 4 6 8 10 4 2 2 In Type Current limiting diagram 2 I2ts 1 ms 4 ms A2s A2s 230 V AC 400 V AC 500 V AC A2s A2s A2s 10 4 3NA3340 3NA3342 3NA3344 218000 299000 420000 285000 392000 551000 400000 550000 780000 6 3NA3350 3NA3352 3NA3354 670000 670000 800000 901000 901000 1060000 1275000 1275000 1500000 4 3NA3360 3NA3362 3NA3365 1155000 1515000 1915000 1515000 1856000 2260000 2150000 2270000 2700000 3NA3372 3630000 4340000 5400000 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 52 Siemens * 10/2015 4 6 8 10 6 ef [A] (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA33..-6 series 3 gG 690 V AC1)/440 V DC 250 ... 500 A Melting I2t values diagram 2 103 500 A 425 A 400 A 355 A 315 A 250 A 6 4 2 102 109 6 4 2 108 6 4 10-1s 10-2s 10-3s 10- 4s 107 6 4 2 101 2 106 6 4 6 4 500 A 425 A 400 A 355 A 315 A 250 A 2 2 100 6 4 105 6 4 2 10-1 2 104 6 4 6 4 2 10-2 2 103 102 2 6 4 4 6 8 103 2 4 6 8 104 2 I2_07543a c [A] 1 2 6 500 A 425 A 400 A 355 A 315 A 250 A 4 2 8 10 4 2 4 6 8 10 5 2 ef [A] 4 6 8 105 2 4 6 8 106 ef [A] 1 ms 4 ms A W K A2s A2s 3NA3344-6 3NA3352-6 3NA3354-6 250 315 355 23 28.2 32.5 44 42 40 180000 300000 380000 215000 380000 470000 3NA3360-6 3NA3362-6 3NA3365-6 400 425 500 33.2 35.3 43.5 42 44 52 540000 625000 810000 675000 765000 1000000 Type I2ta I2ts 230 V AC 400 V AC 690 V AC A2s A2s A2s 3NA3344-6 3NA3352-6 3NA3354-6 453000 480000 585000 350000 625000 760000 525000 940000 1150000 3NA3360-6 3NA3362-6 3NA3365-6 847000 925000 1300000 1100000 1200000 1700000 1650000 1800000 2500000 1) 6 4 6 8 104 2 Pv 4 6 8 105 ef[A] 10 5 4 6 8103 2 In Type 2 Current limiting diagram 10 4 4 100s 2 6 4 2 10-3 102 I2_07544a 104 6 4 I2_07542a vs[s] Time/current characteristics diagram 2 s [A2s] Size: Operational class: Rated voltage: Rated current: Manufacturer's confirmation for 690 V +10 % rated voltage available on request. 4 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 53 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA34 series 4 (IEC design) gG 500 V AC/440 V DC 630 ... 1250 A Melting I2t values diagram I2_07549a vs[s] 10 4 6 4 2 2 109 6 4 10 3 1250 A 1000 A 800 A 630 A 6 4 2 1010 6 4 I2_07556b Time/current characteristics diagram 2 s [A2s] Size: Operational class: Rated voltage: Rated current: 100s 10-1s 10-2s 2 10 2 108 6 4 6 4 2 10 1 2 107 6 4 6 4 2 2 10 0 106 6 4 6 4 2 10-3s 10- 4s 1250 A 1000 A 800 A 630 A 2 105 6 4 10 -1 6 4 2 2 104 102 2 10 -2 6 4 4 6 8103 2 4 6 8 104 2 4 6 8 105 2 4 6 8 106 ef [A] 2 10 -3 10 2 Type 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 ef [A] Current limiting diagram I2_07550a c [A] 6 4 1 105 4 2 104 103 2 4 6 8 104 2 4 6 8 105 2 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 54 Siemens * 10/2015 4 6 8 106 ef [A] A W K I2ts 1 ms 4 ms A2s A2s 630 800 47 59 37 43 1900000 3480000 2700000 5620000 3NA3480 3NA3482 1000 1250 74 99 56 65 7920000 11880000 10400000 18200000 Type I2ta 2 6 Pv 3NA3472 3NA3475 2 1250 A 1000 A 800 A 630 A In 230 V AC 400 V AC 500 V AC A2s A2s A2s 3NA3472 3NA3475 3630000 7210000 4340000 8510000 5400000 10400000 3NA3480 3NA3482 13600000 23900000 16200000 29100000 19000000 34800080 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA36 series 4a gG 500 V AC/440 V DC 500 ... 1250 A Melting I2t values diagram 104 6 4 2 s [A s] 6 4 2 2 103 1250 A 1000 A 800 A 630 A 500 A 6 4 2 102 2 10 -1s 10 -2s 2 10 8 6 4 6 4 2 101 2 10 7 6 4 6 4 2 100 2 10 6 6 4 6 4 2 10-1 10 5 6 4 6 4 10 -3s 10 -4s 1250 A 1000 A 800 A 630 A 500 A 2 2 10 4 10 2 6 4 2 10-3 102 10 0s 10 9 6 4 2 10-2 Type 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 ef [A] Current limiting diagram I2_06057a 6 c [A] 1010 I2_06049a vs[s] Time/current characteristics diagram I2_06073b Size: Operational class: Rated voltage: Rated current: 4 1 2 105 6 4 6 8 10 3 4 6 8 10 4 2 2 In Pv A W K 4 6 8 10 5 2 4 6 8 10 6 ef [A] I2ts 1 ms 4 ms A2s A2s 3NA3665 3NA3672 3NA3675 500 630 800 43 47 59 30 37 43 785000 1900000 3480000 1270000 2700000 5620000 3NA3680 3NA3682 1000 1250 74 99 56 65 7920000 11880000 10400000 18200000 Type I2ta 2 1250 A 1000 A 800 A 630 A 500 A 2 230 V AC 400 V AC 500 V AC A2s A2s A2s 3NA3665 3NA3672 3NA3675 1915000 3630000 7210000 2260000 4340000 8510000 2700000 5400000 10400000 3NA3680 3NA3682 13600000 23900000 16200000 29100000 19000000 34800000 4 2 104 103 2 4 6 8 104 2 4 6 8 105 2 4 6 8 106 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 55 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA38, 3NA68, 3NA78 series 000, 00 gG 500 V AC/250 V DC 2 ... 160 A Melting I2t values diagram 10 A 16 A 20 A 25 A 32 A 35 A 40 A 50 A 63 A 80 A 100 A 125 A 160 A 6A 4A 2A 6 4 2 6 4 2 10 3 10 6 6 4 I2_06080b vs[s] 10 4 I2_06197b Time/current characteristics diagram 2 s [A s] Size: Operational class: Rated voltage: Rated current: 2 10 5 6 4 2 2 10 2 10 4 6 4 6 4 160 A 125 A 100 A 2 2 80 A 63 A 50 A 40 A 35 A 32 A 10 1 10 3 25 A 6 4 6 4 20 A 2 2 10 0 10 2 6 4 6 4 2 2 10 -1 10 1 6 4 2 4A 10 - 4s 2A 2 4 6 8 10 2 Table see page 57. 6 8 10 1 2 6 8 10 2 4 2 4 6 8 10 3 2 ef [A] 4 2 2 160 A 125 A 100 A 80 A 63 A 50 A 40 A 35 A 32 A 25 A 20 A 16 A 10 3 10 A 1 2 10 4 6 4 I2_06056a Current limiting diagram c [A] 10 -3s 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 ef [A] 2 6A 6 4A 4 2A 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 56 6A 10 -2s 2 10 0 10 1 6 4 10 2 10 2 10 A 10 -1s 6 4 10 -2 10 -3 4 16 A 10 0s Siemens * 10/2015 4 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA38, 3NA68, 3NA78 series Size: Operational class: Rated voltage: Rated current: 000, 00 gG 500 V AC/250 V DC 2 ... 160 A Type Pv In A W K I2ts I2ta 1 ms 4 ms 230 V AC 400 V AC 500 V AC A2s A2s A2s A2s A2s 3NA3802, 3NA6802, 3NA7802 3NA3804, 3NA6804, 3NA7804 3NA3801, 3NA6801, 3NA7801 2 4 6 1.3 0.9 1.3 8 6 8 2 11 46 2 13 50 4 18 80 6 22 110 9 27 150 3NA3803, 3NA6803, 3NA7803 3NA3805, 3NA6805, 3NA7805 3NA3807, 3NA6807, 3NA7807 10 16 20 1 1.7 2 8 11 15 120 370 670 130 420 750 180 580 1000 265 750 1370 370 1000 1900 3NA3810, 3NA6810, 3NA7810 3NA3812, 3NA6812, 3NA7812 3NA3814, 3NA3814-7, 3NA6814, 3NA7814 25 32 35 2.3 2.6 2.7 17 18 21 1 200 2200 3000 1380 2400 3300 1800 3400 4900 2340 4550 6750 3300 6400 9300 3NA3817, 3NA6817, 3NA7817 3NA3820, 3NA3820-7, 3NA6820, 3NA7820 3NA3822, 3NA3822-7, 3NA6822, 3NA7822 40 50 63 3.1 3.8 4.6 24 25 28 4000 6000 7700 4500 6800 9800 6100 9100 14200 8700 11600 19000 12100 16000 26500 3NA3824, 3NA3824-7, 3NA6824, 3NA6824-7, 3NA7824, 3NA7824-7 3NA3830, 3NA3830-7, 3NA6830, 3NA6830-7, 3NA7830, 3NA7830-7 80 5.8 33 12000 16000 23100 30700 43000 100 6.6 34 24000 30600 40800 56200 80000 125 125 160 160 8.9 7.2 11.3 9 44 30 52 34 36000 46000 58000 89000 50000 45000 85000 84800 70000 97000 120000 137000 91300 117000 158000 166000 130000 134000 223000 -- 3NA3832, 3NA6832, 3NA7832 3NA3832-8 3NA3836, 3NA6836, 3NA7836 3NA3836-8 Siemens * 10/2015 57 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA38..-6, 3NA68..-6, 3NA78..-6 series 000, 00 gG 690 V AC1)/250 V DC 2 ... 100 A Melting I2t values diagram Time/current characteristics diagram 2 10 -3s 10 5 10 -4s 100 A 80 A 10 4 6 4 6 4 2 101 2 63 A 50 A 40 A 35 A 32 A 25 A 10 3 6 4 6 4 20 A 16 A 2 2 100 10 2 6 4 6 4 2 10-1 2 10 A 6A 4A 10 1 6 4 6 4 2A 2 2 10-2 10 0 10 1 6 4 2 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 ef [A] 1) 2 10-3 4 6 8 101 2 6 8 102 4 2 4 6 8 103 2 4 ef [A] Current limiting diagram 1 4 1 0 0 A 8 0 A 6 3 A 5 0 A 4 0 A 3 5 A 3 2 A 2 5 A 2 0 A 1 6 A 2 c 1 0 I2 _ 0 6 0 5 9 a 2 [A ] 10 -2s 2 2 2 102 6 4 2 1 0 A 3 1 0 6 A 6 4 A 4 2 A 2 2 6 10 -1s 6 4 6 4 1 0 10 0s 6 4 2 s [A s] I2_06052a 10 A 16 A 20 A 25 A 32 A 35 A 40 A 50 A 63 A 80 A 100 A 4A 6A 2 103 106 2A vs[s] 104 6 4 I2_06076b Size: Operational class: Rated voltage: Rated current: 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 4 6 8 1 0 e ff $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 58 Siemens * 10/2015 5 [A ] 2 4 Manufacturer's confirmation for 690 V +10 % rated voltage available on request. (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links Type Pv In A W K I2ts I2ta 1 ms 4 ms 230 V AC 400 V AC 690 V AC A2s A2s A2s A2s A2s 3NA3802-6, 3NA6802-6, 3NA7802-6 3NA3804-6, 3NA6804-6, 3NA7804-6 3NA3801-6, 3NA6801-6, 3NA7801-6 2 4 6 1.3 0.9 1.3 8 6 8 2 11 36 2 13 44 4 18 80 6 22 110 9 27 150 3NA3803-6, 3NA6803-6, 3NA7803-6 3NA3805-6, 3NA6805-6, 3NA7805-6 3NA3807-6, 3NA6807-6, 3NA7807-6 10 16 20 1 1.7 2 8 11 15 90 330 570 120 360 690 180 580 1000 265 750 1370 370 1000 1900 3NA3810-6, 3NA6810-6, 3NA7810-6 3NA3812-6, 3NA6812-6, 3NA7812-6 3NA3814-6, 3NA6814-6, 3NA7814-6 25 32 35 2.3 3.1 3.6 17 19 23 1200 1600 2100 1380 2600 3100 1800 3100 4000 2340 4100 5000 3300 5800 7800 3NA3817-6, 3NA6817-6, 3NA7817-6 3NA3817-6KJ, 3NA6817-6KJ, 3NA7817-6KJ 40 3.6 18 3200 4700 6000 8600 12000 40 50 50 3.8 4.9 4.9 18 28 28 3800 4400 5900 4700 7400 7400 6000 9100 9100 8600 11200 11200 15000 19000 19000 63 80 100 5.7 6.7 9.1 33 38 40 7600 13500 21200 10100 17000 30500 13600 24300 42400 17000 32000 52000 24000 55000 75000 3NA3820-6, 3NA6820-6, 3NA7820-6 3NA3820-6KJ, 3NA6820-6KJ, 3NA7820-6KJ 3NA3822-6, 3NA6822-6, 3NA7822-6 3NA3824-6, 3NA6824-6, 3NA7824-6 3NA3830-6, 3NA6830-6, 3NA7830-6 Siemens * 10/2015 59 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA61..-4 series 1 gG 400 V AC 35 ... 250 A I2_11418 35 A 40 A 50 A 63 A 80 A 100 A 125 A 160 A 200 A 224 A 250 A vs[s] 104 6 4 2 103 10-3s 10- 4s 250 A 224 A 200 A 2 105 6 4 2 101 6 4 160 A 125 A 100 A 2 2 100 80 A 63 A 50 A 40 A 35 A 104 6 4 6 4 2 2 10-1 103 6 4 6 4 2 102 102 2 2 10-2 6 4 Type 6 8 102 2 6 8 103 4 2 4 6 8 104 2 [A] 1 I2_11419 105 6 2 4 250 A 224 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 40 A 35 A 2 104 6 4 2 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 2 ef[A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 4 6 8103 2 4 6 8 104 2 4 6 8 105 2 4 6 8 106 ef[A] In Pv A W K 4 Current limiting diagram c [A] 10-2s 106 6 4 6 4 60 10-1s 2 2 102 103 102 100s 2 107 6 4 6 4 2 10-3 4 108 6 4 I2_11420 Melting I2t values diagram Time/current characteristics diagram 2 s [A2s] Size: Operational class: Rated voltage: Rated current: 4 3NA6114-4 3NA6117-4 3NA6120-4 35 40 50 3.2 3.6 4.6 16 16 20 3NA6122-4 3NA6124-4 3NA6130-4 63 80 100 6.0 7.5 8.9 21 29 30 3NA6132-4 3NA6136-4 3NA6140-4 125 160 200 10.7 13.9 15.0 31 34 36 3NA6142-4 3NA6144-4 224 250 16.1 17.3 37 39 Type I2ts I2ta 1 ms 4 ms 230 V AC 400 V AC A2s A2s A2s A2s 3NA6114-4 3NA6117-4 3NA6120-4 3000 4000 6000 3300 4500 6800 4900 6100 9100 6750 8700 11600 3NA6122-4 3NA6124-4 3NA6130-4 7700 12000 24000 9800 16000 30600 14200 23100 40800 19000 30700 56200 3NA6132-4 3NA6136-4 3NA6140-4 36000 58000 115000 50000 85000 135000 70000 120000 218000 91300 158000 285000 3NA6142-4 3NA6144-4 145000 205000 170000 230000 299000 420000 392000 551000 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA62..-4 series 2 gG 400 V AC 50 ... 400 A Melting I2t values diagram Time/current characteristics diagram 4 4 A A A A A A 2 v s 8 1 0 6 4 [A 2 s ] [s ] A 5 0 A 6 3 A 8 0 A 1 0 0 1 2 5 1 6 0 2 0 0 2 2 4 2 5 0 3 1 5 3 5 5 4 0 0 A A 6 I2 _ 1 1 4 2 1 1 0 3 1 0 2 0 s 2 1 0 -1 s 1 0 7 1 0 s 1 0 I2 _ 1 1 4 2 3 Size: Operational class: Rated voltage: Rated current: -2 s 1 0 6 6 4 -3 s 4 2 - 4 1 0 s 2 2 1 0 6 6 1 0 4 0 0 3 5 5 3 1 5 2 5 0 2 2 4 2 0 0 6 4 4 2 2 1 1 0 5 1 0 6 6 4 2 2 0 6 6 4 A A A A 8 0 A 6 3 A 5 0 A 4 1 0 4 2 A 1 6 0 A 1 2 5 A 1 0 0 A 4 1 0 A 2 -1 1 0 3 1 0 6 6 4 4 2 2 -2 1 0 1 0 6 2 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 4 6 8 1 0 5 2 4 e ff 4 [A ] 6 8 1 0 2 1 0 Type -3 4 6 8 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 e ff [A ] Current limiting diagram 1 6 I2_11422 c [A] 105 2 400 A 355 A 300/315 A 250 A 224 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 4 2 104 6 2 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 2 ef[A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Pv A W K 3NA6220-4 3NA6222-4 50 63 4.7 5.9 16 16 3NA6224-4 3NA6230-4 3NA6232-4 80 100 125 6.8 7.4 9.8 21 22 27 3NA6236-4 3NA6240-4 3NA6242-4 160 200 224 12.6 14.9 15.4 34 33 31 3NA6244-4 3NA6250-4 3NA6252-4 250 300 315 17.9 19.4 21.4 38 34 35 3NA6254-4 3NA6260-4 355 400 26.0 27.5 49 52 Type I2ts 4 103 102 In 4 4 I2ta 1 ms 4 ms 230 V AC 400 V AC A2s A2s A2s A2s 3NA6220-4 3NA6222-4 6000 7700 6800 9800 9100 14200 11600 19000 3NA6224-4 3NA6230-4 3NA6232-4 12000 24000 36000 16000 30600 50000 23100 40800 70000 30700 56200 91300 3NA6236-4 3NA6240-4 3NA6242-4 58000 115000 145000 85000 135000 170000 120000 218000 299000 158000 285000 392000 3NA6244-4 3NA6250-4 3NA6252-4 205000 361000 361000 230000 433000 433000 420000 670000 670000 551000 901000 901000 3NA6254-4 3NA6260-4 441000 529000 538000 676000 800000 1155000 1060000 1515000 Siemens * 10/2015 61 6 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3NA68..-4/-4KK series 000, 00 gG 400 V AC 10 ... 160 A Melting I2t values diagram 2 103 10-2s 10-3s 10- 4s 105 6 4 6 4 160 A 125 A 100 A 2 104 6 4 2 101 6 4 80 A 63 A 50 A 40 A 35 A 32 A 25 A 2 2 100 103 6 4 6 4 20 A 16 A 2 2 10-1 10 A 102 6 4 6 4 2 101 101 2 2 10-2 6 4 2 10-3 101 4 6 8102 2 Type 2 4 6 8 102 2 4 6 8 103 2 4 6 8 104 ef[A] 2 1 I2_11416 Current limiting diagram c [A] 10-1s 2 2 102 160 A 125 A 100 A 2 104 80 A 63 A 50 A 40 A 35 A 32 A 25 A 20 A 16 A 6 4 2 6 4 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 2 ef[A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 4 4 6 8 103 2 4 6 8 105 4 6 8 104 2 eff [A] In Pv A W K I2ts 1 ms 4 ms A2s A2s 3NA6803-4 3NA6805-4 3NA6807-4 10 16 20 1.0 1.7 2.0 8 11 15 120 370 670 130 420 750 3NA6810-4 3NA6812-4 3NA6814-4 25 32 35 2.3 2.6 2.7 17 18 21 1200 2200 3000 1380 2500 3300 3NA6817-4 3NA6820-4 3NA6822-4 40 50 63 3.1 3.8 3.9 24 25 23 4000 6000 9300 4500 6800 10250 3NA6824-4, 3NA6824-4KK 3NA6830-4, 3NA6830-4KK 3NA6832-4 3NA6836-4 80 100 125 160 4.9 5.4 8.9 11.3 26 29 44 52 14200 25600 36000 58000 18300 33600 50000 85000 Type I2ta 10 A 103 62 100s 2 106 6 4 6 4 2 102 107 6 4 I2_11417 I2_11415 104 6 4 10 A 16 A 20 A 25 A 32 A 35 A 40 A 50 A 63 A 80 A 100 A 125 A 160 A vs[s] Time/current characteristics diagram 2 s [A2s] Size: Operational class: Rated voltage: Rated current: 230 V AC 400 V AC A2s A2s 3NA6803-4 3NA6805-4 3NA6807-4 180 580 1000 265 750 1370 3NA6810-4 3NA6812-4 3NA6814-4 1800 3400 4900 2340 4550 6750 3NA6817-4 3NA6820-4 3NA6822-4 6100 9100 12400 8700 11600 17900 27000 48300 70000 120000 38000 69200 91300 158000 3NA6824-4, 3NA6824-4KK 3NA6830-4, 3NA6830-4KK 3NA6832-4 3NA6836-4 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3ND18 series 000, 00 aM 500 V AC 6 ... 160 A Melting I2t values diagram I2_06046a 6 4 2 6 4 10 -1s 2 10 -2s 10 6 2 2 10 1 10 5 6 4 6 4 2 2 10 0 10 4 6 4 6 4 10 -3s 160 A 125 A 100 A 80 A 63 A 50 A 40 A 35 A 32 A 25 A 20 A 16 A 2 2 10 -1 10 3 6 4 6 4 2 2 10 -2 10 2 6 4 6 4 2 2 10 -3 10 1 2 4 6 8 10 2 2 6 8 10 3 4 2 4 6 8 10 4 ef [A] Current limiting diagram 160 A 125 A 100 A 80 A 63 A 50 A 40 A 35 A 32 A 25 A 20 A 16 A 2 10 4 6 4 2 10 A 10 3 6A I2_06065a 1 6 4 2 4 6 8 10 3 10 1 10 1 10 A 6A 2 4 6 8 10 2 Type 2 2 10 2 10 0s 6 4 6 4 c [A] 10 7 2 6A 10 2 10 A 16 A 20 A 25 A 32 A 35 A 40 A 50 A 63 A 80 A 100 A 125 A 160 A vs[s] 10 3 I2_06067b Time/current characteristics diagram 2 s [A s] Size: Operational class: Rated voltage: Rated current: 2 4 6 8 10 4 2 4 6 8 10 5 2 ef [A] $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 4 2 4 6 8 10 3 2 In Pv A W K 4 6 8 10 4 2 4 6 8 10 5 ef [A] I2ts 1 ms 4 ms A2s A2s 3ND1801 3ND1803 3ND1805 6 10 16 0.8 0.5 0.8 7 5 7 32 150 570 55 260 800 3ND1807 3ND1810 3ND1812 20 25 32 1 1.2 1.5 8 9 10 830 1400 2300 1200 2000 3300 3ND1814 3ND1817 3ND1820 35 40 50 1.8 2 2.4 11 12 14 2600 3700 5800 3800 5500 8400 63 3ND1822 3ND1824 80 3ND1830, 3ND1830-8 100 3.3 4.5 4.9 17 20 18 9300 15000 26000 13000 21000 37000 3ND1832 3ND1836 125 160 6.3 9.3 22 31 41000 64000 60000 92000 Type I2ta 230 V AC 400 V AC 500 V AC A2s A2s A2s 3ND1801 3ND1803 3ND1805 60 280 1000 75 320 1300 110 430 1600 3ND1807 3ND1810 3ND1812 1300 2200 3800 1600 2800 4500 2200 3300 5400 3ND1814 3ND1817 3ND1820 4200 5700 5200 5100 7200 10500 6300 9300 12500 15000 21500 44000 16500 27000 56000 21000 34000 76000 76000 105000 98000 130000 135000 170000 3ND1822 3ND1824 3ND1830, 3ND1830-8 3ND1832 3ND1836 Siemens * 10/2015 63 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3ND13.., 3ND2 series 1, 2, 3 aM 690 V AC 63 ... 630 A Melting I2t values diagram I2_06413b Time/current characteristics diagram 2 6 4 2 10 2 10 9 2 s [A s] 6 4 63 A 80 A 100 A 125 A 160 A 200 A 250 A 315 A 355 A 400 A 500 A 630 A vs[s] 10 3 2 10 0s 10 8 6 4 6 4 2 2 10 1 10 7 6 4 6 4 2 2 10 0 10 6 6 4 6 4 10 -1s 10 -2s 10 -3s 10 - 4s 630 A 500 A 400 A 355 A 315 A 250 A 200 A 2 2 10 -1 10 5 6 4 6 4 2 2 10 -2 10 4 6 4 6 4 160 A 125 A 100 A 80 A 63 A 2 2 10 -3 10 2 I2_06064b Size: Operational class: Rated voltage: Rated current: 2 4 6 8 10 3 2 6 8 10 4 4 2 4 6 8 10 5 10 3 10 2 2 4 6 8 10 3 Table see page 65. 2 c [A] 1 630 A 500 A 400 A 355 A 315 A 250 A 200 A 160 A 125 A 100 A 80 A 63 A 6 4 2 I2_06066a Current limiting diagram 10 5 10 4 6 4 2 10 3 2 4 6 8 10 4 2 4 6 8 10 5 2 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 64 Siemens * 10/2015 2 4 6 8 10 4 2 4 6 8 10 5 2 4 6 8 10 6 ef [A] ef [A] 4 6 8 10 6 ef [A] (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links 3ND13.., 3ND2 series Size: Operational class: Rated voltage: Rated current: Type 1, 2, 3 aM 690 V AC 63 ... 630 A In A Pv W K I2ts I2ta 1 ms 4 ms 230 V AC 400 V AC 690 V AC A2s A2s A2s A2s A2s 3ND2122 3ND2124 63 80 4 4.9 12.2 13 14000 24200 17700 30800 19300 36500 25600 48000 42000 80000 3ND2130 3ND2132 3ND2136 100 125 160 5.8 8.1 11.4 15 16.5 18 45600 57000 90000 59000 74300 114000 65000 73000 107000 85000 97000 142000 140000 160000 235000 3ND2140 3ND2144 200 250 14.1 18 19.5 22 150000 250000 198000 313000 172000 260000 228000 340000 375000 565000 3ND2232 3ND2236 125 160 8.1 11.4 16.5 18 57000 90000 74300 114000 73000 107000 97000 142000 160000 235000 3ND2240 3ND2244 3ND2252 200 250 315 14.1 18 22.6 19.5 22 30 150000 250000 370000 198000 313000 450000 172000 260000 460000 228000 340000 610000 375000 565000 1000000 3ND2254 3ND2260 355 400 24.7 30.8 29 35 540000 615000 643000 750000 645000 688000 855000 910000 1400000 1500000 3ND2352 3ND2354 3ND2360 315 355 400 22.6 24.7 30.8 30 29 26 370000 540000 615000 450000 643000 750000 460000 645000 688000 610000 855000 910000 1000000 1400000 1500000 3ND1365 3ND1372 500 630 47 50 40 43 730000 920000 933000 1375000 876000 1300000 1095000 1800000 1825000 2600000 Siemens * 10/2015 65 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links Dimensional drawings LV HRC fuse links, operational class gG Size Sizes 000 to 3 and 4a Un A V Type Dimensions b h1 000 2 ... 35 2 ... 160 2 ... 100 10 ... 100 2 ... 35 10 ... 100 2 ... 35 690 AC/250 DC 500 AC 500 AC/250 DC 400 AC 690 AC/250 DC 500 AC/250 DC 690 AC/250 DC 3NA38..-6 3NA38../-8 3NA68.. 3NA68..-4 3NA68..-6 3NA78.. 3NA78..-6 21 54 80 45 8 00 35 ... 160 40 ... 100 80 ... 160 80 ... 160 40 ... 100 80 ... 160 40 ... 100 500 AC/250 DC 690 AC/250 DC 500 AC/250 DC 400 AC 690 AC/250 DC 500 AC/250 DC 690 AC/250 DC 3NA38.. 3NA38..-6 3NA68../-7 3NA68..-4 (KK) 3NA68..-6 3NA78../-7 3NA78..-6 30 54 80 45 14 t2 t1 In h1 h2 b I201_10899a h2 t1 t2 Size 4 (IEC design) 0 6 ... 160 500 AC/440 DC 3NA30.. 30 67 126 45 14 65 1 16 ... 160 50 ... 160 16 ... 160 35 ... 160 50 ... 160 16 ... 160 50 ... 160 500 AC/440 DC 690 AC/440 DC 500 AC/440 DC 400 AC 690 AC/440 DC 500 AC/440 DC 690 AC/440 DC 3NA31.. 3NA31..-6 3NA61.. 3NA61..-4 3NA61..-6 3NA71.. 3NA71..-6 30 75 137 50 15 200 ... 250 200 200 ... 250 200 ... 250 200 200 ... 250 200 500 AC/440 DC 690 AC/440 DC 500 AC/440 DC 400 AC 690 AC/440 DC 500 AC/440 DC 690 AC/440 DC 3NA31.. 3NA31..-6 3NA61.. 3NA61..-4 3NA61..-6 3NA71.. 3NA71..-6 47 75 137 51 9 35 ... 250 80 ... 200 35 ... 250 50 ... 250 80 ... 200 35 ... 250 80 ... 200 500 AC/440 DC 690 AC/440 DC 500 AC/440 DC 400 AC 690 AC/440 DC 500 AC/440 DC 690 AC/440 DC 3NA32.. 3NA32..-6 3NA62.. 3NA62..-4 3NA62..-6 3NA72.. 3NA72..-6 47 75 151 58 10 300 ... 400 224 ... 250 300 ... 400 300 ... 400 224 ... 315 300 ... 400 224 ... 315 500 AC/440 DC 690 AC/440 DC 500 AC/440 DC 400 AC 690 AC/440 DC 500 AC/440 DC 690 AC/440 DC 3NA32.. 3NA32..-6 3NA62.. 3NA62..-4 3NA62..-6 3NA72.. 3NA72..-6 58 74 151 59 13 200 ... 400 250, 315 500 AC/440 DC 690 AC/440 DC 3NA33.. 3NA33..-6 58 74 151 71 13 425 ... 630 355 ... 500 500 AC/440 DC 690 AC/440 DC 3NA33.. 3NA33..-6 71 74 151 70 13 4 630 ... 1250 500 AC/440 DC 3NA34.. See adjacent drawing 4a 500 ... 1250 500 AC/440 DC 3NA36.. 102 95 20 90 202 55 102 2 I201_11335 3 66 Siemens * 10/2015 97 201 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse links LV HRC fuse links, operational class aM Size Sizes 000 to 3 t1 t2 In Un A V 000 6 ... 80 00 100 ... 160 1 63 ... 100 500 AC 690 AC Type b h1 h2 t1 t2 21 54 80 45 8 30 54 80 45 14 30 75 137 50 15 47 75 137 51 9 47 75 151 58 10 58 74 151 59 13 3ND23.. 58 74 151 71 13 3ND13.. 71 74 151 70 13 3ND18.. 3ND21.. 125 ... 250 h1 h2 2 125 ... 250 690 AC 3ND22.. 315 ... 400 3 315 ... 400 500, 630 690 AC Dimensions b I201_10899a Siemens * 10/2015 67 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC signal detectors Overview LV HRC signal detectors are used for remotely indicating that the LV HRC fuse links have been tripped. Three different solutions are available: * 3NX1021 signal detectors with signal detector link The LV HRC signal detectors with signal detector link support monitoring of LV HRC fuse links with non-insulated grip lugs of sizes 000 to 4 at 10 A or more. The signal detector link is connected in parallel to the fuse link. In the event of a fault, the LV HRC fuse links are released simultaneously with the LV HRC fuse detector link. A trip pin switches a floating microswitch * 3NX1024 signal detector tops The signal detector top can be used with LV HRC fuse links, sizes 000, 00, 1 and 2, which are equipped with non-insulated grip lugs and have a front indicator or combination alarm. It is simply plugged into the grip lugs * 5TT3170 fuse monitors If a fuse is tripped, the front indicator springs open and switches a floating microswitch. This solution should not be used for safety-relevant systems. For this purpose, we recommend our electronic fuse monitors Dimensional drawings LV HRC signal detectors Signal detector links I201_07856a I201_07857a 115 66 7 11 15 25 40 3NX1021 3NX1022, 3NX1023 Signal detector tops Fuse monitors 32,5 L1 L2 L3 I201_12125 20 15 L1 L2 L3 22 53,5 36 14,5 5TT3170 Circuit diagrams Graphical symbols Fuse monitors L1 L2 L3 14 1 N 4 2 NO NC L1' L2' L3' 13 3NX1021 3NX1024 68 5TT3170 Siemens * 10/2015 5 43 64 3NX1024 LV HRC signal detectors Signal detector tops I201_11512 23 45 90 25,5 14 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories Overview Terminals for all applications Flat terminals with screws are suitable for connecting busbars or cable lugs. They have a torsion-proof screw connection with shim, spring washer and nut. When tightening the nut, always ensure compliance with the specified torque due to the considerable leverage effect. The double busbar terminal differs from the flat terminal in that it supports connection of two busbars, one on the top and one at the bottom of the flat terminal. The modern box terminal ensures efficient and reliable connection to the conductors. They support connection of conductors with or without end sleeve. With the flat terminal with nut, terminal lug of the nut is torsionproof. When tightening the nut, the torque must be observed because of the considerable leverage effect. Up to three conductors can be clamped to the terminal strip. The plug-in terminal is equipped for connecting two conductors. One conductor can be clamped to the saddle-type terminal. Siemens * 10/2015 69 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories Technical specifications LV HRC fuse bases, LV HRC bus-mounting bases Size 000/00 Standards IEC 60269-1, -2; EN 60269-1; DIN VDE 0636-2, UL 4248-1 (only downstream from the branch protection) 0 1 2 3 4 630 1250 KEMA, UL File No: E171267-IZLT2 Approvals Rated current In A 160 160 Rated voltage Un V AC V DC 6901) 250 6901) 440 Rated short-circuit strength kA AC 120 kA DC 25 W 12 25 M8 M8 14 -- Nm mm2 2.5 ... 50 mm2 6 ... 70 mm2 2.5 ... 50 mm2 Nm 1.5 ... 16 2 Max. power dissipation of the fuse link 250 400 690 440 32 45 60 90 Flat terminal Screw Nut Max. tightening torque M10 M12 38 65 Plug-in terminal Conductor cross-section -- Saddle-type terminal Conductor cross-section -- Box terminal Conductor cross-section Terminal strips Conductor cross-section, 3-wire Max. torque for attachment of LV HRC fuse base 1) -2.5 -- Extended rated voltage up to 1000 V (except LV HRC bus-mounting bases). LV HRC fuse bases with swivel mechanism Size 000/00 1 3 4a 12 32 48 110 M8 M8 14 M10 -38 M12 M16 Rated voltage Un V AC V DC 690 440 Max. power dissipation of the fuse link W Nm Flat terminal Screw Nut Max. tightening torque 70 Siemens * 10/2015 65 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories Dimensional drawings LV HRC fuse bases made of molded plastic h2 Size 000/00, 1P h1 ol h4 h5 h6 h3 3NX2023 partition t1 t2 t3 I201_15447 4,5 b1 b2 t4 3NH3051 to 3NH3053 Size In Poles Connections Type b1 b2 h1 h2 h3 h4 h5 h6 l t1 t2 t3 t4 1P M8 flat terminal, screw 3NH3051 23 39 61 61 25 101 121 139 7.5 26 42 61 86 Saddle-type terminal 3NH3052 -- 39 60 60 25 108 120 139 7.5 26 42 61 86 Box terminals 3NH3053 -- 39 59 50 25 99 117 139 7.5 23 39 61 86 A 160 000/00 125 LV HRC fuse bases made of ceramic Size 000/00 1P h2 t3 t4 3NH303., 3NH3050 In t1 b1 b3 b2 t2 t3 I2_15448 h1 t2 I201_15449 t1 b1 b2 Size h4 h5 h6 ol h3 h4 h5 h6 ol 3NX2023 partition h1 h3 h2 3P t4 3NH403. Poles Connections Type b1 b2 b3 h1 h2 h3 h4 h5 h6 l t1 t2 t3 t4 1P Flat terminal, screw 3NH3030 23 34 -- 61 61 25 102 122 139 7.5 24 40 60 86 M8 plug-in terminal 3NH3031 31 34 -- 64 64 25 102 128 139 7.5 24 40 60 86 Saddle-type terminal 3NH3032 29 34 -- 61 61 25 109 122 139 7.5 24 40 60 86 Flat terminal, terminal strip 3NH3035 26 34 -- 61 70 25 113 130 139 7.5 24 40 60 86 Flat terminal, nut 3NH3038 23 34 -- 61 61 25 102 122 139 7.5 24 40 60 86 Flat and saddle-type terminals 3NH3050 29 34 -- 61 61 25 102 122 139 7.5 24 40 60 86 Flat terminal 3NH4030 23 102 70 61 61 25 102 122 139 7.5 24 40 60 86 M8 plug-in terminal 3NH4031 31 102 70 64 64 25 102 128 139 7.5 24 40 60 86 Saddle-type terminal 3NH4032 29 102 70 61 61 25 102 122 139 7.5 24 40 60 86 Flat terminal, terminal strip 3NH4035 26 102 70 61 70 25 113 130 139 7.5 24 40 60 86 A 000/00 160 3P Siemens * 10/2015 71 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories 3NX2030 partition t1 b1 b2 t2 t3 I201_15450 h1 ol h4 h5 h6 h3 h2 Size 0, 1P t4 3NH312. Size In Poles Connections Type b1 b2 h1 h2 h3 h4 h5 h6 l t1 t2 t3 t4 1P Flat terminal 3NH3120 23 38 87 87 25 150 173 179 7.5 24 40 60 88 Plug-in terminal 3NH3122 31 38 87 87 25 150 173 179 7.5 24 40 60 88 t2 t3 t4 A 160 0 Size 1 1P h2 h2 3P 3NX2024 partition b3 h4 h5 h6 h3 h4 h5 h6 h3 ol b3 t2 t3 t4 3NH32.0 Size t1 b1 b2 t2 t3 I2_15452 t1 b1 b2 I201_15451 h1 h1 ol t4 3NH4230 In Poles Connections Type b1 b2 1P M10 flat terminal 3NH3230 35 49 Double busbar terminal 3NH3220 35 49 M10 flat terminal 3NH4230 35 146 h1 h2 h3 h4 h5 h6 l 30 101 101 25 177 202 203 10.5 35 55 84 107 30 101 101 25 177 202 203 10.5 35 55 84 107 111 101 101 25 177 202 203 10.5 35 55 84 107 b3 t1 A 250 1 3P 72 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories Size 3 1P h2 h2 Size 2 1P 3NX2025 partition h4 h5 h6 3NX2026 partition ol h3 h4 h5 = h 6 h3 ol h1 b3 t1 t2 t3 t4 b1 b2 3NH33.0 Size t1 t2 t3 I201_15454 b1 b2 I201_15453 h1 b3 t4 3NH34.0 In Poles Connections Type b1 b2 b3 h1 h2 h3 h4 h5 h6 l 1P M10 flat terminal 3NH3330 35 49 30 113 113 25 202 227 228 Double busbar terminal 3NH3320 35 49 30 113 113 25 202 227 228 M12 flat terminal 3NH3430 35 49 30 121 121 25 212 242 Double busbar terminal 3NH3420 35 49 30 121 121 25 212 t1 t2 t3 t4 10.5 35 55 90 115 10.5 35 55 90 115 242 10.5 35 57 101 130 242 242 10.5 35 57 101 130 A 400 2 630 3 1P h2 Size 4, 1P h3 h4 h5 ol b1 b2 t1 t2 t3 I2_15455 h1 b3 3NH3530 Size In Poles Connections Type b1 b2 b3 h1 h2 h3 h4 h5 l t1 t2 t3 1P 3NH3530 50 102 30 156 156 25 270 312 13 51 116 144 A 41) 1250 4a Can only be used in bases with swivel mechanism 1) M12 flat terminal Size 4 LV HRC fuse links are also screwed onto the base. Siemens * 10/2015 73 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories LV HRC fuse bases with swivel mechanism Sizes 000/00, 1, 3 and 4a d c m e Drilling plan for sizes 000/00 4a I201_11357b 1 and 3 25 30 l 25 b O 7 ,5 O 13 10 O 25 25 30 n f f f 45 a o 3NH703., 3NH723., 3NH733., 3NH7520 Size In Type a b c d e f l m n o A 000/00 160 3NH7030, 3NH7031, 3NH7032 49 149 45 86 79 120 17 20 1 250 3NH7230, 3NH7231, 3NH7232 69 230 68 119 102.5 177 25 38 3 630 3NH7330, 3NH7331, 3NH7332 91 270 96 147 122.5 220.5 30.5 35 4a 1250 3NH7520 116 350 155 218 172.5 270 40 18 69 3NX3115 LV HRC protective covers, with 3NX3116 LV HRC covers LV HRC contact covers for LV HRC fuse bases and LV HRC bus-mounting bases1) Size 000/00, degree of protection IP2X 33 69 13 Sizes 000/00 to 3 b e 141 Size Type a b c d e 000/00 3NX31051) 38 47.5 34 11.5 30 0 3NX3114 51.5 47.5 34 11.5 30 1 3NX3106 61.5 57 42.5 35 46 2 3NX3107 74 65 51 35 46 3 3NX3108 81.5 77.5 57.5 35 46 The 3NX3105 LV HRC contact covers can be used for both LV HRC fuse bases and LV HRC bus-mounting bases. LV HRC contact covers for LV HRC bus-mounting bases 11,5 I201_11368 30 50 3NX3113 for the incoming terminal, dimensional drawing 3NX3105 for the outgoing terminal, see dimensional drawing above 74 Siemens * 10/2015 I201_11366 d a I201_11365a c 3NX3105 to 3NX3108, 3NX3114 1) 439 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories LV HRC partitions for LV HRC fuse bases Size 000/00 1,65 I201_06492a 31 36,5 138,5 Spacer Barrier 16,1 86 3,5 6,2 3NX2023 Sizes 0 to 3 1,6 I201_06493a b 41,3 55,8 35 Spacer 14,3 Partition c d a 3NX2030, 3NX2024 to 3NX2026 Size Type 0 3NX2030 a 87.6 b 178.5 c 7.7 d 12.3 1 3NX2024 107.3 202.5 7.7 12.3 2 3NX2025 115.3 227.5 14.2 25.1 3 3NX2026 129.8 242 20.2 37.2 LV HRC partitions for LV HRC bus-mounting bases Size 000/00 87 I201_06684a 82 230 I201_06499a 114 114 I201_06502b 81,5 Phase barrier 3NX2027 End barrier 3NX2028 For LV HRC bus-mounting bases in tandem design 3NX2031 Siemens * 10/2015 75 (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories Fuse pullers Sizes 000 to 4 136 Stulpe 24 66 47,5 68 125 130 27,5 I2_06503a 350 26 92,5 3NX1013 (without sleeve), 3NX1014 (with sleeve) Isolating blades with insulated grip lugs a e d g Sizes 000/00 to 3 h Type a b c e f 3NG1002 44 15 48 78 54 20.5 8 19 0 3NG1102 60.5 15 48 125 68 20.5 8 19 1 3NG1202 61 20 53 135 72 23 9 24 2 3NG1302 61 26 61 150 72 23 9 29 3 3NG1402 61 32 73 150 72 23 9 36 6 f I2_06490 b 13 Size 000/00 3,5 c 3NG1.02 Isolating blades with non-insulated grip lugs Size 4a 88 197 150 200 68 61 53,5 Size 4 16 32 I2_06685a 6 40 8 30 I2_06511a 50 85 105 3NG1503 76 9 3NG1505 Siemens * 10/2015 50 85 105 d g h (c) Siemens AG 2016 Fuse Systems 3NA, 3ND LV HRC Fuse Systems LV HRC fuse bases and accessories More information Space requirements when installing LV HRC fuse bases LV HRC partition Spacer h I2_11362 I201_11363a 3 LV HRC fuse base, 1P I2_11361 1 LV HRC fuse base, 3P Partition t Size Mounting width (mm) of LV HRC fuse bases 1 unit, 3P Mounting height (mm) 3 units, 1P Mounting depth (mm) Distance 3NX20.. partitions with through spacer matching bases1) Bases with phase barrier, without end barrier Bases with phase barrier and 2 end barriers Bases with phase barrier, without end barrier Bases with phase barrier and 2 end barriers 000/00 102 106 100 1042) 2 138 0 -- -- 128 142 7 178 90 1 163 177 158 172 7 202 110 2 -- -- 184 224 203) 227 118 3 -- -- 208 272 323) 242 132 4 Installation without barriers; for mounting, see page 75 4a This measurement specifies the required overall mounting depth with base d and the overall mounting height h. 2) Placing an additional base on the barrier and plug-on part does not increase the distance, rather the bases lie flat directly on top of one another. t 86 Not available Can only be used in bases with swivel mechanism 1) h Not available 3) If the bases are installed directly on a side wall in the distribution board, one spacer part can be broken off. This would reduce the distance measurement. SITOR semiconductor fuses for 3NH bases: 3NH bases are generally suitable for all LV HRC type fuses. SITOR semiconductor fuses in LV HRC design can also be used, although it must be noted that, compared to cable and line protection fuses, these get much hotter during operation. The following table shows the permissible load currents of the SITOR semiconductor fuses for installation in 3NH. For this reason, the fuse must be operated below In when installed in a base (derating). The values were determined using the conductor cross-sections specified in the table. If using smaller cross-sections, a considerably higher derating is required due to the lower heat dissipation. For further information on the assignment of SITOR semiconductor fuses to the fuse bases and safety switching devices, please refer to the tables on page 85 ff. Siemens * 10/2015 77 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Overview Benefits SITOR semiconductor fuses protect power semiconductors from the effects of short circuits because the super quick-response disconnect characteristic is far quicker than with conventional LV HRC fuses. They protect high-quality devices and system components, such as converters with fuses in the input and the DC link, UPS systems and soft starters for motors. Panel mounting requirements have given rise to various connection versions and designs. The fuses with blade contacts comply with IEC 60269-2 and are suitable for installation in LV HRC fuse bases, in LV HRC fuse switch disconnectors and switch disconnectors with fuses. They also include fuses with slotted blade contacts for screw fixing with 110 mm mounting dimension, whose sizes are according to IEC 60269-4. * SITOR semiconductor fuses have a high varying load factor, which ensures a high level of operational safety and plant availability - even when subject to constant load change * The use of SITOR semiconductor fuses in LV HRC bases or Siemens switch disconnectors has been tested with regard to heat dissipation and maximum current loading. This makes planning and dimensioning easier and prevents consequential damage * Our high standard of quality ensures good compliance with the characteristic curve and accuracy. This ensures long-term protection of devices Operational classes The fuses for SITOR thyristor sets, railway rectifiers or electrolysis systems were developed specially for these applications. Fuses are categorized according to function and operational classes. SITOR semiconductor fuses, in LV HRC design, are available in the following operational classes: * aR: for the short-circuit protection of power semiconductors (partial range protection) * gR: for the protection of power semiconductors (full range protection) * gS: The operational class gS combines cable and line protection with semiconductor protection (full range protection) LV HRC bases suitable for use with SITOR semiconductor fuses and safety switching devices can be found on page 69 ff. Parallel-connected fuses Fuses with slotted blade contacts for screw fixing with 80 mm or 110 mm mounting dimension are often screwed directly onto busbars for optimum heat dissipation. Even better heat transmission is provided by the compact fuses with M10 or M12 female thread, which are also mounted directly onto busbars. Bolt-on links with 80 mm mounting dimension are another panelmounting version for direct busbar mounting. Fuse characteristics, configuration notes and the assignments of SITOR semiconductor fuses to the fuse bases and 3NP and 3KL safety switching devices can be found in the Configuration Manual, "Fuse Systems" at: www.siemens.com/lowvoltage/manuals The new size 3 type ranges have a round ceramic body instead of a square one. These series are characterized by small It values with low power dissipation and high capability under alternating load. The dimensions and functional values correspond to the current standards IEC 60269-4/EN 60269-4 (VDE 0636-4). Note: The ordering data of the fuses are listed in ascending order of the rated voltage in the selection tables. 78 Siemens * 10/2015 Parallel-connected fuses offer maximum current and energy limiting that is clearly better than in the case of comparable single fuses. They also fulfill the special requirements for UL-certified fuses according to which fuses must be connected in parallel at the factory. Here is the original wording of the NEC document: 240.8 Fuses and circuit breakers shall be permitted to be connected in parallel where they are factory assembled in parallel and listed as a unit. Individual fuses, circuit breakers, or combinations thereof shall not otherwise be connected in parallel. (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Application Configuration options Features SITOR fuse links protect converter equipment against short circuits. I2_10894 The following types of short-circuit faults can occur: * Internal short circuit: A faulty semiconductor device causes a short circuit within the power converter * External short circuit: A fault in the load causes a short circuit on the output side of the power converter * Inverter shoot-through: In the event of a failure of the chassis converter control system during inverter operation (commutation failure), the converter connection forms a short-circuit type connection between the DC and AC power supply system. I2_10893 The power semiconductors used in these devices (diodes, thyristors, GTOs and others) require fast-switching elements for protection due to their low thermal capacity. SITOR fuse links (super quick-response fuse links for semiconductor protection) are ideal for this type of application. ( Six-pulse bridge circuit B6 with phase fuses I2_10895 When using SITOR fuse links of operational class aR, the overload protection of converter equipment, up to approx. 3.5 times the rated current of the fuse link, is taken from conventional protective devices (for example, thermally-delayed overload relays) or, in the case of controlled power converters, from the current limiter (exception: full range fuses). I2_10896 Fuse links can be arranged in a number of ways within the converter connection. A distinction is made between phase fuses in three-phase incoming feeders and, if applicable, DC fuses and branch fuses in the branches of the converter circuit (see adjacent diagrams). In the case of center tap connections, fuse links can only be arranged as phase fuses in three-phase incoming feeders. ( ) Six-pulse bridge circuit B6 with phase fuses and DC fuse (reversible connection) Six-pulse bridge circuit B6 with phase fuses and DC fuse (connection for converter) Six-pulse bridge circuit B6 with branch fuses SITOR fuse links of the 3NE1...-0 series with operational class gS are also suitable for overload and short-circuit protection of cables, lines and busbars. All other dual-function fuses of the SITOR series have a gR characteristic. Overload protection is ensured as long as the rated current of the SITOR fuse links of the series 3NE1...-0 is selected as In In Iz (DIN VDE 0100 Part 430). I2_10897 The rules of DIN VDE 0100 Part 430 must be applied when rating short-circuit protection for cables, lines and busbars. ( ) ( ) I2_10898 Six-pulse bridge circuit B6 with branch fuses (reversible connection) Three-phase bidirectional circuit W3 with phase fuses with branch fuses Siemens * 10/2015 79 ) (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Technical specifications Rated voltage Un Rated breaking capacity I1n Rated current Melting I2t In value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In V AC / V DC kA A 2) 2) A2s A2s K gR aR aR aR --/90015) --/125015) --/125015) --/125015) 100 100 100 100 W 400 200 250 315 96000 10700 24500 41000 24000015) 3900015) 8050015) 12900015) 56 53 53 55 75 50 51 63 ----- 3NB1234-4KK11 aR 3NB1337-4KK11 aR 3NB1345-4KK11 aR --/125015) --/125015) --/125015) 100 100 100 400 500 800 96000 195000 770000 29000015) 60000015) 191000015) 56 55 76 68 89 135 ---- 3NB2345-4KK16 aR 3NB2350-4KK16 aR 3NB2355-4KK16 aR --/125015) --/125015) --/125015) 150 150 150 800 1000 1400 375000 7870000 2150000 115000015) 225000015) 510000015) 74 87 89 160 195 250 ---- 3NB2357-4KK16 aR 3NB2364-4KK17 aR 3NB2366-4KK17 aR --/125015) --/125015) --/125015) 150 150 150 1600 2100 2400 3500000 5750000 9050000 745000015) 195000015) 1810000015) 76 77 89 275 365 445 ---- 3NB3350-1KK26 gR 3NB3351-1KK26 gR 3NB3352-1KK26 gR 690/13) 690/13) 690/13) 100 100 100 1000 1100 1250 298000 680000 897000 1400000 3000000 4100000 101 96 38 138 110 104 1 1 1 3NB3354-1KK26 gR 3NB3355-1KK26 gR 3NB3357-1KK26 gR 690/13) 690/13) 690/13) 100 100 100 1350 1400 1600 1100000 1150000 1550000 4800000 5200000 6900000 44 48 57 126 127 152 1 1 1 3NB3358-1KK26 gR 3NB3358-1KK27 gR 3NB3362-1KK27 gR 690/13) 690/13) 690/13) 100 100 100 1700 1700 1900 2370000 1550000 1850000 10000000 6400000 8200000 57 64 70 143 179 196 1 1 1 3NC2423-0C 3NC2423-3C 3NC2425-0C gR gR gR 500/13) 500/13) 500/13) 5014) 5014) 5014) 1503) 1503) 2003) 7000 7000 13600 33000 33000 64000 26 26 25 35 35 40 0.85 0.85 0.85 3NC2425-3C 3NC2427-0C 3NC2427-3C gR gR gR 500/13) 500/13) 500/13) 5014) 5014) 5014) 2003) 2503) 2503) 13600 21000 21000 64000 99000 99000 25 30 30 40 50 50 0.85 0.85 0.85 3NC2428-0C 3NC2428-3C 3NC2431-0C gR gR gR 500/13) 500/13) 500/13) 5014) 5014) 5014) 3003) 3003) 3503) 28000 28000 53000 132000 132000 249000 40 40 35 65 65 60 0.85 0.85 0.85 3NC2431-3C 3NC2432-0C 3NC2432-3C gR aR aR 500/13) 500/13) 500/13) 5014) 5014) 5014) 3503) 4003) 4003) 53000 83000 83000 249000 390000 390000 35 30 30 60 50 50 0.85 0.85 0.85 3NC3236-1U 3NC3236-6U aR aR 690/13) 690/13) 100 100 630 630 32500 32500 244000 244000 120 125 120 125 0.85 0.9 3NC3237-1U 3NC3237-6U aR aR 690/13) 690/13) 100 100 710 710 46100 46100 346000 346000 125 125 130 130 0.85 0.9 3NC3238-1U 3NC3238-6U aR aR 690/13) 690/13) 100 100 800 800 66400 66400 498000 498000 125 120 135 135 0.9 0.95 3NC3240-1U 3NC3240-6U aR aR 690/13) 690/13) 100 100 900 900 90300 90300 677000 677000 130 125 145 140 0.9 0.95 3NC3241-1U 3NC3241-6U aR aR 690/13) 690/13) 100 100 1000 1000 130000 130000 975000 975000 125 120 155 145 0.95 1 3NC3242-1U 3NC3242-6U aR aR 690/13) 690/13) 100 100 1100 1100 184000 184000 1382000 1382000 125 115 165 150 0.95 1 3NC3243-1U 3NC3243-6U aR aR 690/13) 690/13) 100 100 1250 1250 265000 265000 1990000 1990000 130 110 175 155 0.95 1 3NC3244-1U 3NC3244-6U aR aR 500/13) 500/13) 100 100 1400 1400 382000 382000 2100000 2100000 140 115 200 175 0.95 1 3NC3245-1U 3NC3245-6U aR aR 500/13) 13) 100 100 1600 1600 520000 520000 2860000 2860000 160 120 240 195 0.9 0.95 3NC3336-1U 3NC3336-6U aR aR 1000/13) 1000/13) 100 100 630 630 66400 66400 418000 418000 160 140 145 130 0.85 0.9 3NC3337-1U 3NC3337-6U aR aR 1000/13) 13) 1000/ 100 100 710 710 90300 90300 569000 569000 160 140 150 140 0.85 0.9 3NC3338-1U 3NC3338-6U aR aR 1000/13) 1000/13) 100 100 800 800 130000 130000 819000 819000 150 130 155 150 0.85 0.9 3NC3340-1U 3NC3340-6U aR aR 1000/13) 1000/13) 100 100 900 900 184000 184000 1160000 1160000 145 130 165 160 0.9 0.95 3NC3341-1U 3NC3341-6U aR aR 1000/13) 1000/13) 100 100 1000 1000 265000 265000 1670000 1670000 140 125 170 165 0.9 0.95 3NC3342-1U 3NC3342-6U aR aR 800/13) 800/13) 100 100 1100 1100 382000 382000 1910000 1910000 150 130 185 175 0.9 0.95 3NC3343-1U 3NC3343-6U aR aR 800/13) 800/13) 100 100 1250 1250 520000 520000 2600000 2600000 165 135 210 185 0.9 0.95 3NC3430-1U 3NC3430-6U aR aR 1250/13) 1250/13) 100 100 315 315 10600 10600 72500 72500 60 60 80 80 0.95 0.95 MLFB Operational class (IEC 60269) 3NB1234-3KK20 3NB1126-4KK11 3NB1128-4KK11 3NB1231-4KK11 500/ For footnotes, see page 84. 80 Siemens * 10/2015 1) Varying load factor VL (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design MLFB Operational class (IEC 60269) Rated voltage Un Rated breaking capacity I1n Rated current Melting I2t In value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In V AC / V DC kA A 2) 2) A2s A2s K W 1) Varying load factor VL 3NC3432-1U 3NC3432-6U aR aR 1250/13) 1250/13) 100 100 400 400 23900 23900 163000 163000 95 95 95 95 0.95 0.95 3NC3434-1U 3NC3434-6U aR aR 1250/13) 1250/13) 100 100 500 500 42500 42500 290000 290000 115 115 115 115 0.9 0.9 3NC3436-1U 3NC3436-6U aR aR 1250/13) 1250/13) 100 100 630 630 96600 96600 650000 650000 120 120 120 120 0.95 0.95 3NC3438-1U 3NC3438-6U aR aR 1100/13) 13) 1100/ 100 100 800 800 184000 184000 985000 985000 115 109 145 145 0.90 0.95 3NC55314) 3NC58384) aR aR 800/13) 1000/13) 5014) 5014) 3505) 8005) 66000 360000 260000 1728000 200 130 80 170 0.9 0.9 3NC58404) 3NC58414) aR aR 1000/13) 800/13) 5014) 5014) 6005) 6305) 185000 185000 888000 888000 110 110 150 145 0.9 0.9 3NC7327-2 3NC7331-2 aR aR 680/13) 680/13) 5014) 5014) 250 350 244000 550000 635000 1430000 45 66 25 32 0.9 0.9 3NC8423-0C 3NC8423-3C gR gR 690/13) 690/13) 5014) 5014) 1503) 1503) 1100 1100 17600 17600 33 33 40 40 0.85 0.85 3NC8425-0C 3NC8425-3C gR gR 690/13) 690/13) 5014) 5014) 2003) 2003) 2400 2400 38400 38400 46 46 55 55 0.85 0.85 3NC8427-0C 3NC8427-3C gR gR 690/13) 690/13) 5014) 5014) 2503) 2503) 4400 4400 70400 70400 95 95 72 72 0.85 0.85 3NC8431-0C 3NC8431-3C gR gR 690/13) 690/13) 5014) 5014) 3503) 3503) 11000 1000 176000 176000 65 65 95 95 0.85 0.85 3NC8434-0C 3NC8434-3C gR gR 690/13) 690/13) 5014) 5014) 5003) 5003) 28000 28000 448000 448000 75 75 130 130 0.85 0.85 3NC8444-3C aR 600/13) 5014) 1000 400000 2480000 110 140 0.9 3NE1020-2 3NE1021-0 3NE1021-2 gR gS gR 690/13) 690/13) 690/13) 100 100 100 80 100 100 780 3100 1490 5800 33000 11000 45 36 49 10 10 12 1 1 1 3NE1022-0 3NE1022-2 gS gR 690/13) 690/13) 100 100 125 125 6000 3115 63000 23000 40 55 11 13 1 1 3NE1224-0 3NE1224-2 3NE1224-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 160 160 160 7400 2650 2650 60000 18600 18600 60 70 70 24 32 32 1 1 1 3NE1225-0 3NE1225-2 3NE1225-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 200 200 200 14500 5645 5645 100000 51800 51800 65 62 62 27 35 35 1 1 1 3NE1227-0 3NE1227-2 3NE1227-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 250 250 250 29500 11520 11520 200000 80900 80900 75 70 70 30 37 37 1 1 1 3NE1230-0 3NE1230-2 3NE1230-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 315 315 315 46100 22580 22580 310000 168000 168000 80 75 75 38 40 40 1 1 1 3NE1331-0 3NE1331-2 3NE1331-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 350 350 350 58000 29500 29500 430000 177000 177000 75 82 82 42 43 43 1 1 1 3NE1332-0 3NE1332-2 3NE1332-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 400 400 400 84000 37300 37300 590000 177000 177000 85 100 100 45 50 50 1 1 1 3NE1333-0 3NE1333-2 3NE1333-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 450 450 450 104000 46100 46100 750000 276500 276500 85 100 100 53 58 58 1 1 1 3NE1334-0 3NE1334-2 3NE1334-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 500 500 500 149000 66400 66400 950000 398000 398000 90 100 100 56 64 64 1 1 1 3NE1435-0 3NE1435-2 3NE1436-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 560 560 560 215000 130000 130000 1700000 890000 890000 65 80 80 50 60 60 1 1 1 3NE1436-0 3NE1436-2 3NE1436-3 gS gR gR 690/13) 690/13) 690/13) 100 100 100 630 630 630 293000 203000 203000 2350000 1390000 1390000 70 82 82 55 60 60 1 1 1 3NE1437-0 3NE1437-1 3NE1437-2 3NE1437-3 gS gR gR gR 690/13) 600/13) 690/13) 690/13) 100 100 100 100 710 710 710 710 437000 321000 265000 265000 3400000 2460000 1818000 1818000 68 85 90 90 58 65 72 72 1 1 1 1 For footnotes, see page 84. Siemens * 10/2015 81 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Rated voltage Un Rated breaking capacity I1n Rated current Melting I2t In value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In V AC / V DC kA A 2) 2) A2s A2s K gR gR gR gR 1000/600 1000/600 1000/600 1000/600 50/50 50/50 50/50 50/50 W 32 40 50 63 45 75 110 170 4500 6000 8000 9000 3NE3234-0MK08 aR 3NE3235-0MK08 aR 3NE3236-0MK08 aR 1000/600 1000/600 1000/600 50/50 50/50 50/50 500 550 630 46000 68000 90000 500000 700000 850.000 3NE5302-0MK06 gR 3NE5317-0MK06 gR 3NE5318-0MK06 gR 1800/1100 1800/1100 1800/1100 30/45 30/45 30/45 40 50 63 45 100 200 3NE5320-0MK06 aR 1800/1100 30/45 80 3NE5321-0MK06 aR 3NE5322-0MK06 aR 3NE5324-0MK06 aR 1800/1100 1800/1100 1800/1100 30/45 30/45 30/45 3NE5325-0MK06 aR 3NE5327-0MK06 aR 3NE5330-0MK06 aR 1800/1100 1800/1100 1800/1100 3NE5332-0MK06 3NE5334-0MK06 3NE5336-0MK06 3NE5336-0MK66 aR aR aR aR 3NE8221-0MK 3NE8222-0MK 3NE8224-0MK 3NE8225-0MK 3NE8227-0MK MLFB Operational class (IEC 60269) 1) Varying load factor VL 32 35 45 62 9 13 18 25 On request On request On request On request 100 107 110 105 110 127 On request On request On request 900 1800 3100 45 45 55 26 27 34 On request On request 300 3900 58 42 On request On request 100 125 160 550 900 2500 8700 11800 37000 58 68 62 45 59 54 On request On request On request 30/45 30/45 30/45 200 250 315 6000 15000 28000 70000 165000 250000 62 62 66 56 59 76 On request On request On request 1500/1000 1500/1000 1500/1000 1500/1000 30/45 30/45 30/45 30/45 400 500 630 630 58000 110000 170000 170000 470000 800000 1100000 1100000 72 81 88 85 89 109 163 163 On request On request On request On request aR aR aR aR aR 690/440 690/440 690/440 690/440 690/440 100/50 100/50 100/50 100/50 100/50 100 125 160 200 250 540 1000 1800 3000 5000 3200 6000 10500 17500 28.500 55 57 68 69 77 25 28.0 35.0 42 53.5 On request On request On request On request On request 3NE8230-0MK aR 690/440 100/50 315 19200 120000 65 68 On request 3NE8331-0MK 3NE8332-0MK 3NE8333-0MK aR aR aR 690/440 690/440 690/440 100/50 100/50 100/50 350 400 450 17500 27200 38000 83500 136000 207000 55 60 58 68.6 72.8 80.1 On request On request On request 3NE8334-0MK 3NE8335-0MK 3NE8336-0MK aR aR aR 690/440 690/440 690/440 100/50 100/50 100/50 500 550 630 59000 76000 122000 318000 399000 740000 58 65 67 77.5 86.4 90.7 On request On request On request 3NE8801-0MK 3NE8802-0MK 3NE8810-0MK 3NE8812-0MK 3NE8813-0MK gR gR gR gR gR 690/440 690/440 690/440 690/440 690/440 100/50 100/50 100/50 100/50 100/50 32 40 6 10 16 40 50 1.5 4 8.5 350 480 37 50 73 53 53 17 30 38 10.5 12 2.7 4.5 6.7 On request On request On request On request On request 3NE8814-0MK 3NE8815-0MK 3NE8817-0MK 3NE8818-0MK gR gR gR gR 690/440 690/440 690/440 690/440 100/50 100/50 100/50 100/50 20 25 50 63 15 25 65 90 90 150 1050 1960 45 40 65 74 8 8.1 14.5 23.0 On request On request On request On request 3NE8820-0MK 3NE8821-0MK 3NE8822-0MK 3NE8824-0MK 3NE9330-0MK07 aR aR aR aR aR 690/440 690/440 690/440 500/440 -/3000 100/50 100/50 100/50 100/50 -/45 80 100 125 160 315 450 820 1700 3300 65000 2,200 3,650 7,800 14000 300000 70 73 60 70 95 23.3 27 30 34 245 On request On request On request On request On request 3NE1438-0 3NE1438-1 3NE1438-2 3NE1438-3 gS gR gR gR 690/13) 600/13) 690/13) 690/13) 100 100 100 100 800 800 800 800 723000 437000 361000 361000 5000000 3350000 2475000 2475000 70 95 95 95 58 72 84 84 1 1 1 1 3NE1447-2 3NE1447-3 gR gR 690/13) 690/13) 100 100 670 670 240000 240000 1640000 1640000 90 90 64 64 1 1 3NE1448-2 3NE1448-3 gR gR 690/13) 690/13) 100 100 850 850 520000 520000 3640000 3640000 95 95 76 76 1 1 3NE1802-0 3NE1803-0 3NE1813-0 gS gS gS 690/13) 690/13) 690/13) 100 100 100 40 35 16 295 166 18 3000 1700 200 30 35 25 3 3.5 4 1 1 1 3NE1814-0 3NE1815-0 3NE1817-0 3NE1818-0 3NE1820-0 gS gS gS gS gS 690/13) 690/13) 690/13) 690/13) 690/13) 100 100 100 100 100 20 25 50 63 80 41 74 461 903 1843 430 780 4400 9000 18000 25 30 35 40 40 5 5 6 7 8 1 1 1 1 1 3NE3221 3NE3222 3NE3224 aR aR aR 1000/13) 1000/13) 1000/13) 100 100 100 100 125 160 665 1040 1850 4800 7200 13000 65 70 90 28 36 42 0.95 0.95 1 3NE3225 3NE3227 3NE3230-0B aR aR aR 1000/13) 1000/13) 1000/13) 100 100 100 200 250 315 4150 6650 13400 30000 48000 80000 80 90 100 42 50 60 1 1 0.95 3NE3231 3NE3232-0B 3NE3233 aR aR aR 1000/13) 1000/13) 1000/13) 100 100 100 350 400 450 16600 22600 29500 100000 135000 175000 120 140 130 75 85 95 0.9 0.9 0.9 3NE3201-0MK 3NE3202-0MK 3NE3217-0MK 3NE3218-0MK For footnotes, see page 84. 82 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design MLFB Operational class (IEC 60269) Rated voltage Un Rated breaking capacity I1n Rated current Melting I2t In value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In V AC / V DC kA A 2) 2) A2s A2s K W 1) Varying load factor VL 3NE3332-0B 3NE3333 3NE3334-0B aR aR aR 1000/13) 1000/13) 1000/13) 100 100 100 400 450 500 22600 29500 46100 135000 75000 260000 120 125 115 80 90 90 1 1 1 3NE3335 3NE3336 3NE3337-8 aR aR aR 1000/13) 1000/13) 900/13) 100 100 100 560 630 710 66500 104000 149000 60000 600000 800000 120 110 125 95 100 105 1 1 1 3NE3338-8 3NE3340-8 aR aR 800/13) 690/13) 100 100 800 900 184000 223000 850000 920000 140 160 130 165 0.95 0.95 3NE3421-0C 3NE3430-0C 3NE3432-0C aR aR aR 1000/13) 1000/13) 1000/13) 5014) 5014) 5014) 100 315 400 1800 29000 48500 13500 218000 364000 45 120 130 25 80 110 1 1 1 3NE3434-0C aR 1000/13) 5014) 500 116000 870000 120 95 1 3NE3525-56) 3NE3535-56) aR aR 1000/13) 1000/13) 5014) 5014) 2007) 4507) 7150 64500 44000 395000 75 130 50 90 0.85 0.85 3NE3626-0C aR 1000/13) 5014) 224 7200 54000 140 85 1 3NE3635-0C 3NE3635-6 aR aR 1000/13) 1000/13) 5014) 5014) 450 450 65000 65000 488000 488000 150 150 110 110 1 1 3NE3636-0C 3NE3637-0C 3NE3637-1C8) aR aR aR 1000/13) 1000/13) 1000/13) 5014) 5014) 5014) 630 710 710 170000 260000 260000 1280000 1950000 1950000 136 170 170 132 145 145 1 1 1 3NE4101 3NE4102 3NE4117 gR gR gR 1000/13) 1000/13) 1000/13) 100 100 100 32 40 50 40 75 120 280 500 800 45 50 65 12 13 16 0.9 0.9 0.9 3NE4117-5 3NE4118 3NE4120 gR aR aR 1000/13) 1000/13) 1000/13) 5014) 100 100 50 63 80 135 230 450 1100 1500 3000 95 78 82 20 20 22 0.85 0.9 0.9 3NE4121 3NE4121-5 3NE4122 aR aR aR 1000/13) 1000/13) 1000/13) 100 5014) 100 100 100 125 900 900 1800 6000 7400 14000 85 135 100 24 35 30 0.9 0.85 0.9 3NE4124 3NE4146-5 aR aR 1000/13) 800/13) 100 5014) 160 170 3600 7370 29000 60500 120 142 35 43 0.9 0.85 3NE4327-0B 3NE4327-6B6) 3NE4330-0B aR aR aR 800/13) 800/13) 800/13) 5014) 5014) 5014) 250 250 315 3600 3600 7400 29700 29700 60700 175 175 170 105 105 120 0.85 0.85 0.85 3NE4330-6B6) 3NE4333-0B aR aR 800/13) 800/13) 5014) 5014) 315 450 7400 29400 60700 191000 170 190 120 140 0.85 0.85 3NE4333-6B6) aR 800/13) 5014) 450 29400 191000 190 140 0.85 3NE4334-0B 3NE4334-6B6) 3NE4337 aR aR aR 800/13) 800/13) 800/13) 5014) 5014) 5014) 500 500 710 42500 42500 142000 276000 276000 923000 195 195 170 155 155 155 0.85 0.85 0.95 3NE4337-66) aR 800/13) 5014) 710 142000 923000 170 155 0.95 3NE5424-0C 3NE5426-0C 3NE5430-0C aR aR aR 1500/13) 1500/13) 13) 1500/ 5014) 5014) 5014) 160 224 315 7200 18400 41500 54000 138000 11000 75 100 125 56 80 115 1 1 1 3NE5431-0C 3NE5433-0C 3NE5433-1C11) aR aR aR 1500/13) 1500/13) 1500/13) 5014) 5014) 5014) 350 450 450 57000 116000 116000 428000 870000 870000 150 150 150 135 145 145 1 0.95 0.95 3NE5627-0C 3NE5633-0C 3NE5643-0C aR aR aR 1500/13) 1500/13) 1500/13) 5014) 5014) 5014) 250 450 600 11200 78500 260000 84000 590000 1950000 170 170 160 130 160 145 1 1 1 3NE6437 3NE6437-7 3NE6444 aR aR aR 900/13) 900/13) 900/13) 5014) 5014) 5014) 7109) 71010) 9009) 100000 100000 400000 620000 620000 1920000 80 110 80 150 150 170 0.9 0.9 0.9 3NE7425-0U 3NE7427-0U 3NE7431-0U 3NE7432-0U aR aR aR aR 2000/13) 2000/13) 2000/13) 2000/13) 100 100 100 100 200 250 350 400 18400 29000 74000 116000 138000 218000 555000 870000 85 110 105 130 75 110 120 150 1 1 1 1 3NE7633-0U 3NE7633-1U11) aR aR 2000/13) 2000/13) 100 100 450 450 128000 128000 960000 960000 165 165 160 160 1 1 3NE7636-0U 3NE7636-1U11) 3NE7637-1U11) 3NE7648-1U11) aR aR aR aR 2000/13) 2000/13) 2000/13) 2000/13) 100 100 100 100 630 630 710 525 260000 260000 415000 149000 1950000 1950000 3110000 1120000 200 200 230 210 220 220 275 210 1 1 1 1 3NE8003-1 3NE8015-1 3NE8017-1 gR gR gR 690/13) 690/13) 690/13) 100 100 100 35 25 50 70 30 120 400 180 700 45 35 65 9 7 14 0.95 0.95 0.9 3NE8018-1 3NE8020-1 3NE8021-1 gR aR aR 690/13) 690/13) 690/13) 100 100 100 63 80 100 260 450 850 1400 2400 4200 70 80 90 16 19 22 0.95 0.95 0.95 3NE8022-1 3NE8024-1 aR aR 690/13) 690/13) 100 100 125 160 1400 2800 6500 13000 110 130 28 38 0.95 0.95 For footnotes, see page 84. Siemens * 10/2015 83 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design MLFB Operational class (IEC 60269) Rated voltage Un Rated breaking capacity I1n Rated current Melting I2t In value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In V AC / V DC kA A 2) 2) A2s A2s K W 1) Varying load factor VL 3NE8701-1 3NE8702-1 3NE8714-1 gR gR gR 690/70012) 690/70012) 690/70012) 5014) 5014) 5014) 32 40 20 40 69 12 285 490 83 45 55 40 10 12 7 0.9 0.9 0.9 3NE8715-1 3NE8717-1 3NE8718-1 gR gR gR 690/70012) 690/70012) 690/70012) 5014) 5014) 5014) 25 50 63 19 115 215 140 815 1550 40 60 70 9 15 16 0.9 0.9 0.95 3NE8720-1 3NE8721-1 3NE8722-1 aR aR aR 690/70012) 690/70012) 690/70012) 5014) 5014) 5014) 80 100 125 380 695 1250 2700 4950 9100 80 75 80 18 19 23 0.9 0.95 0.95 3NE8724-1 3NE8725-1 3NE8727-1 aR aR aR 690/70012) 690/70012) 690/70012) 5014) 5014) 5014) 160 200 250 2350 4200 7750 17000 30000 55000 100 120 125 31 36 42 0.9 0.9 0.9 3NE8731-1 aR 690/70012) 5014) 315 12000 85500 150 54 0.85 3NE9440-6 3NE9450 3NE9450-7 gR aR aR 600/13) 600/13) 600/13) 5014) 5014) 5014) 850 12509) 125010) 400000 400000 400000 2480000 2480000 2480000 74 80 105 85 210 210 1 0.9 0.9 3NE9632-1C11) 3NE9634-1C11) 3NE9636-1C11) aR aR aR 2500/13) 2500/13) 2500/13) 5014) 5014) 5014) 00 500 630 81000 170000 385000 620000 1270000 2800000 160 180 198 205 235 275 1 1 1 1) Maximum tightening torque: M10 capped thread: 35 Nm, screw penetration depth 9 mm. 2) Temperature rise and power dissipation for operation in LV HRC fuse base. 3) Cooling air speed 1 m/s. In the case of natural air cooling, reduction of 5 %. 4) Maximum tightening torque: - M10 thread (with indicator): 40 Nm - M10 capped thread: 50 Nm, screw penetration depth 9 mm. - M24 x 1.5 thread: 60 Nm. 5) Temperature of water-cooled busbar max. +45 C. 6) Maximum tightening torque: M10 capped thread: 35 Nm, screw penetration depth 9 mm. 7) Cooling air speed 0.5 m/s. In the case of natural air cooling, reduction of 5 %. 8) Gauge 140 mm, M12 screw connection. 9) Cooling air speed 2 m/s. 10) Bottom (cooled) connection max. +60 C, top connection (M10) max. +110 C. 11) M12 screw connection. 12) Rated voltage according to UL. 13) DC rated voltage: See page 179, "Use with direct current". 14) Minimum 50 kA, higher values on request. 15) I2t at UVSI 1500 V, at Un 1250 V is k = 0.79. In the case of 3NB1234-3KK20 I2t at UVSI 1400 V, at Un 900 V is I2t 180000 A2s. 84 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Load rating of SITOR fuse links with 3NH LV HRC fuse bases Use in switch disconnectors and fuse bases When using SITOR semiconductor fuses in 3KL and 3KM switch disconnectors with fuses and with 3NP fuse switch disconnectors and 3NH LV HRC fuse bases, the rated current of the fuse must sometimes be reduced due to the higher power loss compared with LV HRC fuses for line protection. Sometimes when using SITOR semiconductor fuses, the currents designated can be higher than the rated currents of the switches and fuse bases. These higher currents only apply when using SITOR semiconductor fuses and cannot be used when using the devices with standard LV HRC fuses. You will find further details in the following selection tables. When using SITOR semiconductor fuses of the 3NC24, 3NC84, 3NE33 and 3NE43 series, the standard switching capacity of the fuse must not be used as the blades of these fuses (in contrast to LV HRC fuses) are slit. Occasional switching of currents up to the rated current of the fuses is permissible. SITOR fuse links The use of SITOR semiconductor fuses > 63 A for overload protection is not permitted - even if gR fuses are used (exception: 3NE1). The operational voltage is limited by the rated voltage of the switch disconnector or the fuse. If switching without load, the limit value is the rated insulation voltage of the switch disconnector. The 3NE1 "double protection fuses" can be used as full range fuses (gS) both for semiconductor and line protection. For further information on the assignment of SITOR semiconductor fuses to the fuse bases and safety switching devices, please refer to the tables on page 85 ff. O min Cu Article No. In A 3NC2423-0C/3C 3NC2425-0C/3C 3NC2427-0C/3C 150 200 250 3NC2428-0C/3C 3NC2431-0C/3C 3NC2432-0C/3C Un Size VL V AC Operational class 500 500 500 gR gR gR 3 3 3 0.85 0.85 0.85 70 95 120 300 350 400 500 500 500 gR gR aR 3 3 3 0.85 0.85 0.85 185 240 240 3NC3336-1U 3NC3337-1U 3NC3338-1U 630 710 800 1000 1000 1000 aR aR aR 3 3 3 0.85 0.85 0.85 2 x (40 x 5) 2 x (50 x 5) 2 x (40 x 8) 3NC3340-1U 3NC3341-1U 3NC3342-1U 3NC3343-1U 900 1000 1100 1250 1000 1000 800 800 aR aR aR aR 3 3 3 3 0.90 0.90 0.90 0.90 2 x (40 x 8) 2 x (50 x 8) 2 x (50 x 8) 2 x (50 x 8) 3NC3430-1U 3NC3432-1U 3NC3434-1U 315 400 500 1250 1250 1250 aR aR aR 3 3 3 0.95 0.95 0.90 2 x 95 2 x 120 2 x 150 3NC3436-1U 3NC3438-1U 630 800 1250 1100 aR aR 3 3 0.95 0.90 2 x (40 x 5) 2 x (40 x 8) 3NC8423-0C/-3C 3NC8425-0C/-3C 3NC8427-0C/-3C 150 200 250 690 690 690 gR gR gR 3 3 3 0.85 0.85 0.85 70 95 120 3NC8431-0C/-3C 3NC8434-0C/-3C 3NC8444-3C 350 500 1000 690 690 600 gR gR aR 3 3 3 0.85 0.85 0.95 240 2 x 150 2 x (60 x 6) 3NE1020-2 3NE1021-0 3NE1021-2 80 100 100 690 690 690 gR gS gR 00 00 00 1.0 1.0 1.0 25 35 35 3NE1022-0 3NE1022-2 125 125 690 690 gS gR 00 00 1.0 1.0 50 50 3NE1224-0 3NE1224-2/-3 160 160 690 690 gS gR 1 1 1.0 1.0 70 70 3NE1225-0 3NE1225-2/-3 200 200 690 690 gS gR 1 1 1.0 1.0 3NE1227-0 3NE1227-2/-3 250 250 690 690 gS gR 1 1 3NE1230-0 3NE1230-2/-3 315 315 690 690 gS gR 3NE1331-0 3NE1331-2/-3 350 350 690 690 3NE1332-0 3NE1332-2/-3 400 400 3NE1333-0 3NE1333-2/-3 3NH LV HRC fuse bases Article No. Size Imax 3NH3430/20 3 3 3 150 190 240 128 162 204 3 3 3 285 330 400 242 281 340 3 3 3 560 600 660 476 510 561 3 3 3 3 750 850 900 950 675 765 810 855 3 3 3 310 390 460 295 371 414 3 3 560 690 532 656 3 3 3 135 180 250 115 153 213 3 3 3 315 450 800 268 383 800 00 00 00 80 100 100 80 100 100 00 00 125 125 125 125 1 1 160 160 160 160 95 95 1 1 200 200 200 200 1.0 1.0 120 120 1 1 250 250 250 250 1 1 1.0 1.0 2 x 70 2 x 70 3NH3330/20 2 2 315 315 315 315 gS gR 2 2 1.0 1.0 2 x 95 2 x 95 3NH3330/20 2 2 350 350 350 350 690 690 gS gR 2 2 1.0 1.0 2 x 95 2 x 95 2 2 400 400 400 400 450 450 690 690 gS gR 2 2 1.0 1.0 2 x 120 2 x 120 3 3 450 450 450 450 3NE1334-0 3NE1334-2/-3 500 500 690 690 gS gR 2 2 1.0 1.0 2 x 120 2 x 120 3 3 500 500 500 500 3NE1435-0 3NE1435-2/-3 560 560 690 690 gS gR 3 3 1.0 1.0 2 x 150 2 x 150 3 3 560 560 560 560 mm2 IVL A 3NH3430/20 3NH3430/20 3NH3430/20 3NH3030/4030 3NH3230/4230 3NH3430/20 Siemens * 10/2015 85 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design SITOR fuse links O min Cu Article No. In A 3NE1436-0 3NE1436-2/-3 630 630 3NE1437-0 3NE1437-1 Un Size VL V AC Operational class 690 690 gS gR 3 3 1.0 1.0 710 710 690 600 gS gR 3 3 3NE1437-2/-3 710 690 gR 3NE1438-0 3NE1438-1 3NE1438-2/-3 800 800 800 690 600 690 gS gR gR 3NE1447-2/-3 3NE1448-2/-3 670 850 690 690 3NE1802-0 3NE1803-0 3NE1813-0 3NE1814-0 40 35 16 20 3NE1815-0 3NE1817-0 3NE1818-0 3NE1820-0 3NH LV HRC fuse bases Article No. Size Imax 2 x 185 2 x 185 3 3 630 630 630 630 1.0 1.0 2 x (40 x 5) 2 x (40 x 5) 3 3 710 690 710 690 3 1.0 2 x (40 x 5) 3 3 3 1.0 1.0 1.0 2 x (50 x 5) 2 x (50 x 5) 2 x (50 x 5) gR gR 3 3 1.0 1.0 2 x (40 x 5) 2 x (40 x 8) 690 690 690 690 gS gS gS gS 000 000 000 000 1.0 1.0 1.0 1.0 10 6 1.5 2.5 25 50 63 80 690 690 690 690 gS gS gS gS 000 000 000 000 1.0 1.0 1.0 1.0 4 10 16 25 3NE3221 3NE3222 3NE3224 100 125 160 1000 1000 1000 aR aR aR 1 1 1 0.95 0.95 1.0 35 50 70 3NE3225 3NE3227 3NE3230-0B 200 250 315 1000 1000 1000 aR aR aR 1 1 1 1.0 1.0 0.95 95 120 185 3NE3231 3NE3232-0B 3NE3233 350 400 450 1000 1000 1000 aR aR aR 1 1 1 0.95 0.90 0.90 240 240 2x 150 3NE3332-0B 3NE3333 3NE3334-0B 400 450 500 1000 1000 1000 aR aR aR 2 2 2 1.0 1.0 1.0 240 2 x 150 2 x 150 3NE3335 3NE3336 3NE3337-8 560 630 710 1000 1000 900 aR aR aR 2 2 2 1.0 1.0 1.0 3NE3338-8 3NE3340-8 800 900 800 690 aR aR 2 2 3NE4101 3NE4102 3NE4117 3NE4118 32 40 50 63 1000 1000 1000 1000 gR gR gR aR 3NE4120 3NE4121 3NE4122 3NE4124 80 100 125 160 1000 1000 1000 1000 3NE4327-0B 3NE4330-0B 250 315 3NE4333-0B 3NE4334-0B 3NE4337 mm2 IVL A 3 710 710 3 3 3 800 750 800 800 750 800 3 3 00 670 850 40 670 850 40 00 00 00 35 16 20 35 16 20 00 00 00 00 25 50 63 80 25 50 63 80 1 1 1 100 125 160 95 119 160 1 1 2 200 250 305 200 250 290 3NH3330/20 2 2 2 335 380 425 318 342 383 3NH3430/20 3 3 3 400 450 500 400 450 500 2 x 185 2 x 185 2 x (40 x 5) 3 3 3 560 630 680 560 630 680 0.95 0.95 2 x 240 2 x (40 x 8) 3 3 700 750 665 713 0 0 0 0 0.9 0.9 0.9 0.9 6 10 10 16 0/1 0/1 0/1 0/1 32 40 50 63 29 36 45 57 aR aR aR aR 0 0 0 0 0.9 0.9 0.9 0.9 25 35 50 70 0/1 0/1 0/1 0/1 80 100 125 160 72 90 113 144 800 800 aR aR 2 2 0.85 0.85 150 240 3NH3330/20 2 2 240 300 204 255 450 500 710 800 800 800 aR aR aR 2 2 2 0.85 0.85 0.95 2 x (30 x 5) 2 x (30 x 5) 2 x (50 x 5) 3NH3430/20 3 3 3 425 475 630 361 404 599 3NE8015-1 3NE8003-1 25 35 690 690 gR gR 00 00 0.95 0.95 4 6 3NH3030/4030 00 00 25 35 24 33 3NE8017-1 3NE8018-1 3NE8020-1 50 63 80 690 690 690 gR gR aR 00 00 00 0.90 0.95 0.95 10 16 25 00 00 00 50 63 80 45 60 76 3NE8021-1 3NE8022-1 3NE8024-1 100 125 160 690 690 690 aR aR aR 00 00 00 0.95 0.95 0.95 35 50 70 00 00 00 100 125 160 95 119 152 Un = Rated voltage In = Rated current VL = Varying load factor Omin Cu = Required conductor cross-section Cu Imax = Maximum permissible current IVL = Maximum permissible current with varying load 86 Siemens * 10/2015 3NH3430/20 3NH3030/4030 3NH3230/4230 3NH3330/20 3NH3120/4230 3NH3030/4030 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Load rating of SITOR fuse links with 3NP LV HRC fuse switch disconnectors SITOR fuse links O min Cu 3NP LV HRC fuse switch disconnectors Add-on units Article No. In Un A V AC 3NC2423-0C/ 150 3NC2423-3C 3NC2425-0C/ 200 3NC2425-3C 3NC2427-0C/ 250 3NC2427-3C 3NC2428-0C/ 300 3NC2428-3C 3NC2431-0C/ 350 3NC2431-3C 3NC2432-0C/ 400 3NC2432-3C Size VL mm2 Article No. Size Imax IVL A 3NP54 Article No. Size Imax IVL A Article No. Size Imax IVL A 500 3 0.85 70 3 145 125 3NP4470 3 140 120 3NP1163 3 140 119 500 3 0.85 95 3 180 165 3 175 160 3 175 149 500 3 0.85 120 3 225 205 3 220 200 3 220 187 500 3 0.85 185 3 255 240 3 250 235 3 250 213 500 3 0.85 240 3 330 295 3 320 290 3 320 272 500 3 0.85 240 3 400 380 3 370 370 3 370 315 500 425 3NP1163 3 500 425 3NC3336-1U 3NC3337-1U 3NC3338-1U 630 710 800 1000 3 1000 3 1000 3 0.85 2 x (40 x 5) 3NP54 0.85 2 x (50 x 5) 0.85 2 x (40 x 8) 3 3 3 530 451 3NP4470 3 570 485 630 536 3NC3340-1U 3NC3341-1U 3NC3342-1U 3NC3343-1U 900 1000 1100 1250 1000 1000 800 800 0.90 0.90 0.90 0.90 3 3 3 3 700 770 800 850 3NC3430-1U 3NC3432-1U 3NC3434-1U 315 400 500 1250 3 1250 3 1250 3 0.95 2 x 95 0.95 2 x 120 0.90 2 x 150 3 3 3 295 280 3NP4470 3 355 337 3 440 396 3 280 266 3NP1163 3 340 323 3 400 360 3 280 266 340 323 400 360 3NC3436-1U 3NC3438-1U 630 800 1250 3 1100 3 0.95 2 x (40 x 5) 0.90 2 x (40 x 8) 3 3 520 494 625 594 460 437 460 437 690 3 0.85 70 3 135 125 3NP4470 3 120 120 3NP1163 3 120 102 690 3 0.85 95 3 180 165 3 160 160 3 160 136 690 3 0.85 120 3 225 205 3 200 200 3 200 170 3NC8431-0C 350 690 3NC8431/-3C 3NC8434-0C/ 500 690 3NC8434-3C 3NC8444-3C 1000 600 3 0.85 240 3 300 275 3 270 270 3 270 230 3 0.85 2 x 150 3 425 400 3 385 385 3 385 327 3NC8423-0C/ 150 3NC8423-3C 3NC8425-0C/ 200 3NC8425-3C 3NC8427-0C/ 250 3NC8427-3C 3 3 3 3 2 x (40 x 8) 2 x (50 x 8) 2 x (50 x 8) 2 x (50 x 8) 3NP54 3NP54 3 0.95 2 x (60 x 6) 3NE1022-0 80 100 100 125 690 690 690 690 00 00 00 00 1.0 1.0 1.0 1.0 25 35 35 50 3NE1022-2 125 690 00 1.0 50 3NE1224-0 160 3NE1224-2/-3 160 690 690 1 1 1.0 1.0 70 70 3NP52/42 1 1 3NE1225-0 200 3NE1225-2/-3 200 690 690 1 1 1.0 1.0 95 95 3NE1227-0 250 3NE1227-2/-3 250 690 690 1 1 1.0 1.0 120 120 3NE1230-0 315 3NE1230-2/-3 315 690 690 1 1 1.0 1.0 3NE1331-0 350 3NE1331-2/-3 350 690 690 2 2 3NE1332-0 400 3NE1332-2/-3 400 690 690 3NE1333-0 450 3NE1333-2/-3 450 3NE1020-2 3NE1021-0 3NE1021-2 3NP50 Article No. Size Imax IVL A 630 693 720 765 3 800 760 00 00 00 00 80 100 100 125 00 125 125 3 80 3NP4070 00 100 00 100 00 125 00 00 80 100 98 125 3 80 3NP1133 00 100 00 98 00 125 00 120 120 00 80 100 95 120 80 100 95 120 115 115 160 160 3NP53/43 2 160 160 2 160 160 3NP1143 1 160 160 1 160 160 3NP1153 2 150 150 2 160 160 160 160 1 1 200 200 200/ 200/ 190 190 2 2 200 200 200 200 1 1 190 190 180 180 2 2 200 200 190 190 1 1 250 250 250/ 250/ 235 235 2 2 250 250 250 250 1 1 235 235 220 220 2 2 250 250 235 235 2 x 70 2 x 70 3NP53/43 2 2 315 315 315 315 3NP1153 2 2 290 290 278 278 1.0 1.0 2 x 95 2 x 95 3NP53/43 2 2 350 350 3NP54/44 3 350 350 3 350 350 3NP1153 2 350 350 2 315 315 3NP1163 3 300 300 3 340 340 330 330 2 2 1.0 1.0 2 x 95 2 x 95 2 2 400 400 400 400 3 3 400 400 400 400 2 2 340 340 328 328 380 380 370 370 690 690 2 2 1.0 1.0 2 x 120 2 x 120 3NP54/44 3 3NP54 3 450 450 450 450 3NP4470 3 425 425 3NP1163 3 3 450 450 430 430 3NE1334-0 500 3NE1334-2/-3 500 690 690 2 2 1.0 1.0 2 x 120 2 x 120 3NP54/44 3 3NP54 3 500 500 500 500 3NP4470 3 465 465 3 3 500 500 475 475 3NE1435-0 560 3NE1435-2/-3 560 690 690 3 3 1.0 1.0 2 x 150 2 x 150 3NP54/44 3 3NP54 3 560 560 560 560 3NP4470 3 540 540 3NP1163 3 3 560 560 555 555 3NE1436-0 630 3NE1436-2/-3 630 690 690 3 3 1.0 1.0 2 x 185 2 x 185 3 3 630 630 625 625 3 3 620 620 600 600 3 3 630 630 620 620 3NE1437-0 710 3NE1437-1 710 3NE1437-2/-3 710 690 600 690 3 3 3 1.0 1.0 1.0 2 x (40 x 5) 2 x (40 x 5) 2 x (40 x 5) 3 3 3 710 710 690 690 685 685 3 3 690 650 670 630 - 3NE1438-0 800 3NE1438-1 800 3NE1438-2/-3 800 690 600 690 3 3 3 1.0 1.0 1.0 2 x (50 x 5) 3NP54 2 x (50 x 5) 2 x (50 x 5) 3 3 3 800 800 3NP4470 3 750 750 3 770 770 750 700 710 630 - 3NE1447-2/-3 670 3NE1448-2/-3 850 690 690 3 3 1.0 1.0 2 x (40 x 5) 2 x (40 x 8) 3 3 655 655 820 820 3 3 - Siemens * 10/2015 87 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design SITOR fuse links O min Cu 3NP LV HRC fuse switch disconnectors Add-on units Article No. In Un Size VL A V AC 3NE1802-0 3NE1803-0 3NE1813-0 3NE1814-0 40 35 16 20 690 690 690 690 000 000 000 000 3NE1815-0 3NE1817-0 3NE1818-0 3NE1820-0 25 50 63 80 690 690 690 690 000 000 000 000 3NE3221 3NE3222 3NE3224 100 125 160 1000 1 1000 1 1000 1 0.95 35 0.95 50 1.0 70 3NE3225 3NE3227 3NE3230-0B 200 250 315 1000 1 1000 1 1000 1 1.0 95 1.0 120 0.95 185 3NE3231 3NE3232-0B 3NE3233 350 400 450 1000 1 1000 1 1000 1 0.95 240 0.90 240 0.90 2 x 150 3NE3332-0B 3NE3333 3NE3334-0B 3NE3335 400 450 500 560 1000 1000 1000 1000 2 2 2 2 1.0 1.0 1.0 1.0 240 2 x 150 2 x 150 2 x 185 3NE3336 3NE3337-8 3NE3338-8 3NE3340-8 630 710 800 900 1000 900 800 690 2 2 2 2 1.0 1.0 0.95 0.95 2 x 185 2 x (40 x 5) 2 x 240 2 x (40 x 8) 3NE4101 3NE4102 3NE4117 3NE4118 32 40 50 63 1000 1000 1000 1000 0 0 0 0 0.9 0.9 0.9 0.9 6 10 10 16 3NE4120 3NE4121 3NE4122 3NE4124 80 100 125 160 1000 1000 1000 1000 0 0 0 0 0.9 0.9 0.9 0.9 25 35 50 70 3NE4327-0B 250 800 2 0.85 150 3NP53/54 2/3 3NE4330-0B 315 800 2 0.85 240 2/3 3NE4333-0B 450 800 2 0.85 2 x (30 x 5) 2/3 3NE4334-0B 3NE4337 500 710 800 800 2 2 0.85 2 x (30 x 5) 3NP54 0.95 2 x (50 x 5) 3 3 3NE8015-1 3NE8003-1 3NE8017-1 25 35 50 690 690 690 00 00 00 0.95 4 0.95 6 0.90 10 3NP50/ 00 3NP4070 00 00 25 33 45 24 31 41 3NP1133 00 00 00 25 32 43 24 30 39 3NE8018-1 3NE8020-1 63 80 690 690 00 00 0.95 16 0.95 25 00 00 54 68 51 65 00 00 52 65 49 62 3NE8021-1 3NE8022-1 3NE8024-1 100 125 160 690 690 690 00 00 00 0.95 35 0.95 50 0.95 70 3NP50/ 00 3NP4070 00 00 Un = Rated voltage In = Rated current VL = Varying load factor mm2 Article No. 1.0 1.0 1.0 1.0 10 6 1.5 2.5 3NP35/ 000 40 3NP4010 000 35 000 16 000 20 1.0 1.0 1.0 1.0 4 10 16 25 88 3NP52/42 1 1 1 3NP53 3NP54 3NP52 = Maximum permissible current = Maximum permissible current with varying load Siemens * 10/2015 A 000 000 000 000 Omin Cu = Required conductor cross-section Cu Imax IVL Size Imax IVL 25 50 63 80 Article No. Size Imax IVL A Article No. Size Imax IVL A Article No. Size Imax IVL A 40 35 16 20 3NP50/ 00 3NP4070 00 00 00 40 35 16 20 40 35 16 20 3NP1123 000 000 000 000 40 35 16 20 40 35 16 20 3NP1133 00 00 00 00 40 35 16 20 40 35 16 20 25 50 63 80 00 00 00 00 25 50 63 80 25 50 63 80 000 000 000 000 25 50 63 80 25 50 63 80 00 00 00 00 25 50 63 80 25 50 63 80 2 2 2 100 95 3NP1143 1 120 114 1 150 150 1 88 84 3NP1153 2 102 97 2 130 130 2 95 90 110 105 140 140 163 163 195 195 2 2 2 175 175 210 210 270 257 2 2 2 290 276 320 288 360 324 95 90 3NP53/ 110 110 3NP43 140 140 1 1 2 175 175 2 210 210 2 285 280 3NP4370 2 190 190 230 230 270 270 2 2 2 310 300 330 320 360 340 290 290 310 310 330 330 3 3 3 3 360 400 450 510 345 3NP4470 3 385 3 450 3 510 3 345 385 430 490 345 3NP1153 2 385 430 490 3 3 3 3 580 630 630 630 580 630 630 630 560 590 605 630 560 590 605 630 1 1 1 1 32 40 50 63 29 36 45 57 32 38 45 59 29 34 41 53 1 1 1 1 80 95 120 150 72 86 108 135 76 90 115 144 68 81 104 130 210/ 220 270/ 285 400/ 420 205/ 3NP4470 3 210 255/ 3 265 370/ 3 380 450 400 600 570 89 85 106 101 130 124 2 2 2 3 3 3 3 3NP4270 1 1 1 1 1 1 1 1 3 3 1 1 330 330 3NP1163 3 3 3 3 360 375 420 475 360 375 420 475 3 3 3 3 540 580 605 630 540 580 575 599 30 35 42 55 27 32 38 50 71 84 107 134 64 76 96 121 3NP1143 1 1 1 1 1 1 1 1 205 200 3NP1153 2 195 166 3NP1163 3 215 183 260 250 240 204 3 270 230 375 360 3 370 315 410 395 540 540 3 3 410 349 540 513 2 3NP1133 00 00 00 85 81 100 95 120 114 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design SITOR fuse links O min Cu 3NP LV HRC fuse switch disconnectors Busbar devices Article No. In Un A V AC Size VL mm2 Article No. Size Imax IVL A Article No. Size Imax IVL A Article No. Size Imax IVL A 3NC2423-0C/ 150 3NC2423-3C 3NC2425-0C/ 200 3NC2425-3C 3NC2427-0C/ 250 3NC2427-3C 500 3 0.85 70 3NP4476 3 140 120 3NP1163 3 150 128 500 3 0.85 95 3 175 160 3 190 162 500 3 0.85 120 3 215 195 3 237 201 3NC2428-0C/ 300 3NC2428-3C 3NC2431-0C 350 3NC2431-/3C 3NC2432-0C/ 400 3NC2432-3C 500 3 0.85 185 3 245 230 3 285 242 500 3 0.85 240 3 315 285 3 332 282 500 3 0.85 240 3 360 360 3 380 323 3NP1163 3 3 3 500 425 560 476 630 536 3NC3336-1U 3NC3337-1U 3NC3338-1U 630 710 800 1000 3 1000 3 1000 3 3NC3340-1U 3NC3341-1U 3NC3342-1U 3NC3343-1U 900 1000 1100 1250 1000 1000 800 800 3NC3430-1U 3NC3432-1U 3NC3434-1U 315 400 500 1250 3 1250 3 1250 3 3NC3436-1U 3NC3438-1U 630 800 3 3 3 3 0.85 2 x (40 x 5) 0.85 2 x (50 x 5) 0.85 2 x (40 x 8) 0.90 2 x (40 x 8) 3 3 3 3 0.90 2 x (50 x 8) 0.90 2 x (50 x 8) 0.90 2 x (50 x 8) 630 630 630 630 Size Imax IVL A 567 567 567 567 280 266 340 323 400 360 3NP1163 3 3 3 285 271 340 323 425 383 1250 3 1100 3 0.95 2 x 95 3NP4476 3 0.95 2 x 120 3 0.90 2 x 150 3 0.95 2 x (40 x 5) 3 0.90 2 x (40 x 8) 460 437 3 3 535 508 520 494 690 3 0.85 70 3NP4476 3 120 120 3NP1163 3 140 120 690 3 0.85 95 3 155 155 3 190 155 690 3 0.85 120 3 195 195 3 240 195 3NC8431-0C/ 350 690 3NC8431-3C 3NC8434-0C/ 500 690 3NC8434-3C 3NC8444-3C 1000 600 3 0.85 240 3 260 260 3 300 260 3 0.85 2 x 150 3 375 375 3 385 375 3 630 630 3 600 630 3NC8423-0C/ 150 3NC8423-3C 3NC8425-0C/ 200 3NC8425-3C 3NC8427-0C/ 250 3NC8427-3C Article No. 3 0.95 2 x (60 x 6) 3NE1020-2 3NE1021-0 3NE1021-2 80 100 100 690 690 690 00 00 00 1.0 1.0 1.0 25 35 35 3NP4076 00 00 00 80 80 100 100 98 98 3NP1133 00 80 80 00 100 100 00 95 95 3NE1022-0 3NE1022-2 125 125 690 690 00 00 1.0 1.0 50 50 00 00 125 125 120 120 00 120 120 00 115 115 3NE1224-0 160 3NE1224-2/-3 160 690 690 1 1 1.0 1.0 70 70 3NP4276 1 1 3NE1225-0 200 3NE1225-2/-3 200 690 690 1 1 1.0 1.0 95 95 3NE1227-0 250 3NE1227-2/-3 250 690 690 1 1 1.0 1.0 120 120 3NE1230-0 315 3NE1230-2/-3 315 690 690 1 1 1.0 1.0 2 x 70 2 x 70 3NE1331-0 350 3NE1331-2/-3 350 690 690 2 2 1.0 1.0 2 x 95 2 x 95 3NP4376 2 2 3NE1332-0 400 3NE1332-2/-3 400 690 690 2 2 1.0 1.0 2 x 95 2 x 95 2 2 3NE1333-0 450 3NE1333-2/-3 450 690 690 2 2 1.0 1.0 3NE1334-0 500 3NE1334-2/-3 500 690 690 2 2 3NE1435-0 560 3NE1435-2/-3 560 690 690 3NE1436-0 630 3NE1436-2/-3 630 160 160 3NP4376 2 160 160 2 160 160 3NP1143 1 160 160 1 160 160 3NP1153 2 152 152 2 160 160 160 160 1 1 200 200 190 190 2 2 200 200 200 200 1 1 200 200 180 180 2 2 200 200 190 190 1 1 250 250 235 235 2 2 250 250 250 250 1 1 238 238 213 213 2 2 250 250 235 235 2 2 315 315 315 315 2 2 315 315 315 315 350 350 3NP4476 3 350 350 3 350 350 3NP1153 2 350 350 2 350 350 3NP1163 3 330 330 3 350 350 350 350 400 400 400 400 3 3 400 400 400 400 380 380 360 360 3 3 400 400 400 400 2 x 120 2 x 120 3 3 450 450 425 425 3 3 430 430 420 420 1.0 1.0 2 x 120 2 x 120 3 3 480 480 450 450 3 3 450 450 450 450 3 3 1.0 1.0 2 x 150 2 x 150 3NP4476 3 3 510 510 500 500 3NP1163 3 3 520 520 510 510 690 690 3 3 1.0 1.0 2 x 185 2 x 185 3 3 535 535 520 520 3 3 585 585 570 570 3NE1437-0 710 3NE1437-1 710 3NE1437-2/-3 710 690 600 690 3 3 3 1.0 1.0 1.0 2 x (40 x 5) 2 x (40 x 5) 2 x (40 x 5) 3 3 3 600 600 570 570 540 540 3 3 3 605 605 590 590 580 580 3NE1438-0 800 3NE1438-1 800 3NE1438-2/-3 800 690 600 690 3 3 3 1.0 1.0 1.0 2 x (50 x 5) 3NP4476 3 2 x (50 x 5) 3 2 x (50 x 5) 3 640 630 600 600 580 580 3NP1163 3 3 3 630 630 610 610 600 600 3NE1447-2/-3 670 3NE1448-2/-3 850 690 690 3 3 1.0 1.0 2 x (40 x 5) 2 x (40 x 8) 530 530 630 630 3 3 575 575 630 630 3 3 2 2 Siemens * 10/2015 89 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design SITOR fuse links O min Cu 3NP LV HRC fuse switch disconnectors Busbar devices Article No. In Un Size VL A V AC 3NE1802-0 3NE1803-0 3NE1813-0 3NE1814-0 40 35 16 20 690 690 690 690 000 000 000 000 3NE1815-0 3NE1817-0 3NE1818-0 3NE1820-0 25 50 63 80 690 690 690 690 000 000 000 000 3NE3221 3NE3222 3NE3224 100 125 160 1000 1 1000 1 1000 1 0.95 35 0.95 50 1.0 70 3NE3225 3NE3227 3NE3230-0B 200 250 315 1000 1 1000 1 1000 1 1.0 95 1.0 120 0.95 185 3NE3231 3NE3232-0B 3NE3233 350 400 450 1000 1 1000 1 1000 1 0.95 240 0.90 240 0.90 2 x 150 3NE3332-0B 3NE3333 3NE3334-0B 3NE3335 400 450 500 560 1000 1000 1000 1000 2 2 2 2 1.0 1.0 1.0 1.0 240 2 x 150 2 x 150 2 x 185 3NE3336 3NE3337-8 3NE3338-8 3NE3340-8 630 710 800 900 1000 900 800 690 2 2 2 2 1.0 1.0 0.95 0.95 2 x 185 2 x (40 x 5) 2 x 240 2 x (40 x 8) 3NE4101 3NE4102 3NE4117 3NE4118 32 40 50 63 1000 1000 1000 1000 0 0 0 0 0.9 0.9 0.9 0.9 6 10 10 16 3NP4276 1 1 1 1 3NE4120 3NE4121 3NE4122 3NE4124 80 100 125 160 1000 1000 1000 1000 0 0 0 0 0.9 0.9 0.9 0.9 25 35 50 70 1 1 1 1 3NE4327-0B 3NE4330-0B 3NE4333-0B 250 315 450 800 800 800 2 2 2 0.85 150 0.85 240 0.85 2 x (30 x 5) 3NE4334-0B 3NE4337 500 710 800 800 2 2 0.85 2 x (30 x 5) 0.95 2 x (50 x 5) 3NE8015-1 3NE8003-1 3NE8017-1 25 35 50 690 690 690 00 00 00 0.95 4 0.95 6 0.90 10 3NP4075/ 00 3NP4076 00 00 25 33 45 24 31 41 3NP1133 00 25 00 35 00 50 24 33 45 3NE8018-1 3NE8020-1 63 80 690 690 00 00 0.95 16 0.95 25 00 00 53 68 50 65 00 60 00 72 57 68 3NE8021-1 3NE8022-1 3NE80s24-1 100 125 160 690 690 690 00 00 00 0.95 35 0.95 50 0.95 70 3NP4075/ 00 3NP4076 00 00 Un = Rated voltage In = Rated current VL = Varying load factor mm2 Article No. 1.0 1.0 1.0 1.0 10 6 1.5 2.5 3NP4015/ 000 40 3NP4016 000 35 000 16 000 20 1.0 1.0 1.0 1.0 4 10 16 25 90 3NP4276 1 1 1 1 1 = Maximum permissible current = Maximum permissible current with varying load Siemens * 10/2015 A 000 000 000 000 Omin Cu = Required conductor cross-section Cu Imax IVL Size Imax IVL 25 50 63 80 40 35 16 20 25 50 63 80 Article No. Size Imax IVL A 3NP4075/ 00 40 3NP4076 00 35 00 16 00 20 00 00 00 00 25 50 63 80 Article No. Size Imax IVL A Article No. Size Imax IVL A 40 35 16 20 3NP1123 000 000 000 000 40 35 16 20 40 35 16 20 3NP1133 00 00 00 00 40 35 16 20 40 35 16 20 25 50 63 80 000 000 000 000 25 50 63 80 25 50 63 80 00 00 00 00 25 50 63 80 25 50 63 80 95 90 3NP4376 2 115 109 2 150 150 2 100 95 3NP1143 1 125 119 1 160 160 1 95 90 3NP1153 2 113 107 2 140 140 2 100 95 125 119 150 150 185 185 225 225 2 2 2 200 200 250 250 285 285 170 170 200 200 2 2 2 180 180 215 215 265 252 2 2 2 310 310 330 330 360 360 2 2 2 280 266 310 279 330 297 85 81 100 95 125 120 1 1 3NP4476 3 3 3 3 340 370 410 450 340 370 410 450 3NP1163 3 3 3 3 360 390 415 460 360 390 415 460 3 3 3 3 500 510 520 530 500 510 520 530 3 3 3 3 500 500 500 500 500 500 475 475 32 38 45 59 29 34 41 53 32 40 50 60 29 36 45 54 76 90 115 144 68 81 104 130 1 1 1 1 76 93 115 144 68 84 104 130 3NP4476 3 3 3 235 210 280 260 390 370 3NP1163 3 3 3 220 187 255 217 355 302 3 3 415 400 480 480 3 3 390 332 500 475 3NP1143 1 1 1 1 3NP1133 00 85 81 00 100 95 00 115 109 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Load rating of SITOR fuse links with 3KL/3KM LV HRC fuse switch disconnectors SITOR fuse links O min Cu 3KL/3KM switch disconnectors with fuses 3KL... add-on devices Article No. In Un A V AC Size VL mm2 Article No. Size Imax IVL A 3KM... busbar devices Article No. Size Imax IVL A 3NC2423-0C/ 150 3NC2423-3C 3NC2425-0C/ 200 3NC2425-3C 3NC2427-0C/ 250 3NC2427-3C 500 3 0.85 70 3 145 123 3KL62 3 150 128 500 3 0.85 95 3 180 153 3 190 162 500 3 0.85 120 3 225 191 3 240 204 3NC2428-0C/ 300 3NC2428-3C 3NC2431-0C/ 350 3NC2431-3C 3NC2432-0C/ 400 3NC24323C 500 3 0.85 185 3 255 217 3 270 230 500 3 0.85 240 3 330 281 3 345 293 500 3 0.85 240 3 400 340 3 400 340 3 480 408 3KL61 3NC3336-1U 3NC3337-1U 3NC3338-1U 630 710 800 1000 3 1000 3 1000 3 0.85 2 x (40 x 5) 3KL62 0.85 2 x (50 x 5) 0.85 2 x (40 x 8) 3 3 3 500 425 3KL61 540 459 600 510 3NC3340-1U 3NC3341-1U 3NC3342-1U 3NC3343-1U 900 1000 1100 1250 1000 1000 800 800 0.90 0.90 0.90 0.90 3 3 3 3 650 720 800 800 3NC3430-1U 3NC3432-1U 315 400 1250 3 1250 3 0.95 2 x 95 0.95 2 x 120 3KL61 3 3 285 271 3KL62 365 347 3 3 300 285 380 361 3NC3434-1U 3NC3436-1U 3NC3438-1U 500 630 800 1250 3 1250 3 1100 3 0.90 2 x 150 0.95 2 x (40 x 5) 0.90 2 x (40 x 8) 3KL62 3 3 3 425 383 500 475 650 618 3 3 450 405 540 513 690 3 0.85 70 3 135 115 3KL62 3 140 119 690 3 0.85 95 3 180 153 3 190 162 690 3 0.85 120 3 225 191 3 240 204 3NC8431-0C/ 350 690 3NC8431-3C 3NC8434-0C/ 500 690 3NC8434-3C 3NC8444-3C 1000 600 3 0.85 240 3 300 255 3 315 268 3 0.85 2 x 150 3 425 361 3 450 383 630 630 3NC8423-0C/ 150 3NC8423-3C 3NC8425-0C/ 200 3NC8425-3C 3NC8427-0C/ 250 3NC8427-3C 3 3 3 3 2 x (40 x 8) 2 x (50 x 8) 2 x (50 x 8) 2 x (50 x 8) 3KL61 Article No. Size Imax IVL A Article No. Size Imax IVL A 585 648 720 720 3 0.95 2 x (60 x 6) 3KL62 3 800 760 3KL61 3 3NE1020-2 3NE1021-0 3NE1021-2 80 100 100 690 690 690 00 00 00 1.0 1.0 1.0 25 35 35 00 00 00 80 80 3KL53 100 100 100 100 00 80 80 3KM52 00 100 100 00 100 100 00 80 80 00 100 100 3KM53 00 100 100 00 80 80 00 100 100 3NE1022-0 3NE1022-2 125 125 690 690 00 00 1.0 1.0 50 50 00 00 125 125 125 125 00 125 125 00 125 125 00 125 125 00 125 125 00 100 100 00 125 125 3NE1224-0 160 3NE1224-2/-3 160 690 690 1 1 1.0 1.0 70 70 1 1 160 160 3KL57 160 160 2 2 160 160 3KM55 160 160 1 1 160 160 3KM53 160 160 3KM57 00 125 125 2 160 160 3NE1225-0 200 3NE1225-2/-3 200 690 690 1 1 1.0 1.0 95 95 1 1 200 200 200 200 2 2 200 200 200 200 1 1 200 200 200 200 2 2 160 160 200 200 3NE1227-0 250 3NE1227-2/-3 250 690 690 1 1 1.0 1.0 120 120 1 1 250 250 245 245 2 2 250 250 250 250 1 1 250 250 245 245 2 2 200 200 250 250 3NE1230-0 315 3NE1230-2/-3 315 690 690 1 1 1.0 1.0 2 x 70 2 x 70 3KL57 2 2 315 315 280 280 3KM57 2 2 315 315 280 280 2 250 250 3NE1331-0 350 3NE1331-2/-3 350 690 690 2 2 1.0 1.0 2 x 95 2 x 95 3KL57 2 2 330 330 3KL61 300 300 3 3 350 350 3KM57 350 350 2 2 330 330 300 300 3NE1332-0 400 3NE1332-2/-3 400 690 690 2 2 1.0 1.0 2 x 95 2 x 95 2 2 375 375 340 340 3 3 400 400 400 400 2 2 375 375 315 315 3NE1333-0 450 3NE1333-2/-3 450 690 690 2 2 1.0 1.0 2 x 120 2 x 120 3 3 450 450 3KL62 450 450 3 3 450 450 450 500 2 2 400 400 325 325 3NE1334-0 500 3NE1334-2/-3 500 690 690 2 2 1.0 1.0 2 x 120 2 x 120 3 3 500 500 500 500 3 3 500 500 500 500 2 2 400 400 350 350 3NE1435-0 560 3NE1435-2/-3 560 690 690 3 3 1.0 1.0 3 3 560 560 3KL62 560 560 3 3 560 560 560 560 3NE1436-0 630 3NE1436-2/-3 630 690 690 3 3 1.0 1.0 2 x 150 2 x 150 2 x 185 2 x 185 3 3 630 630 615 615 3 3 630 630 630 630 3NE1437-0 710 3NE1437-1 710 3NE1437-2/-3 710 690 600 690 3 3 3 1.0 1.0 1.0 2 x (40 x 5) 2 x (40 x 5) 2 x (40 x 5) 3 3 3 630 630 630 630 630 630 3 3 3 710 710 710 710 700 700 3NE1438-0 800 3NE1438-1 800 3NE1438-2/-3 800 690 600 690 3 3 3 1.0 1.0 1.0 3 3 3 630 630 3KL62 630 630 630 630 3 3 3 800 800 800 800 760 760 3NE1447-2/-3 670 3NE1448-2/-3 850 690 690 3 3 1.0 1.0 2 x (50 x 5) 3KL61 2 x (50 x 5) 2 x (50 x 5) 2 x (40 x 5) 3 3 630 630 630 630 3 3 670 670 790 790 2 x (40 x 8) 3KL52 3KL55 3KL61 3KL61 Siemens * 10/2015 91 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design SITOR fuse links O min Cu 3KL/3KM switch disconnectors with fuses 3KL... add-on devices Article No. In Un Size VL A V AC 3NE1802-0 3NE1803-0 3NE1813-0 3NE1814-0 40 35 16 20 690 690 690 690 000 000 000 000 1.0 1.0 1.0 1.0 10 6 1.5 2.5 3NE1815-0 3NE1817-0 3NE1818-0 3NE1820-0 25 50 63 80 690 690 690 690 000 000 000 000 1.0 1.0 1.0 1.0 4 10 16 25 3NE3221 3NE3222 3NE3224 100 125 160 1000 1 1000 1 1000 1 0.95 35 0.95 50 1.0 70 3NE3225 3NE3227 3NE3230-0B 200 250 315 1000 1 1000 1 1000 1 1.0 95 1.0 120 0.95 185 3NE3231 3NE3232-0B 3NE3233 350 400 450 1000 1 1000 1 1000 1 0.95 240 0.90 240 0.90 2 x 150 3NE3332-0B 3NE3333 3NE3334-0B 3NE3335 400 450 500 560 1000 1000 1000 1000 2 2 2 2 1.0 1.0 1.0 1.0 240 2 x 150 2 x 150 2 x 185 3NE3336 3NE3337-8 3NE3338-8 3NE3340-8 630 710 800 900 1000 900 800 690 2 2 2 2 1.0 1.0 0.95 0.95 2 x 185 2 x (40 x 5) 2 x 240 2 x (40 x 8) 3NE4101 3NE4102 3NE4117 3NE4118 32 40 50 63 1000 1000 1000 1000 0 0 0 0 0.9 0.9 0.9 0.9 6 10 10 16 3NE4120 3NE4121 3NE4122 3NE4124 80 100 125 160 1000 1000 1000 1000 0 0 0 0 0.9 0.9 0.9 0.9 25 35 50 70 3NE4327-0B 3NE4330-0B 3NE4333-0B 250 315 450 800 800 800 2 2 2 0.85 150 3KL57 0.85 240 0.85 2 x (30 x 5) 2 2 2 3NE4334-0B 3NE4337 500 710 800 800 2 2 0.85 2 x (30 x 5) 3KL61 0.95 2 x (50 x 5) 3NE8015-1 3NE8003-1 3NE8017-1 25 35 50 690 690 690 00 00 00 0.95 4 0.95 6 0.90 10 3NE8018-1 3NE8020-1 63 80 690 690 00 00 0.95 16 0.95 25 3NE8021-1 3NE8022-1 3NE8024-1 100 125 160 690 690 690 00 00 00 0.95 35 0.95 50 0.95 70 mm2 Un = Rated voltage In = Rated current VL = Varying load factor Size Imax IVL 3KL50 00 00 00 00 40 35 16 20 40 35 16 20 00 00 00 00 25 50 63 80 25 50 63 80 1 1 1 90 86 3KL57 110 105 140 140 2 2 2 1 1 175 175 210 210 3KL52 3KL55 3KL61 3KL50 3KL52 3KL52 Imax = Maximum permissible current IVL = Maximum permissible current with varying load Siemens * 10/2015 A Article No. Size Imax IVL 3KL52 00 00 00 00 Article No. Size Imax IVL 3KM50 00 00 00 00 40 35 16 20 40 35 16 20 00 00 00 00 25 50 63 80 25 50 63 80 95 90 3KM55 115 109 150 150 1 1 1 90 86 110 105 3KM57 140 140 2 2 2 180 180 220 220 240 228 1 1 175 175 210 210 2 2 2 265 252 290 261 320 288 A 40 35 16 20 40 35 16 20 00 25 00 50 00 63 25 50 63 3KM52 A Article No. Size Imax IVL 3KM52 00 40 00 35 00 16 40 35 16 00 00 00 00 20 25 50 63 20 25 50 63 2 2 95 90 115 109 2 2 2 150 150 180 180 220 220 2 2 2 240 228 265 252 290 261 2 320 288 3 3 3 3 340 380 440 500 340 3KL62 380 440 500 3 3 3 3 360 400 470 530 360 3KM57 400 470 530 2 2 2 2 290 320 360 400 290 3KM57 320 360 400 3 3 3 3 540 600 630 630 540 600 630 630 3 3 3 3 580 640 720 800 580 640 680 750 2 2 2 2 400 400 400 400 400 400 400 400 1 1 1 1 32 40 50 63 29 36 45 57 1 1 1 1 32 40 50 63 29 36 45 57 1 1 1 1 80 95 120 150 72 86 108 135 1 1 1 1 80 95 120 150 72 86 108 135 175 149 3KL61 230 196 340 289 3 3 3 200 170 3KM57 260 221 370 315 2 2 2 175 149 230 196 340 289 3 3 425 361 3KL62 600 570 3 3 450 375 630 600 2 2 380 323 400 400 00 00 00 25 33 45 24 31 41 00 25 00 35 00 50 24 33 45 00 00 54 68 51 65 00 60 00 68 57 65 00 00 00 89 85 3KL53 106 101 130 124 3KL55 Omin Cu = Required conductor cross-section Cu 92 3KM... busbar devices Article No. 3KL52 3KL53 3KM55 3KM50 3KM52 00 89 85 3KM52 00 106 101 00 130 124 00 25 00 33 00 45 24 31 41 00 54 00 68 51 65 3KM52 00 89 85 3KM53 00 106 101 00 130 124 A 00 25 00 35 24 33 00 50 00 60 45 57 00 68 65 00 89 85 00 106 101 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 10,5 c b 70 73 a 70 110 73 110 151 68 68 12,512,5 2,5 32 73 151 2,5 32 13 Dimensional drawings I201_13936 13 10,5 60,4 82,1 6 10 6 70 10 f 10 6 70 32 e d I201_06717 f g 60,4 82,1 3NE143.-0, 3NE143.-1 3NE14. .-3 3NE12. .-3, 3NE13. .-3 Type Dimensions (mm) a 11,5 18 O75 f g 63.5 3NE13. .-3 149 38 19.5 47.5 15 72 60 17,6 10 6 17,6 19 19 59,4 6 59,4 I201_13721a 18 O75 9 10 e I201_13719a 11,5 9 d 71,5 109 141 61 61 71,5 109 141 32 18 c 11,5 32 b 3NE12. .-3 135 31 12.5 40.5 13.5 52 3NC24. .-0C, 3NC84. .-0C 3NC24. .-3C, 3NC84. .-3C Siemens * 10/2015 93 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design H L E R N D M J K J F e A B I201_19436 Type Dimensions D B A 3NE32..-0MK 78,4 52 52 3NE32..-0MK08 52 78,4 52 3NE53..-0MK06 60 137 60 3NE32..-0MK, 3NE323.-0MK08 94 Siemens * 10/2015 E 106,6 106,6 165,5 F 26 26 30 H 25 25 32 J 11 11 11 K 18 18 21,5 L 137 137 196 M 15,7 15,7 15,8 N 12,5 12,5 12,8 R 22,3 22,3 22,1 e 6 6 6 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 28 18 75 52,9 22,5 22,3 9,5 13 102,5 I201_19440 47 77 107 13 11 16 11 19,5 25 11 15 2,5 I201_19437 63 50 68,5 6 52 30 52 3NE18. .-0 49,4 2,2 I201_06713 53,8 79,9 48 6 30 21 35,8 53,3 10 50,3 2,3 10 40 I201_11343 3NE87. .-1 15 6 8,5 21 40,5 20 54 78 100 8,5 15 I201_06714 3NE80..-3MK: 53 79 3NE82..-3MK: 35,8 60 3NE102.-0, 3NE102.-2, 3NE80. .-1 Siemens * 10/2015 95 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 25 68 73 151 2,5 73 149 66,5 73 135 66,5 3 3 32 52 60 6 73 10 10 6 52 6 73 3NE12. .-0, 3NE12. .-2 3NE133.-0, 3NE133.-2 A L D I201_19444 H B K M J Type Dimensions A B D 3NE88..-0MK 53 21 51,5 3NE82..-0MK 62,5 44 70,5 3NE83..-0MK 68 50 70,5 H 15 20 25 J 43 53 61 3NE82..-0MK, 3NE83..-0MK, 3NE88..-0MK 96 Siemens * 10/2015 K 6 6 6 M 35 40 48 L 78,5 135 150 10 25 47,5 60 72 I201_07071 I2_06715 40,5 63,5 60,4 82,1 3NE14. .-2 I201_12427 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses 32,2 18 0,7 LV HRC design d b c a b a 2 16 13 O75 O30 I201_13469 M12 I201_13470 13 18 O75 9 60 17,5 19 6 10 2,6 3NC32. .-1U, 3NC33. .-1U, 3NC34. .-1U Type 3NC32. .-6U, 3NC33. .-6U, 3NC34. .-6U Dimensions (mm) Type Dimensions (mm) b c d a b 3NC32. .-1U 102 51 78 40 3NC32. .-6U 52 50 3NC33. .-1U 139 72 108 61 3NC33. .-6U 73 71 3NC34. .-1U 139 72 108 61 3NC34. .-6U 73 71 14,5 15 14 12,5 12,512,5 110 47 73 a 68 65 125 73,5 141,5 107,5 2,5 10,5 11,5 10,5 a 14,5 12,5 58 f 71 48 60 10 6 10 10,5 6 10,5 11,5 6 10 30 c b I201_06450 e 60 d f g I201_11338 3NE43. .-0B, 3NE4337 3NE41. . 3NE322., 3NE323., 3NE33. . Type Dimensions (mm) a b c d e f g 3NE322. 135 31 12.5 40.5 13.5 52 63.5 3NE323. 135 31 12.5 40.5 13.5 52 63.5 3NE33. . 149 38 19.5 47.5 15 60 72 Siemens * 10/2015 97 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design O28 32 18 96 109 a 10 M10 81 91,5 129 b 70 a 18 O75 9 17,6 59,4 19 6 10 I201_11340a I201_13722a 70 81,5 10 3NE3. . .-0C, 3NE36. .-1C Type 3NE3635-6 Dimensions (mm) a b 3NE3. . .-0C 11.5 161 3NE36. .-1C 13 171 13 90 34 76 110 34 13 13 34 76 110 34 13 90 18 26,5 6 6 72 72 13 90 252 162 3NB335.-1KK26 Type 3NB3358-1KK27, 3NB3362-1KK27 In Un Operational class A V AC Characteristic 3NB3350-1KK26 3NB3351-1KK26 3NB3352-1KK26 1000 1100 1250 690 690 690 gR gR gR 3NB3354-1KK26 3NB3355-1KK26 3NB3357-1KK26 3NB3358-1KK26 1350 1400 1600 1700 690 690 690 690 gR gR gR gR 98 Siemens * 10/2015 Type 3NB3358-1KK27 3NB3362-1KK27 In Un Operational class A V AC Characteristic 1700 1900 690 690 gR gR (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 32 18 32 18 13 208,5 219,5 257 289 171,5 209 241 161 c d b a a e 32 18 I201_13723 e 18 O75 9 I201_13724a a 18 O75 17,6 6 10 59,4 17,6 13 18 O75 6 59,4 59,4 17,6 19 10 9 I201_13725a 6 19 10 19 9 3NE56. .-0C Type 3NE56. .-0C 3NE54. .-0C, 3NE54. .-1C; 3NE7. . .-0U, 3NE7. . .-1U Dimensions (mm) Type a b c d e 201 169 121 131.5 11.5 3NE96. .-1C Dimensions (mm) a 3NE54. .-0C 11.5 3NE54. .-1C 13 3NE7. . .-0U 11.5 3NE7. . .-1U 13 Siemens * 10/2015 99 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 17 H K 188 137 185 191 max. 21.5 R N 226 L E D M J I201_19443 J F B 32 6 e A 60 60 I201_19436 Type Dimensions F E D B A 3NE32..-0MK 78,4 106,6 26 52 52 3NE32..-0MK08 52 78,4 106,6 26 52 J 11 11 H 25 25 3NE53..-0MK06 L 137 137 R N M 15,7 12,5 22,3 15,7 12,5 22,3 3NE5336-0MK66 22 12,5 11 32 60 3NE9330-0MK07 Siemens * 10/2015 60 360 302 330 I201_19441 15,5 6 11 21,5 100 K 18 18 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 18 13 13 10,5 10,5 25 13 13 25 18 32 46,7 40,4 13,4 9,5 15,1 9,5 120,5 I201_19131 190 132 222 I201_19132 O75 10,5 10,5 13 55 55,5 100 112 170 202 100 I201_19133 170 113 202 55,5 13 59,4 9,1 3NB1126-4KK11 3NB1128-4KK11 Type 3NB1231-4KK11 3NB1234-4KK11 In Un A V DC Operational class Type 10 6 6 19 10 6 6 24 60 10 6 6 24 52 17,6 3NB1337-4KK11 3NB1345-4KK11 In Un A V DC Characteristic Operational class Type In Un A V DC Characteristic Operational class Characteristic 3NB1126-4KK11 200 1250 aR 3NB1231-4KK11 315 1250 aR 3NB1337-4KK11 500 1250 aR 3NB1128-4KK11 250 1250 aR 3NB1234-4KK11 400 1250 aR 3NB1345-4KK11 800 1250 aR Siemens * 10/2015 101 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 90 90 90 18 18 13 O75 13 13 39 39,25 I201_19134 I201_19135 O75 132,75 190 133 190 49,5 49,5 13 18 18 32 32 255 165 15 15 25 25,2 75 6 3NB2364-4KK17, 3NB2366-4KK17 Type 3NB2345-4KK16, 3NB2350-4KK16, 3NB2355-4KK16, 3NB2357-4KK16 In Un Operational class A V DC Characteristic 3NB2364-4KK17 2100 1250 aR 3NB2366-4KK17 2400 1000 aR 102 15 17,6 75 18 Siemens * 10/2015 Type In Un Operational class A V DC Characteristic 3NB2345-4KK16 800 1250 aR 3NB2350-4KK16 1000 1250 aR 3NB2355-4KK16 1400 1250 aR 3NB2357-4KK16 1600 1250 aR (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design M10 O28 M10 M10 3NE64. .-7, 3NE94. .-7 3NE64. ., 3NE94. . Dimensions (mm) Type a b c 98 88.5 25 Dimensions (mm) a b 89 76 3NC5841 98 88.5 25 3NE6437 3NC5840 119 109.5 20.5 3NE9450 89 76 3NE9440-6 89 76 3NE6444 99 86 O20 10,4 O20 M10 30 57 I201_11376a 79 68 60 76 77 40 26 I201_11375a I201_11373a 66 62 15 15 M10 10 54 53 119 10,5 10,5 3NE41. .-5 60 52 57 I201_11374a 60 47 10,5 12,5 82,5 73 3NE43. .-6B, 3NE4337-6 7 30 57 60 I2_11371a 70 81,5 I201_11372a SW41 70 81,5 O11 3NC58. . 3NC5838 55 b a 11 10 10 M24 O40 Type 3NE3. . .-5 70 125 100 M10 3NC5531 77 75,5 83 70 M10 SW41 O28 O50 O73 b a 91 0,3 I201_11369a O50 I2_11370a 9 10 c 24,5 O28 10 M10 3NC73. .-2 Siemens * 10/2015 103 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 80 +1.5 0 80 M10 M D C A K B I201_19432 I201_19431 25 O14 30 55 36 O10.5 O7,5 25 117,5 Type 3NH5023 3NH5323 122 Dimensions D C B A M8 35,5 11 59 11 M10 38 64 3NH5023, 3NH5323 3NH5423 E D C A B I201_19433 30 55 O10,5 25 F Type 3NH5463 3NH5473 Dimensions A B C 94 M10 65 101 M10 72 3NH5463, 3NH5473 104 Siemens * 10/2015 D 11 11 E 110 170 F 153 211 +1.5 0 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Characteristic curves 3NC24.. series 3 gR or aR 500 V AC 150 ... 400 A Let-through characteristics (current limitation at 50 Hz) I201_10809 6 4 2 10 5 Let-through current Virtual pre-arcing time vs [s] 10 4 10 3 6 4 2 10 2 6 I201_10812 Time/current characteristics diagram c [A] Size: Operational class: Rated voltage: Rated current: Unlimited peak values: DC component 50 % DC component 0 % 4 400 A 350 A 300 A 250 A 200 A 150 A 2 10 4 6 4 6 2 4 10 1 6 4 2 200 A 300 A 400 A 2 10 0 150 A 250 A 10 3 10 3 350 A 6 4 2 4 6 2 2 4 6 8 10 5 8 10 4 Prospective short-circuit current p [A] 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 3 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor 0.8 0,8 0.6 0,6 0.4 0,4 6 [A] 8 10 4 Peak arc voltage I201_10810 1 p 1400 I201_10811 2 Peak arc voltage Us [V] 10 -3 10 2 1200 1000 800 600 400 200 0.2 0,2 0 100 200 400 300 500 Recovery voltage U w [V] 600 0 0 200 400 600 Recovery voltage Uw [V] 800 Siemens * 10/2015 105 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NB33 series.. Size: Operational class: Rated voltage: Rated current: 2 x 3, 3 x 3 gR 690 V AC 1000 ... 1900 A Time/current characteristics diagram 103 1100 A 1250 A 1350 A 6 4 1400 A 1600 A 1700 A 2 102 6 4 6 4 2 103 6 4 2 6 4 2 2 101 6 4 6 4 2 2 100 100 6 4 6 4 2 2 10-1 10-1 6 4 6 4 2 2 10-2 10-2 6 4 6 4 2 10-3 102 2 4 6 8 104 2 4 Prospective short-circuit current 3NB33..-1KK26 106 1700 A 1900 A 102 101 2 I201_19139 [s] 1000 A 104 vs vs 2 Virtual pre-arcing time [s] 6 4 Virtual pre-arcing time I201_19138 104 Siemens * 10/2015 p 6 [A] 8 105 10-3 102 2 4 6 8 104 2 4 Prospective short-circuit current 3NB33..-1KK27 p 6 [A] 8 105 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 6 4 2 105 1900 A 1700 A 6 4 2 104 104 6 6 4 4 2 2 103 103 2 4 6 8 104 2 4 6 8 105 2 Prospective short-circuit current p 103 103 4 6 8 106 [A] 2 4 3NB33..-1KK27 Correction factor kA for breaking I2t value Peak arc voltage 0,8 0,7 0,6 0,5 0,4 2 4 6 8 105 p 4 6 8 106 [A] 800 900 1000 2 I201_19143 2000 Peak arc voltage Us [V] I201_19142 value [A2 s] 2t Correction factor for breaking 0,9 6 8 104 Prospective short-circuit current 3NB33..-1KK26 1,0 I201_19141a 1700 A 1600 A 1400 A 1350 A 1250 A 1100 A 1000 A Peak current c [A] Peak current c [A] 105 I201_19140a Let-through characteristics (current limitation at 50 Hz) 1500 1000 500 0,3 0,2 0 0,1 0 100 3NB33..-1KK. 200 300 400 500 600 700 800 900 1000 0 100 Recovery voltage Uw [V] 200 300 400 500 600 700 Recovery voltage U w [V] 3NB33..-1KK. Siemens * 10/2015 107 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NC32 series Size: Operational class: Rated voltage: 3 aR 690 V AC (630 ... 1250 A), 500 V AC (1400 ... 1600 A) 630 ... 1600 A Rated current: 2 10 3 6 4 perm. overload 2 10 2 6 4 I201_13405a 10 5 Let-through current Ic [A] 10 6 4 Let-through characteristic curves 4 I201_13402 Virtual melting time tvs [s] Time/current characteristics diagram 6 1600 A 1400 A 1250 A 1100 A 1000 A 900 A 800 A 710 A 630 A 4 2 10 4 6 2 4 1 10 6 4 2 630 A 710 A 800 A 900 A 1000 A 1100 A 1250 A 1400 A 1600 A 2 10 0 6 4 2 10-1 10 3 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Prospective short-circuit current Ip [A] 6 4 2 -2 10 6 4 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value Correction factor for breaking 2t U n = 500 V 0,8 4 6 8 10 5 [A] Peak arc voltage I201_13403 value [A2 s] 1 p U n = 690 V 0,6 0,4 1600 I201_13404 2 Peak arc voltage Us [V] 10-3 10 2 1400 1200 1000 800 600 400 200 0,2 108 0 100 200 300 400 500 600 700 Recovery voltage Uw [V] Siemens * 10/2015 800 0 0 200 400 600 Recovery voltage U w [V] 800 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NC33 series Time/current characteristics diagram Let-through characteristic curves 103 I201_19110 6 c 2 10 5 6 4 2 Permissible overload 102 6 4 Let-through current vs 6 4 Virtual melting time [s] 104 I201_13409 Rated current: 3 aR 1000 V AC (630 ... 1000 A), 800 V AC (1100 ... 1250 A) 630 ... 1250 A [A] Size: Operational class: Rated voltage: 1250 A 1100 A 1000 A 900 A 800 A 710 A 630 A 4 2 10 4 6 2 4 101 6 4 2 2 100 10 Melting 6 4 3 10 3 2 4 2 4 6 8 10 4 Prospective short-circuit current p 6 8 10 5 [A] 2 10-1 630 A 6 4 710 A 800 A 2 1000 A 900 A 1100 A 10-2 1250 A 6 4 2 4 6 8 103 2 4 6 8 104 2 Prospective short-circuit current Correction factor kA for breaking I2t value I201_13407 -value [A2 s] 2t Correction factor for breaking 4 6 8 105 [A] Peak arc voltage 1 U n = 800 V 0,8 p U n = 1000 V 0,6 0,4 2600 I201_13408 2 Peak arc voltage Us [V] 10-3 102 2400 2000 1600 1200 800 400 0,2 0 200 400 800 600 Recovery voltage U w [V] 1000 0 0 200 400 600 800 1000 Recovery voltage U w [V] 1200 Siemens * 10/2015 109 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NC34 series 3 aR 1250 V AC (315 ... 630 A), 1100 V AC (800 A) 315 ... 800 A Time/current characteristics diagram Let-through characteristic curves I201_19091 104 vs 2 Virtual melting time [s] 6 4 103 6 4 2 102 Permissible overload 6 4 10 5 I201_17058 Rated current: Let-through current Ic [A] Size: Operational class: Rated voltage: 6 4 800 A 630 A 2 500 A 400 A 315 A 10 4 6 2 4 101 Unlimited peak values: 6 4 2 DC component 50 % DC component 0 % 2 10 0 10 Melting 3 10 3 6 4 2 4 6 8 10 4 2 4 6 8 10 5 Prospective short-circuit current I p [A] 2 10-1 315 A 6 4 400 A 500 A 2 630 A 800 A 10-2 6 4 2 4 6 8 103 2 4 6 8 104 2 Prospective short-circuit current Correction factor kA for breaking I2t value I201_17059 value [A2 s] 2t Correction factor for breaking 4 6 8 105 [A] Peak arc voltage 1 800 A 0.8 315 A ... 630 A 0.6 0.4 0.2 110 p 3000 I201_17060 2 Peak arc voltage Us [V] 10-3 102 2500 2000 1500 1000 500 0 200 400 600 800 1000 1200 Recovery voltage Uw [V] Siemens * 10/2015 1400 0 200 400 600 800 1000 1200 1400 Recovery voltage U w [V] 2 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NC5531, 3NC58.. series aR 800 V AC (350 A, 630 A), 1000 V AC (600 A, 800 A) 350 ... 800 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) I201_11432 10 4 vs [s] 6 4 2 6 800 A 630 A 600 A 4 Let-through current 10 3 Virtual pre-arcing time 5 10 I201_11433 Rated current: c [A] Operational class: Rated voltage: 6 4 2 10 2 350 A 2 4 10 6 4 6 2 4 10 1 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 350 A 600 A 630 A 2 10 0 800 A 3 10 10 6 4 3 2 4 6 5 4 8 10 4 6 8 10 2 Prospective short-circuit current 2 p [A] 4 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 3 4 2 4 6 8 10 2 Prospective short-circuit current Correction factor kA for breaking I2t value 5 Peak arc voltage I201_11434 Correction factor A 1 4 6 8 10 p [A] 2000 I201_11435 2 1800 Peak arc voltage U s [V] 10 -3 10 2 1600 0.8 600 A 800 A 1400 630 A 600 A 800 A 0.6 1200 1000 0.4 350 A 350 A 630 A 800 600 400 0.2 200 0 200 400 0 800 Recovery voltage U w [V] 600 1000 0 200 400 600 800 1000 Recovery voltage U w [V] 1200 Siemens * 10/2015 111 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NC73..-2 series aR 680 V AC 250 A, 350 A Let-through characteristics (current limitation at 50 Hz) I201_11449 6 4 2 105 6 350 A 4 10 3 Let-through current Virtual pre-arcing time vs [s] 10 4 I201_11450 Time/current characteristics diagram c [A] Operational class: Rated voltage: Rated current: 6 4 2 10 2 250 A 2 104 6 4 6 2 4 10 1 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 350 A 250 A 2 103 10 3 10 0 6 4 2 4 6 8 10 4 4 6 8 10 5 2 Prospective short-circuit current 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value Correction factor Peak arc voltage I201_11451 A 1 4 6 8 10 5 p [A] 2000 I201_11452 2 1800 Peak arc voltage U s [V] 10 -3 10 2 1600 0.8 1400 1200 0.6 1000 0.4 800 600 400 0.2 200 0 112 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 0 800 0 200 400 600 800 1000 Recovery voltage U w [V] 1200 2 p [A] 4 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NC84.. series 3 gR or aR 660 V AC 150 ... 1000 A Let-through characteristics (current limitation at 50 Hz) I201_10821 6 4 Unlimited peak values: DC component 50 % DC component 0 % 6 c 2 10 5 4 Let-through current Virtual pre-arcing time vs [s] 10 4 10 3 6 4 2 10 2 I201_10824a Time/current characteristics diagram [A] Size: Operational class: Rated voltage: Rated current: 1000 A 2 500 A 350 A 10 4 6 4 6 2 4 250 A 200 A 150 A 10 1 6 4 2 2 1000 A 10 0 10 3 10 2 500 A 350 A 250 A 200 A 150 A 6 4 2 10 -1 2 6 8 10 3 4 2 4 6 8 10 4 2 6 8 10 5 4 Prospective short-circuit current p 2 4 [A] 6 4 2 10 -2 6 4 2 4 6 8 10 3 4 2 4 6 8 10 2 Prospective short-circuit current Correction factor kA for breaking I2t value 0.8 1000 A 0.6 5 Peak arc voltage I201_10822 Correction factor A 1 4 6 8 10 p [A] 150 ... 500 A 0.4 1400 I201_10823 2 Peak arc voltage U s [V] 10 -3 10 2 1200 1000 1000 A 800 150 ... 500 A 600 400 200 0.2 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 0 0 200 400 600 Recovery voltage U w [V] 800 Siemens * 10/2015 113 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE102.-0, 3NE12..-0 series 00, 1 gS 690 V AC 100 ... 315 A Let-through characteristics (current limitation at 50 Hz) I201_10829 Virtual pre-arcing time vs [s] 10 4 6 4 2 10 3 6 4 2 10 2 315 A 250 A 200 A 160 A 125 A 100 A 6 4 2 10 1 5 10 I201_10831 Time/current characteristics diagram Let-through current c [A] Size: Operational class: Rated voltage: Rated current: 6 Unlimited peak values: DC component 50 % DC component 0 % 4 2 315 A 250 A 200 A 125/160 A 100 A 4 10 6 4 6 4 2 2 10 0 10 3 10 3 6 4 2 4 6 2 2 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 3 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value 0.8 4 8 10 Peak arc voltage I201_10830 Correction factor A 1 6 p [A] 3NE1 2..-0 3NE1 02.-0 0.6 0.4 1400 I201_10827 2 Peak arc voltage U s [V] 10 -3 10 2 1200 1000 800 600 400 200 0.2 0 114 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 0 800 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE102.-2, 3NE12. .-2, 3NE12. .-3, 3NE13. .-2, 3NE13. .-3 series 00, 1, 2 gR 690 V AC 80 ... 500 A Let-through characteristics (current limitation at 50 Hz) I201_10839a 6 4 C 2 10 5 10 3 Peak let-through current Virtual pre-arcing time tVS [s] 10 4 6 4 2 10 2 6 4 80 A 100 A 125 A 160 A 200 A 250 A 315 A 350 A 400 A 450 A 500 A 2 10 1 6 4 2 10 0 6 4 I201_10842a Time/current characteristics diagram A Size: Operational class: Rated voltage: Rated current: 6 4 500 A 450 A 400 A 350 A 315 A 250 A 200 A 2 10 4 6 4 160 A 125 A 100 A 80 A 2 10 3 10 2 2 4 6 10 3 4 2 4 6 10 2 Prospective short-circuit current 4 6 p A 10 5 2 10 -1 6 4 2 10 -2 6 4 2 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value Peak arc voltage 160 A - 315 A 0,6 2000 I201_10840 350 A - 500 A 0,8 A 80 A - 125 A 0,4 160...315 A 1600 Peak arc voltage Correction factor 1 10 5 4 p I201_10841 10 -3 1200 80...125 A 350...500 A 800 400 0,2 0 0 0 100 200 300 400 500 Recovery voltage 600 700 800 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 115 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE133.-0, 3NE143.-0 series 2, 3 gS 690 V AC 350 ... 800 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 5 I201_10832 10 4 10 3 Let-through current vs 2 Virtual pre-arcing time c [A] 6 4 6 4 2 10 2 6 4 Unlimited peak values: DC component 50 % DC component 0 % 6 4 800 A 710 A 630 A 560 A 500 A 450 A 400 A 350 A 2 10 4 6 800 A 710 A 630 A 560 A 500 A 450 A 400 A 350 A 2 10 1 6 4 2 4 2 10 0 10 3 10 3 6 4 2 4 6 2 2 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value 6 8 10 5 Peak arc voltage I201_10833 Correction factor A 1 4 p 0.8 0.6 0.4 1400 I201_10827 2 Peak arc voltage U s [V] 10 -3 10 2 1200 1000 800 600 400 200 0.2 0 116 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 0 800 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 I201_10834 Size: Operational class: Rated voltage: Rated current: (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE14..-2, 3NE14..-3 series 3 gR 690 V AC 560 ... 850 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 5 I201 10843 6 4 6 C 2 10 3 Peak let-through current Virtual pre-arcing time tVS [s] 10 4 6 4 2 10 2 6 4 I201_10846 Size: Operational class: Rated voltage: Rated current: 850 A 800 A 710 A 670 A 630 A 560 A 4 2 10 4 6 2 4 10 1 6 4 2 560 A 630 A 670 A 710 A 800 A 850 A 2 10 0 6 4 2 10 3 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p 10 -1 6 4 2 10 -2 6 4 2 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value 6 10 5 Peak arc voltage I201_10844 2000 0.8 1600 Peak arc voltage Correction factor 1 4 p 0.6 0.4 I201_10845 10 -3 1200 800 400 0.2 0 0 0 100 200 300 400 500 Recovery voltage 600 700 800 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 117 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE1437-1, 3NE1438-1 series 3 gR 600 V AC 710 and 800 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 105 2 3 10 6 4 2 2 10 6 4 2 Unlimited peak values: DC component 50 % DC component 0 % Let-through current c [A] I201_10835 Virtual pre-arcing time vs [s] 4 10 6 4 6 800 A 710 A 4 800 A 710 A 1 10 I201_10838 Size: Operational class: Rated voltage: Rated current: 2 6 4 2 104 10 3 0 10 6 4 2 4 2 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 2 -1 10 6 4 2 -2 10 6 4 2 -3 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Prospective short-circuit current p [A] Correction factor kA for breaking I2t value Peak arc voltage I201_10836 Correction factor A 1 0,8 1400 1200 I201_10837 10 2 Peak arc voltage U s [V] 10 1000 0,6 0,4 118 600 400 200 0,2 0 800 100 200 300 400 500 600 700 800 Recovery voltage U w [V] Siemens * 10/2015 0 0 100 200 300 400 500 600 700 800 Recovery voltage U w [V] (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE18..-0 series 000 gS 690 V AC 16 ... 80 A Let-through characteristics (current limitation at 50 Hz) 80 A 6 63 A 50 A 40 A 35 A 25 A 20 A 16 A c 2 10 4 Let-through current 103 6 4 80 A 63 A 50 A 40 A 35 A 25 A 20 A 16 A 2 102 6 4 2 101 I201_10828a 104 6 4 I201_10825 Virtual pre-arcing time vs[s] Time/current characteristics diagram [A] Size: Operational class: Rated voltage: Rated current: 4 2 10 3 6 4 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 2 100 10 2 10 2 6 4 2 4 6 8 10 3 2 4 6 8 10 4 2 6 8 10 5 4 Prospective short-circuit current p 2 4 [A] 2 10-1 6 4 2 10-2 6 4 2 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 Prospective short-circuit current p [A] Correction factor kA for breaking I2t value Peak arc voltage I201_10826 Correction factor A 1 0,8 0,6 0,4 1400 I201_10827 2 Peak arc voltage U s [V] 10-3 10 1 1200 1000 800 600 400 200 0,2 0 0 100 200 300 400 500 600 700 800 Recovery voltage w [V] 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 Siemens * 10/2015 119 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE32..-0MK series 1 gR 1000 V AC/600 V DC 32 ... 63 A I201_19419 10 6 6 Unlimited peak values: 4 2 DC component 50 % DC component 0 % C 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram 2 102 6 4 2 2 10 5 6 4 2 10 4 1 10 6 4 63 A 50 A 40 A 32 A 63 A 6 50 A 2 4 40 A 0 10 6 4 I201_19420 Size: Operational class: Rated voltage: Rated current: 32 A 2 10 3 2 6 10-1 6 4 4 2 2 10-2 6 4 10 2 10 2 2 4 6 10 3 2 4 6 10 4 2 4 6 10 5 2 Prospective short-circuit current 2 101 2 4 6 8 102 2 4 6 8 103 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value A 2800 1 2400 Peak arc voltage Correction factor Peak arc voltage I201_19423 1.2 p 6 8 104 [A] I201_19424 10 -3 0.8 0.6 2000 1600 0.4 1200 0.2 800 0 400 120 400 500 600 700 800 900 1000 1100 1200 Recovery voltage U w [V] Siemens * 10/2015 600 800 1000 Recovery voltage 1200 4 6 10 6 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE322. series 1 aR 1000 V AC 100 ... 250 A Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 2 103 6 4 2 102 6 4 2 I201_10862 I201_10859 104 6 4 vs [s] Time/current characteristics diagram Let-through current c [A] Size: Operational class: Rated voltage: Rated current: 250 A 200 A 160 A 125 A 100 A 4 10 6 4 2 3 10 6 2 4 1 10 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 2 2 100 250 A 200 A 160 A 125 A 100 A 6 4 2 10 10 2 2 4 6 8 10 3 4 6 8 10 4 2 4 6 8 10 5 2 2 Prospective short-circuit current p [A] 4 10-1 6 4 2 10-2 6 4 2 4 6 8 102 2 4 6 8 103 2 Prospective short-circuit current Correction factor kA for breaking I2t value 4 6 8 104 [A] Peak arc voltage I201_10860 Correction factor A 1 p 0,8 2500 I201_10861 2 Peak arc voltage U s [V] 10-3 101 2000 1500 0,6 1000 0,4 500 0,2 0 200 400 600 800 Recovery voltage U w [V] 1000 0 0 200 400 600 800 1000 1200 Recovery voltage U w [V] Siemens * 10/2015 121 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE323. series 1 aR 1000 V AC 315 ... 450 A Let-through characteristics (current limitation at 50 Hz) [s] 6 4 vs 2 10 3 10 5 Let-through current Virtual pre-arcing time I201_10863a 10 4 6 4 2 10 2 6 4 6 I201_10864 Time/current characteristics diagram c [A] Size: Operational class: Rated voltage: Rated current: Unlimited peak values: DC component 50 % DC component 0 % 4 450 A 400 A 350 A 315 A 2 10 4 6 2 4 10 1 6 4 2 450 A 400 A 350 A 315 A 2 10 0 10 3 10 3 6 4 2 4 2 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 3 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value 6 [A] 8 10 4 Peak arc voltage I201_10860 Correction factor A 1 p 0,8 2500 I201_10861 2 Peak arc voltage U s [V] 10 -3 10 2 2000 1500 0,6 1000 0,4 500 0,2 0 122 200 400 600 800 Recovery voltage U w [V] Siemens * 10/2015 1000 0 0 200 400 600 800 1000 1200 Recovery voltage U w [V] (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE323.-0MK08 series 1 aR 1000 V AC/600 V DC 500 ... 630 A I201_19421 10 6 6 4 2 C 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram I201_19422 Size: Operational class: Rated voltage: Rated current: 2 102 6 4 2 2 10 5 6 4 630 A 550 A 500 A 2 101 6 4 10 4 2 4 6 0 10 6 4 2 630 A 550 A 2 10 3 500 A 10-1 6 4 6 Unlimited peak values: 4 DC component 50 % DC component 0 % 2 2 10-2 6 4 10 2 10 2 2 4 6 10 3 2 4 6 10 4 2 4 6 10 5 2 Prospective short-circuit current 2 4 6 10 6 p -3 10 6 4 2 10-4 2 4 6 8 103 2 4 6 8 104 2 Prospective short-circuit current Correction factor kA for breaking I2t value A [A] Peak arc voltage 2800 1 2400 Peak arc voltage Correction factor p 6 8 105 I201_19423 1.2 4 I201_19424 102 0.8 0.6 2000 1600 0.4 1200 0.2 800 0 400 400 500 600 700 800 900 1000 1100 1200 Recovery voltage U w [V] 600 800 1000 Recovery voltage 1200 Siemens * 10/2015 123 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE33.. series Size: Operational class: Rated voltage: Rated current: 2 aR 1000 V AC (up to 630 A) 900 V AC (710 A) 800 V AC (800 A) 690 V AC (900 A) 400 ... 900 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 5 6 4 2 102 6 4 Unlimited peak values: DC component 50 % DC component 0 % 4 Let-through current 103 I201_10867 6 c 2 10 [A] 10 6 4 I201_10865 Virtual pre-arcing time vs [s] 4 900 A 800 A 710 A 630 A 560 A 500 A 450 A 400 A 2 4 10 6 2 4 101 6 4 2 900 A 800 A 710 A 630 A 560 A 500 A 450 A 400 A 2 100 6 4 2 3 10 10 3 2 4 2 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 10-1 6 4 2 10-2 6 4 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Prospective short-circuit current p [A] Correction factor kA for breaking I2t value Peak arc voltage I201_10866 Correction factor A 1 0.8 400 ... 630 A 710 A 800 A 900 A 0.6 0.4 2500 I201_10861 2 Peak arc voltage U s [V] 10-3 10 2 2000 1500 1000 500 0.2 0 124 200 400 600 800 Recovery voltage U w [V] Siemens * 10/2015 1000 0 0 200 400 600 800 1000 1200 Recovery voltage U w [V] (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE34.., 3NE36.. series 3 aR 1000 V AC 100 ... 710 A Let-through characteristics (current limitation at 50 Hz) I201_10868 3 10 Let-through current Virtual pre-arcing time 4 c 2 vs [s] 4 10 6 4 6 4 2 2 10 6 4 710 A 630 A 500 A 450 A 400 A 315 A Unlimited peak values: DC component 50 % DC component 0 % 2 224 A 4 10 100 A 6 4 2 1 10 2 6 4 710 A 630 A 500 A 450 A 400 A 315 A 224 A 100 A 2 0 10 6 4 2 3 10 6 8 10 3 2 4 2 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] -1 10 6 4 2 -2 10 6 4 2 -3 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor 4 6 8 10 5 [A] Peak arc voltage I201_10869 1 p 0,8 0,6 0,4 2000 I201_10870 10 2 1800 Peak arc voltage Us [V] 10 1600 1400 1200 1000 800 600 400 0,2 0 200 200 400 600 800 Recovery voltage U w [V] 1000 0 0 200 400 600 800 1000 1200 Recovery voltage Uw [V] Siemens * 10/2015 125 I201_10871 Time/current characteristics diagram [A] Size: Operational class: Rated voltage: Rated current: (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE35.5-5, 3NE41..-5 series aR, gR 800 V AC (170 A) 1000 V AC (50 A, 100 A, 200 A, 450 A) 50 ... 450 A Rated current: Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) I201_11441 450 A c [A] 10 4 2 Let-through current vs 2 Virtual pre-arcing time [s] 4 10 6 4 10 170 A 200 A 6 100 A 4 3 6 4 2 2 10 6 4 4 50 A 2 3 10 170 A 2 50 A 1 10 6 100 A 200 A 450 A 4 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 2 2 0 10 10 2 10 6 4 2 4 6 8 10 3 4 6 8 10 4 2 4 6 8 10 5 2 2 Prospective short-circuit current p [A] 2 -1 10 6 4 2 -2 10 6 4 2 -3 2 4 6 8 10 2 2 4 6 8 10 3 2 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor 4 6 8 10 4 [A] Peak arc voltage I201_11443 1 p 2000 I201_11444 10 1 1800 Peak arc voltage Us [V] 10 I201_11442 Operational class: Rated voltage: 1600 0,8 170 A 170 A 1400 200 A 1200 0,6 1000 50/100 A 200/450 A 0,4 800 600 400 0,2 0 126 200 200 400 800 600 Recovery voltage Uw [V] Siemens * 10/2015 1000 0 0 200 800 1000 1200 400 600 Recovery voltage Uw [V] 4 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE41.. series 0 gR or aR 1000 V AC 32 ... 160 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 2 3 10 6 4 2 102 6 4 10 4 160 A 125 A 6 Let-through current c [A] I201_10855 Virtual pre-arcing time vs [s] 4 10 6 4 I201_10858 Size: Operational class: Rated voltage: Rated current: 100 A 4 80 A 63 A 50 A 40 A 32 A 2 10 3 6 2 4 101 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 160 A 125 A 100 A 80 A 63 A 50 A 40 A 32 A 2 100 6 4 2 2 10 2 10 2 4 6 8 10 3 4 5 4 6 8 10 4 6 8 10 2 2 2 Prospective short-circuit current p [A] 4 10-1 6 4 2 10-2 6 4 2 -3 2 4 6 8 10 2 2 4 6 8 10 3 2 Prospective short-circuit current Correction factor kA for breaking I2t value Peak arc voltage I201_10856 Correction factor A 1 4 6 8 10 4 p [A] 0,8 2500 I201_10857 10 1 Peak arc voltage U s [V] 10 2000 1500 0,6 1000 0,4 500 0,2 0 200 400 600 800 Recovery voltage U w [V] 1000 0 0 200 800 1000 1200 400 600 Recovery voltage U w [V] Siemens * 10/2015 127 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE43. .-0B, 3NE43. .-6B, 3NE4337, 3NE4337-6 series 2 aR 800 V AC 250 ... 710 A Let-through characteristics (current limitation at 50 Hz) I201_10851 2 3 10 10 6 4 2 2 10 6 4 5 6 Unlimited peak values: DC component 50 % DC component 0 % 4 Let-through current Virtual pre-arcing time vs[s] 4 10 6 4 I201_10854 Time/current characteristics diagram c [A] Size: Operational class: Rated voltage: Rated current: 710 A 500 A 450 A 2 10 315 A 4 250 A 6 2 4 1 10 6 4 2 710 A 500 A 450 A 315 A 250 A 2 0 10 6 4 3 10 10 3 2 4 2 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 2 -1 10 6 4 2 -2 10 6 4 2 -3 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Prospective short-circuit current p [A] Correction factor kA for breaking I2t value Peak arc voltage I201_10852 Correction factor A 1 2000 I201_10853 10 2 1800 Peak arc voltage U s [V] 10 1600 0,8 1400 450 A 1200 0,6 315 A 0,4 1000 800 600 400 0,2 0 128 200 100 200 300 400 500 600 700 800 Recovery voltage U w [V] Siemens * 10/2015 0 0 200 1000 400 600 800 Recovery voltage U w [V] (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE53..-0MK06, -MK66 series 2 gR, aR 1500 V AC/1000 V DC 40 ... 630 A Time/current characteristics diagram I201_19425 10 5 6 4 C 2 10 3 6 4 Peak let-through current vs [s] 10 4 6 4 Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) Un = AC 1500 V / 1800 V I201_19426 Size: Operational class: Rated voltage: Rated current: 2 10 2 6 4 630 A 500 A 400 A 315 A 250 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 40 A 2 10 1 6 4 2 10 0 6 4 2 10 -1 6 4 630 A 500 A 400 A 315 A 250 A 200 A 160 A 125 A 100 A 80 A 63 A 50 A 40 A 2 10 4 6 4 2 10 3 6 4 2 10 2 6 4 2 2 10 -2 6 4 10 1 10 2 2 2 4 6 10 3 2 4 6 10 4 2 4 6 10 5 2 Prospective short-circuit current 4 6 10 6 p 10 -3 6 4 2 10 -4 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p Siemens * 10/2015 129 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE54.. series 3 aR 1500 V AC 160 ... 450 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 6 4 2 2 10 6 4 [A] Unlimited peak values: DC component 50 % DC component 0 % 2 450 A 350 A 315 A 224 A Let-through current 3 Virtual pre-arcing time 4 c I201_10872 2 vs [s] 4 10 6 4 160 A 4 10 6 4 2 1 10 2 6 4 2 3 0 10 10 10 3 450 A 350 A 315 A 224 A 160 A 6 4 2 -1 10 2 4 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current 6 4 2 -2 10 6 4 2 -3 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor 4 6 8 10 5 [A] Peak arc voltage I201_10873 1 p 0.8 0,8 4000 I201_10874 10 2 3600 Peak arc voltage U s [V] 10 3200 2800 2400 0.6 0,6 2000 1600 0.4 0,4 1200 800 0.2 0,2 0 130 400 500 1000 Recovery voltage U w [V] Siemens * 10/2015 1500 0 0 400 800 1200 1600 2000 Recovery voltage U w [V] p 2 [A] I201_10875 Size: Operational class: Rated voltage: Rated current: (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE56.. series 3 aR 1500 V AC 250 ... 600 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 6 4 2 2 10 6 4 600 A [A] Unlimited peak values: DC component 50 % DC component 0 % 2 Let-through current 3 Virtual pre-arcing time 4 c I201_10876 2 vs [s] 4 10 6 4 I201_10877 Size: Operational class: Rated voltage: Rated current: 450 A 250 A 4 10 6 4 2 1 10 2 6 4 450 A 2 250 A 0 10 600 A 3 10 10 3 2 6 4 4 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p 2 [A] 2 -1 10 6 4 2 -2 10 6 4 2 -3 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor Peak arc voltage I201_10873 1 4 6 8 10 5 p [A] 0.8 0,8 4000 I201_10874 10 2 3600 Peak arc voltage U s [V] 10 3200 2800 2400 0.6 0,6 2000 1600 0.4 0,4 1200 800 0.2 0,2 0 400 500 1000 Recovery voltage U w [V] 1500 0 0 400 800 1200 1600 2000 Recovery voltage U w [V] Siemens * 10/2015 131 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE64.., 3NE94.. series Operational class: Rated voltage: Rated current: aR, gR 600 V AC (850 A, 1250 A), 900 V AC (710 A, 900 A) 710 ... 1250 A Time/current characteristics diagrams 2 3 10 10 Virtual pre-arcing time Virtual pre-arcing time 3 10 6 4 I201_11437 I201_11436 2 [s] 4 vs vs [s] 4 10 6 4 6 4 2 2 10 6 4 2 1 6 4 2 2 10 6 4 2 1 10 10 850 A 6 4 1250 A 6 4 710 A 2 900 A 2 0 0 10 10 6 4 6 4 2 2 -1 -1 10 10 6 4 6 4 2 2 -2 -2 10 10 6 4 6 4 2 2 -3 10 10 2 -3 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current 132 Siemens * 10/2015 4 6 8 10 5 p [A] 10 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current p 4 6 8 10 5 [A] (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Series 3NB1.., 3NB2.. Size: Operational class: Rated voltage: Rated current: 1L, 2L, 3L, 2 x 2L, 2 x 3L, 3 x 3L, aR 1250 V DC 200 ... 2400 A Time/current characteristics diagram Virtual pre-arcing time 4 2 800 A 100 500 A 6 400 A 4 I201_19151 [s] 101 vs [s] 6 vs Virtual pre-arcing time I201_19150 101 6 4 2 2400 A 100 6 2100 A 4 1600 A 2 1400 A 315 A 2 250 A 10-1 6 6 4 4 2 2 10-2 10-2 6 6 4 4 2 2 10-3 103 2 4 8 104 6 1000 A 10-1 200 A 2 4 Prospective short-circuit current p 6 [A] 800 A 10-3 103 8 105 2 4 8 104 6 2 4 3NB1...-4KK11 8 105 p 6 [A] p 4 6 106 [A] Prospective short-circuit current 3NB2...-4KK1. Let-through characteristic curves 4 800 A 2 500 A 400 A 315 A 250 A 200 A 104 4 2 104 6 4 4 2 2 2 4 6 8 104 2 4 6 8 105 2 Prospective short-circuit current 3NB1...-4KK11 2400 A 2100 A 1600 A 1400 A 1000 A 800 A 6 6 103 103 I201_19149a 6 105 Peak current c [A] I201_19148a Peak current c [A] 105 p 4 6 8 106 [A] 103 103 2 4 6 8 104 2 4 6 8 105 2 Prospective short-circuit current 3NB2...-4KK1. Siemens * 10/2015 133 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design Correction factor kA for breaking I2t value I201_19152 0,8 0,7 0,6 0,5 0,4 3000 Peak arc voltage Us [V] Correction factor for breaking 2 t value [A2 s] 0,9 I201_19153 Peak arc voltage 1,0 2500 2000 1500 1000 0,3 0,2 500 0,1 0,0 100 0 200 400 600 800 1200 1400 1600 1800 2000 0 200 Recovery voltage Uw [V] 3NB1...-4KK11 3NB2...-4KK1. 134 1000 Siemens * 10/2015 400 600 800 1000 1200 1400 1600 1800 Recovery voltage U w [V] 3NB1...-4KK11 3NB2...-4KK1. (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE64.., 3NE94.. series Operational class: Rated voltage: aR, gR 600 V AC (850 A, 1250 A), 900 V AC (710 A, 900 A) 710 ... 1250 A Rated current: Let-through characteristics (current limitation at 50 Hz) 5 Let-through current c [A] 6 I201_11438 10 850/900/ 1250 A 4 710 A 2 4 10 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 3 4 6 8 10 4 4 6 8 10 5 2 Prospective short-circuit current Correction factor kA for breaking I2t value Correction factor A 800 A 1250 A 0,8 2 [A] 4 Peak arc voltage I201_11439 1 p 2000 710 A 900 A 1800 1600 I201_11440 2 Peak arc voltage U s [V] 10 10 3 1400 1200 0,6 1000 900 A 710 A 0,4 850 A 1250 A 800 600 400 0,2 0 200 200 400 600 800 Recovery voltage U w [V] 1000 0 0 200 400 600 800 1000 1200 Recovery voltage U w [V] Siemens * 10/2015 135 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE74.., 3NE76.. series Size: Operational class: Rated voltage: Rated current: 3 aR 2000 V AC 200 ... 710 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 5 4 3 Let-through current 10 6 4 2 perm. overload 2 10 6 4 I201_10881 Unlimited peak values: DC component 50 % DC component 0 % 6 c 2 10 [A] I201_10878 Virtual melting time tvs [s] 4 10 6 4 710 A 630 A 525 A 400/450 A 350 A 250 A 200 A 2 4 10 6 2 4 1 10 6 4 2 2 3 0 10 10 450 A 6 4 10 3 2 525 A 200 A 2 10 2 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 630 A 250 A -1 4 710 A 350 A 6 4 400 A 2 -2 10 6 4 2 -3 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor 6 8 10 5 [A] Peak arc voltage I201_10879 1 4 p 0,8 4000 I201_10880 10 2 3600 Peak arc voltage U s [V] 10 3200 2800 2400 0,6 2000 1600 0,4 1200 800 0,2 0 136 400 500 1000 1500 2000 Recovery voltage U w [V] Siemens * 10/2015 0 0 400 1200 1600 2000 2400 800 Recovery voltage U w [V] (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE80..-1 series Size: Operational class: Rated voltage: Rated current: 00 gR or aR 690 V AC 25 ... 160 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 4 2 3 10 6 4 2 2 10 6 4 I201_10850 10 Let-through current c [A] I201_10847 Virtual pre-arcing time vs[s] 4 10 6 4 160 A 125 A 100 A 80 A 63 A 50 A 35 A 25 A 6 4 2 3 10 6 2 4 160 A 125 A 100 A 80 A 63 A 50 A 35 A 25 A 1 10 6 4 2 0 10 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 2 10 10 2 2 4 6 8 10 3 4 6 8 10 4 2 4 6 8 10 5 2 2 Prospective short-circuit current p [A] 4 2 -1 10 6 4 2 -2 10 6 4 2 -3 2 4 6 8 10 2 2 4 6 8 10 3 2 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor Peak arc voltage I201_10848 1 4 6 8 10 4 p [A] 2000 I201_10849 10 1 1800 Peak arc voltage Us [V] 10 1600 0,8 1400 1200 0,6 1000 0,4 800 600 400 0,2 0 200 100 200 300 400 500 600 700 800 Recovery voltage U w [V] 0 0 200 400 600 Recovery voltage U w [V] 800 Siemens * 10/2015 137 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE80..-3MK series 00 gR/aR 690 V AC/440 V DC 80 A, 100 A, 350 A, 400 A I201_19401 10 5 6 4 2 C 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram I201_19404 Size: Operational class: Rated voltage: Rated current: 2 102 6 4 2 2 400 A 350 A 10 4 100 A 80 A 6 4 2 10 3 1 10 6 4 400 A 6 2 350 A 4 0 10 6 4 2 100 A 2 10 2 80 A 10-1 6 4 6 Unlimited peak values: 4 DC component 50 % DC component 0 % 2 2 10-2 6 4 10 1 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 101 2 4 6 8 102 2 4 6 8 103 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value A 2000 1 1600 Peak arc voltage Correction factor Peak arc voltage I201_19405 1.2 p 6 8 104 [A] I201_19406 10 -3 0.8 0.6 1200 800 0.4 400 0.2 0 0 0 138 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 800 200 400 600 Recovery voltage 800 4 6 10 5 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE82..-0MK series 1 aR 690 V AC/440 V DC 100 ... 315 A I201_19411 10 6 6 2 Unlimited peak values: 4 3 DC component 50 % DC component 0 % C 10 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram 2 102 6 4 2 101 6 4 I201_19412 Size: Operational class: Rated voltage: Rated current: 2 10 5 6 4 2 315 A 250 A 200 A 160 A 125 A 100 A 10 4 6 2 4 100 6 4 315 A 2 250 A 10-1 6 4 2 2 200 A 10 3 160 A 6 125 A 4 100 A 2 10-2 6 4 10 2 10 2 2 2 4 6 10 3 2 4 6 10 4 2 4 6 10 5 2 Prospective short-circuit current 4 6 10 6 p 10-3 2 4 6 8 102 2 4 6 8 103 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value A Peak arc voltage 2000 1.2 1600 Peak arc voltage Correction factor [A] I201_19417 1.3 p 6 8 104 I201_19418 101 1 0.8 1200 800 0.6 400 0.4 0 0 0.2 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 200 400 600 Recovery voltage 800 800 Siemens * 10/2015 139 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE82..-3MK series 1 aR 690 V AC/440 V DC 100 ... 630 A I201_19402 10 6 6 4 2 C 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram I201_19403 Size: Operational class: Rated voltage: Rated current: 2 102 6 4 630 A 2 550 A 500 A 2 0 10 5 6 630 A 550 A 500 A 450 A 400 A 350 A 315 A 250 A 200 A 160 A 125 A 100 A 4 2 10 4 1 10 6 4 2 450 A 6 400 A 4 10 6 4 350 A 2 250 A 10 3 200 A 6 160 A 4 Unlimited peak values: 2 DC component 50 % DC component 0 % 2 315 A 10-1 6 4 125 A 2 100 A 10-2 6 4 10 2 10 2 2 4 6 10 3 2 4 6 10 4 2 4 6 10 5 2 Prospective short-circuit current 2 102 2 4 6 8 103 2 4 6 8 104 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value A 2000 1.2 1600 Peak arc voltage Correction factor Peak arc voltage I201_19407 1.3 p 6 8 105 [A] I201_19408 10 -3 1 0.8 1200 800 0.6 400 0.4 0 0 0.2 0 140 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 800 200 400 600 Recovery voltage 800 4 6 10 6 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE83..-0MK series 2 aR 690 V AC/440 V DC 350 ... 630 A Let-through characteristics (current limitation at 50 Hz) 10 6 I201_19413 104 6 4 6 4 C 2 103 6 4 Peak let-through current Virtual pre-arcing time vs [s] Time/current characteristics diagram I201_19414 Size: Operational class: Rated voltage: Rated current: 2 102 6 4 2 2 10 5 6 630 A 550 A 500 A 450 A 400 A 350 A 4 2 10 4 1 10 6 4 630 A 6 550 A 2 4 500 A 0 10 6 4 450 A 2 350 A 2 400 A 10 3 10-1 6 4 6 Unlimited peak values: 4 DC component 50 % DC component 0 % 2 2 10-2 6 4 10 2 10 2 2 4 6 10 3 2 4 6 10 4 2 4 6 10 5 2 Prospective short-circuit current 2 102 2 4 6 8 103 2 4 6 8 104 2 Prospective short-circuit current Correction factor kA for breaking I2t value 4 p 6 8 105 [A] Peak arc voltage 2000 A I201_19417 1.3 1.2 1600 Peak arc voltage Correction factor p -3 I201_19418 10 4 6 10 6 1 0.8 1200 800 0.6 400 0.4 0 0 0.2 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 200 400 600 Recovery voltage 800 800 Siemens * 10/2015 141 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE870.-1, 3NE871.-1 series 000 gR or aR 690 V AC/700 V DC 20 ... 63 A Let-through characteristics (current limitation at 50 Hz) I201_10813 6 4 2 4 10 6 4 10 3 Let-through current Virtual pre-arcing time vs[s] 10 4 I201_10816 Time/current characteristics diagram c [A] Size: Operational class: Rated voltage: Rated current: 6 4 2 10 2 6 4 63 A 50 A 40 A 32 A 25 A 20 A 2 3 10 6 2 4 10 1 6 4 32 A 20 A 25 A 50 A 40 A Unlimited peak values: DC component 50 % DC component 0 % 2 63 A 2 10 0 10 2 10 6 4 2 4 2 6 8 10 3 2 4 5 4 6 8 10 4 6 8 10 2 2 Prospective short-circuit current p [A] 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 2 2 4 6 Prospective short-circuit current p [A] Correction factor kA for breaking I2t value Peak arc voltage I201_10814 Correction factor A 1 3 8 10 0.8 0.6 0.4 1400 I201_10815 2 Peak arc voltage U s [V] 10 -3 10 1 1200 1000 800 600 400 200 0.2 0 0 142 100 200 300 400 500 600 700 800 Recovery voltage U w [V] Siemens * 10/2015 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 4 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE872.-1, 3NE8731-1 series 000 aR 690 V AC/700 V DC according to UL 80 ... 315 A Let-through characteristics (current limitation at 50 Hz) 6 4 vs[s] Virtual pre-arcing time I201_10817 10 4 2 10 3 6 4 2 10 2 6 4 105 I201_10820 Time/current characteristics diagram Let-through current c [A] Size: Operational class: Rated voltage: Rated current: 6 4 Unlimited peak values: DC component 50 % DC component 0 % 2 315 A 250 A 200 A 160 A 125 A 100 A 80 A 104 6 4 2 10 1 2 6 4 315 A 250 A 200 A 160 A 125 A 100 A 80 A 2 10 0 6 4 103 6 102 2 4 6 8 103 4 6 8 104 2 4 6 8 105 2 2 Prospective short-circuit current p [A] 4 2 10 -1 6 4 2 10 -2 6 4 2 4 6 8 10 2 3 2 4 6 8 10 2 Prospective short-circuit current Correction factor kA for breaking I2t value A Correction factor 4 Peak arc voltage I201_10818 1 4 6 8 10 p [A] 0,8 1400 I201_10819 2 1200 Peak arc voltage Us [V] 10 -3 10 1 1000 0,6 0,4 800 600 400 200 0,2 0 100 200 300 400 0 500 600 700 Recovery voltage U w [V] 800 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 Siemens * 10/2015 143 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE88..-0MK series 000 gR/aR 500 ... 690 V AC/440 V DC 6 ... 160 A I201_19409 10 5 6 160 A 125 A 100 A 80 A 4 2 C 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram 2 102 6 4 160 A 2 125 A 1 10 6 4 2 10 4 6 4 2 10 3 100 A 2 I201_19410 Size: Operational class: Rated voltage: Rated current: 80 A 6 63 A 4 63 A 50 A 40 A 32 A 25 A 20 A 16 A 10 A 6A 50 A 0 10 6 4 2 40 A 32 A 10 2 25 A 10-1 6 4 6 20 A 4 Unlimited peak values: 2 10 A 2 DC component 50 % DC component 0 % 2 16 A 6A 10-2 6 4 10 1 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 -3 10 6 4 2 10-4 2 4 6 8 102 2 4 6 8 103 2 Prospective short-circuit current Correction factor kA for breaking I2t value A 6 8 104 [A] Peak arc voltage 2000 1 1600 Peak arc voltage Correction factor p I201_19415 1.2 4 I201_19416 101 0.8 0.6 1200 800 0.4 400 0.2 0 0 0 144 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 800 200 400 600 Recovery voltage 800 4 6 10 5 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE93..-0MK07 series 2 aR 3000 V DC 315 A Let-through characteristics (current limitation at 50 Hz) 10 5 I201_19427 104 6 4 6 4 C 2 3 10 6 4 Peak let-through current Virtual pre-arcing time vs [s] Time/current characteristics diagram I201_19428 Size: Operational class: Rated voltage: Rated current: 2 102 6 4 2 2 10 4 315 A 6 4 2 101 6 4 10 3 2 4 6 0 10 6 4 2 315 A 10 2 2 10-1 6 4 10 2 2 4 6 10 3 2 4 6 10 4 2 4 Prospective short-circuit current 6 10 5 2 p 2 10-2 6 4 2 10-3 102 2 4 6 8 103 2 4 6 8 104 2 Prospective short-circuit current 4 p 6 8 105 [A] Siemens * 10/2015 145 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses LV HRC design 3NE963. series Size: Operational class: Rated voltage: Rated current: 3 aR 2500 V AC 400 ... 630 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) c 4 3 Let-through current Virtual pre-arcing time 10 6 4 2 2 10 6 4 Unlimited peak values: DC component 50 % DC component 0 % 6 [A] I201_10882 [s] vs 2 10 630 A 500 A 400 A 2 4 10 6 2 4 1 10 6 4 630 A 500 A 400 A 2 2 3 0 10 10 6 4 10 3 2 4 2 2 6 8 10 4 4 6 8 10 5 Prospective short-circuit current p [A] 2 -1 10 6 4 2 -2 10 6 4 2 -3 10 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 Prospective short-circuit current Correction factor kA for breaking I2t value 4 6 8 10 5 [A] Peak arc voltage 6000 Peak arc voltage U [V] s A 1 5000 0.8 4000 0.6 3000 2000 I201_10883 0.4 0.2 0 146 400 800 1200 1600 2000 2400 2800 Recovery voltage Uw [V] Siemens * 10/2015 I201_10884 Correction factor p 1000 0 0 500 1000 1500 2000 2500 3000 Recovery voltage Uw [V] I201_10885 5 4 10 6 4 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design Overview Benefits SITOR cylindrical fuses protect power semiconductors from the effects of short-circuits because the super quick-response disconnect characteristic is far quicker than that of conventional fuses. They protect expensive devices and system components such as solid-state contactors, electronic relays (solid state), converters with fuses in the input and in the DC link, UPS systems and soft starters for motors up to 100 A. The cylindrical design is approved for industrial applications. The cylindrical fuse links comply with IEC 60269. Cylindrical fuse holders also comply with IEC 60269 and UL 512. The cylindrical fuse holders for 10 x 38 mm and 14 x 51 mm have been tested and approved as fuse switch disconnectors and the cylindrical fuse holders for 22 x 58 mm as fuse disconnectors according to the switching device standard IEC 60947-3. The utilization category and the tested current and voltage values are specified in the Table "Technical Specifications". * Cylindrical fuses have an extremely compact design and a correspondingly small footprint * The cylindrical fuses have IEC and UL approval and are suitable for universal use worldwide * The use of SITOR cylindrical fuses in the cylindrical fuse holders and bases has been tested with regard to heat dissipation and maximum current loading. This makes planning and dimensioning easier and prevents consequential damage * The use of fuse holders as switch disconnectors expands the area of application of these devices and increases operating safety The cylindrical fuse holders have been specially developed for the application of SITOR fuse links with regard to heat tolerance and heat dissipation and are therefore not recommended for standard applications. Cylindrical fuse bases do not offer the same comprehensive touch protection as the fuse holders, but have better heat dissipation. The single-pole cylindrical fuse bases for 14 x51 mm and 22 x 58 mm allow modular expansion to multi-pole bases. Technical specifications Cylindrical fuse holders 3NC10 Size mm x mm 10 x 38 3NC14 3NC22 14 x 51 22 x 58 UL 4248-1; CSA C22.2; IEC 60269-2, IEC 60947-3 Standards V AC A AC UL 4248-1; UL File Number E171267; CSA C22.2 No. 39-M, CCC 690; 600 acc. to UL/CSA 32 50 100 30 acc. to UL/CSA 50 acc. to UL 80 acc. to UL/CSA 40 acc. to CSA Rated conditional short-circuit current Breaking capacity * Utilization category kA 50 50 (100 at 400 V) 50 (100 at 500 V) AC-22B (400 V) AC-22B (400 V) AC-20B (690 V) Max. power dissipation of the fuse link (conductor cross-section used) W 3 (6 mm2) 4.3 (10 mm2) 5 (10 mm2) 6.5 (25 mm2) 9.5 (35 mm2) 11 (50 mm2) Rated impulse withstand voltage Overvoltage category Pollution degree No-voltage changing of fuse links Sealable when installed Mounting position Current direction kV 6 II 2 Yes Yes Any Any Approvals Rated voltage Un Rated current In IP20 Yes Degree of protection acc. to IEC 60529 Terminals with touch protection acc. to BGV A3 incoming and outgoing feeder Ambient temperature Conductor cross-sections * Finely stranded, with end sleeve * AWG (American Wire Gauge) C 45 mm2 AWG 1.5 ... 16 15 ... 5 1.5 ... 35 14 ... 2 4 ... 50 10 ... 1/0 Tightening torque Nm Ib.in 2.5 22 2.5 ... 3 22 ... 26 3.5 ... 4 31 ... 35 Siemens * 10/2015 147 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design Load rating of SITOR cylindrical fuses Rated voltage Un Rated voltage Un Rated current In Melting I2t value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In Weight approx. V AC V DC A A2s A2s K W kg 600 600 600 700 700 700 3 6 8 3 4 6 8 20 30 30 30 25 1.2 1.5 2 0.01 0.01 0.01 aR aR aR 600 600 600 700 700 700 10 12 16 9 15 25 60 110 150 40 50 60 2.5 3 3.5 0.01 0.01 0.01 3NC1020 3NC1025 3NC1032 aR aR aR 600 600 600 700 700 -- 20 25 32 34 60 95 200 250 500 80 90 110 4.8 6 7.5 0.01 0.01 0.01 3NC1401 3NC1402 3NC1403 aR aR aR 660 660 660 ---- 1 2 3 ---- 1.2 10 15 90 30 40 5 3 2.5 0.02 0.02 0.02 3NC1404 3NC1405 3NC1406 aR aR aR 660 690 690 -800 800 4 5 6 -1.6 1.4 25 9 15 50 20 47 3 1.5 1.5 0.02 0.02 0.02 3NC1410 3NC1410-5 3NC1415 aR aR aR 690 690 690 800 600 800 10 10 15 3.6 3.6 10 20 90 75 50 50 60 4 4 5.5 0.02 0.02 0.02 3NC1415-5 3NC1420 3NC1420-5 aR aR aR 690 690 690 600 800 600 15 20 20 9 26 26 100 120 500 60 70 70 5.5 6 6 0.02 0.02 0.02 3NC1425 3NC1425-5 3NC1430 aR aR aR 690 690 690 800 600 800 25 25 30 44 47 58 250 400 300 80 80 80 7 7 9 0.02 0.02 0.02 3NC1430-5 3NC1432 3NC1432-5 aR aR aR 690 690 690 600 800 600 30 32 32 58 95 68 500 700 600 80 80 80 9 7.6 7.6 0.02 0.02 0.02 3NC1440 3NC1440-5 3NC1450 aR aR aR 690 690 690 800 600 800 40 40 50 110 84 220 900 900 1800 100 100 110 8 8 9 0.02 0.02 0.02 3NC1450-5 aR 690 600 50 200 2000 110 9 0.02 3NC2200 3NC2200-5 3NC2220 aR aR aR 600 600 690 500 500 500 100 100 20 1250 1100 34 8000 8500 220 110 110 41 16 16 4.6 0.06 0.06 0.06 3NC2220-5 3NC2225 3NC2225-5 aR aR aR 690 690 690 500 500 500 20 25 25 19 50 34 240 300 350 40 50 50 5 5.6 6 0.06 0.06 0.06 3NC2232 3NC2232-5 3NC2240 aR aR aR 690 690 690 500 500 500 32 32 40 80 54 100 450 500 700 65 65 80 7 8 8.5 0.06 0.06 0.06 3NC2240-5 3NC2250 3NC2250-5 aR aR aR 690 690 690 500 500 500 40 50 50 68 185 135 800 1350 1500 80 90 90 9 9.5 9.5 0.06 0.06 0.06 3NC2263 3NC2263-5 aR aR 690 690 500 500 63 63 310 280 2600 3000 100 100 11 11 0.06 0.06 3NC2280 3NC2280-5 aR aR 690 690 500 500 80 80 620 600 5500 6000 110 110 13.5 13.5 0.06 0.06 MLFB Operational class (IEC 60269) Rated voltage Un Rated breaking capacity I1n kA Melting I2t value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In 2) 2) Varying load factor VL A2s A2s K W Cylinder Operational class (IEC 60269) 3NC1003 3NC1006 3NC1008 aR aR aR 3NC1010 3NC1012 3NC1016 V AC / V DC Rated current In 1) A 3NC1006-0MK 3NC1010-0MK 3NC1012-0MK gR gR gR 690/440 690/440 690/440 100/50 100/50 100/50 6 10 12 0.5 1.3 1.9 6.5 18 35 33 37 45 2.5 3.3 4 On request On request On request 3NC1016-0MK 3NC1020-0MK 3NC1025-0MK gR gR gR 690/440 690/250 690/250 100/50 100/50 100/50 16 20 25 3 5.9 12 45 110 140 57 70 76 6 7.8 8.7 On request On request On request 3NC1032-0MK gR 690/250 100/50 32 50 450 90 12 On request 3NC1406-0MK 3NC1410-0MK 3NC1416-0MK gR gR gR 690/700 690/700 690/600 100/50 100/50 100/50 6 10 16 0.5 1.4 3.2 3.5 15 32 31 47 56 3.1 4.6 6.7 On request On request On request 3NC1420-0MK 3NC1425-0MK 3NC1432-0MK gR gR gR 690/600 690/600 690/600 100/50 100/50 100/50 20 25 32 6.3 13 19 68 108 175 62 71 100 7.4 8.4 12.3 On request On request On request 3NC1440-0MK 3NC1450-0MK 3NC1463-0MK gR gR aR 690/440 690/250 690/250 100/50 100/50 100/50 40 50 63 43 140 330 470 830 2.100 87 115 110 11.7 16.3 16.7 On request On request On request 148 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design MLFB Operational class (IEC 60269) Rated voltage Un Rated breaking capacity I1n kA V AC / V DC Rated current In 1) A Melting I2t value I2ts (tvs = 1 ms) Breaking I2t value I2ta at Un Temperature rise at In body center Power dissipation at In 2) 2) A2s A2s K W 0.9 3 17 52 33 31 5.3 8.3 21 90 160 400 35 43 49 33 65 600 1.250 52 53 11 1 3.8 Varying load factor VL 3NC18100-0MK 3NC18160-0MK 3NC18200-0MK gR gR gR 690/440 690/440 690/440 100/50 100/50 100/50 10 16 20 4.6 5.2 6.8 0.06 0.06 0.06 3NC18250-0MK gR 690/440 100/50 25 3NC18320-0MK 3NC18400-0MK 3NC18500-0MK gR gR gR 690/440 690/440 690/440 100/50 100/50 100/50 32 40 50 8.7 9.8 0.06 3NC2200-0MK 3NC2211-0MK 3NC2225-0MK gR gR gR 690/700 690/600 690/440 100/50 100/50 100/50 25 32 40 13 25 42 180 420 700 38 41 50 8.1 9 12.5 On request On request On request 3NC2232-0MK 3NC2240-0MK 3NC2250-0MK gR gR gR 690/250 690/250 690/250 100/50 100/50 100/50 50 63 80 74 94 320 1.250 2400 4400 63 64 72 15.2 17.5 23 On request On request On request 3NC2263-0MK 3NC2280-0MK gR aR 690/250 690/250 100/50 100/50 100 125 850 1500 11500 29000 79 88 28.1 35.3 On request On request 3NC2301-0MK 3NC2302-0MK 3NC2304-0MK 3NC2306-0MK gS gS gS gS 1500/1000 1500/1000 1500/1000 1500/1000 30/50 30/50 30/50 30/50 1 2 4 6 0.1 1 7 8 2 4.4 55 150 9 14 21 26 2 2.5 5.3 6.4 On request On request On request On request 3NC2310-0MK 3NC2316-0MK 3NC2320-0MK gS gS gS 1500/1000 1500/1000 1500/1000 30/50 30/50 30/50 10 16 20 90 310 570 540 1120 2850 17 1 25 3.1 4.7 5.4 On request On request On request 3NC2325-0MK 3NC2332-0MK 3NC2340-0MK 3NC2350-0MK gS gS gR gR 1500/1000 1500/1000 1500/1000 1500/1000 30/50 30/50 30/50 30/50 25 32 40 50 910 2650 3260 6480 3300 9050 12800 26000 33 31 38 46 6.9 6.7 9.4 11.6 On request On request On request On request 3NC26250MK 3NC26320MK 3NC26400MK gR gR gR 690/440 690/440 690/440 100/50 100/50 100/50 25 32 40 8 14.5 21 120 190 400 40 54 64 9.5 12.3 14.8 On request On request On request 3NC26500MK 3NC26630MK 3NC26800MK gR gR aR 690/440 690/440 690/440 100/50 100/50 100/50 50 63 80 48 108 205 950 2,050 3500 66 68 62 17.5 18.8 22.5 On request On request On request 3NC26000MK 3NC26110MK aR aR 690/440 690/440 100/50 100/50 100 125 340 645 5400 11800 70 88 31.5 39 On request On request Siemens * 10/2015 0.06 0.06 0.06 149 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design Load rating of SITOR cylindrical fuses without strikers in fuse holders - can be used as fuse switch disconnectors 1) For SITOR fuse links Rated voltage V AC/V DC Rated current Required conduc- Fuse holders - can be used as fuse switch disconnectors 1) tor cross-section In Cu A mm 1-pole Type 2 Imax 2-pole Type Imax 3-pole Type Imax 2) 2) 2) A A A Size10 x 38 mm 3NC1003 3NC1006 3NC1008 600/700 3 6 8 1 1 1 3NC1010 3NC1012 3NC1016 10 12 16 1.5 1.5 2.5 3NC1020 3NC1025 3NC1032 20 25 32 2.5 4 6 600/-- For footnotes, see next page. 150 Siemens * 10/2015 3NC1091 3 6 8 10 3NC1092/ 2 x 3NC1091 3 6 8 10 3NC1093/ 3 x 3NC1091 3 6 8 12 16 12 16 10 12 16 20 25 32 20 24 30 20 22 28 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design For SITOR fuse links Rated voltage V AC/V DC Rated current Required conductor cross-section In Cu Fuse holders - can be used as fuse switch disconnectors 1) 1-pole Type Imax mm2 A 2-pole Type Imax 3-pole Type Imax 2) 2) 2) A A A Size 14 x 51 mm 3NC1401 3NC1402 660 3NC1403 3NC1404 1 2 1 1 3 4 1 1 1 2 3NC1491 3NC1492/ 2 x 3NC1491 1 2 3NC1493/ 3 x 3NC1491 1 2 3 4 3 4 3 4 5 6 10 1 1 1.5 5 6 10 5 6 10 5 6 10 3NC1415 3NC1420 3NC1425 15 20 25 1.5 2.5 4 15 20 25 15 20 24 15 20 22 3NC1430 3NC1432 3NC1440 30 32 40 6 6 10 28 32 40 27 32 39 25 32 38 3NC1450 50 10 48 46 44 3NC1405 3NC1406 3NC1410 690/800 Size 22 x 58 mm 3NC2220 3NC2225 3NC2232 690/500 3NC2240 3NC2250 3NC2263 3NC2280 3NC2200 600/500 20 25 32 2.5 4 6 40 50 63 80 10 10 16 25 100 35 2) Fuse tongs: 3NC1000. 1) 20 25 32 3NC2291 Fuse holders acc. to IEC 60269-3, UL 512 Fuse switch disconnectors (10 x 38, 14 x 51 mm) acc. to IEC 60947-3 Fuse switch disconnectors (22 x 58 mm) acc. to IEC 60947-3 3NC2292/ 2 x 3NC2291 20 25 32 3NC2293/ 3 x 3NC2291 20 25 32 40 50 60 74 39 48 58 71 38 44 56 69 95 90 85 The Imax values apply to "stand-alone operation". If several devices are butt-mounted and/or subject to unfavorable cooling conditions, these values may be reduced still further. With a larger conductor cross-section, values higher than Imax are possible. Load rating of SITOR cylindrical fuses with strikers in fuse holders - can be used as fuse switch disconnectors 1) For SITOR fuse links Rated voltage Rated current Required conductor cross-section In Cu A mm2 Fuse holders - can be used as fuse switch disconnectors 1) 1-pole V AC Type 2-pole Imax2) Type A 3-pole Imax2) Type A Imax2) A Size 14 x 51 mm 10 15 20 1.5 1.5 2.5 3NC1425-5 3NC1430-5 3NC1432-5 25 30 32 4 6 6 25 30 32 25 30 32 25 30 31 3NC1440-5 3NC1450-5 40 50 10 10 38 48 35 46 34 44 3NC1410-5 3NC1415-5 3NC1420-5 690/600 3NC1491 10 15 20 3NC1492/ 2 x 3NC1491-5 10 15 20 3NC1493/ 3 x 3NC1491-5 10 15 20 Size 22 x 58 mm 3NC2220-5 3NC2225-5 3NC2232-5 690/500 3NC2240-5 3NC2250-5 3NC2263-5 3NC2280-5 3NC2200-5 600/500 20 25 32 2.5 4 6 3NC2291 20 25 32 3NC2292/ 2 x 3NC2291-5 20 25 31 3NC2293/ 3 x 3NC2291-5 20 25 30 40 50 63 80 10 10 16 25 40 45 59 71 39 43 55 69 37 42 52 68 100 35 94 90 85 1) Fuse holders acc. to IEC 60269-3, UL 512 Fuse switch disconnectors (10 x 38, 14 x 51 mm) acc. to IEC 60947-3 Fuse switch disconnectors (22 x 58 mm) acc. to IEC 60947-3 2) The Imax values apply to "stand-alone operation". If several devices are butt-mounted and/or subject to unfavorable cooling conditions, these values may be reduced still further. With a larger conductor cross-section, values higher than Imax are possible. Siemens * 10/2015 151 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design Dimensional drawings O22,2 O 10,2 9,5 38 14,3 Cylindrical fuse links 10 51 16 58 3NC14. ., 3NC14..-0MK 3NC22. ., 3NC22..-0MK O 22.2 0.1 3NC10. ., 3NC10..-0MK I201_19442 127 2 3NC23..-0MK Cylindrical fuse holders 17,7 35,4 37 58 64,5 I201_11382 81 45 85 53,1 3NC109. 27 81 54 69 75,5 42,5 I201_11383 45 95,5 3NC149. 43 70 76 I201_11384 45 36 72 3NC129. 152 Siemens * 10/2015 108 117,5 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design Cylindrical fuse holders with signaling switch 69 70 43 36 143 24 28 I201_12845 28 I201_12844 122 112 118 45 92 96 45 49 43 27 24 3NC1491-5 3NC1291-5 20 41 21,5 20 20 60,5 103,5 88 90 I201_11385a 76 I201_11386a Cylindrical fuse bases 26 24 50 50,5 3NC1451-1 110,8 126,5 I201_11387 3NC1038-1 to 3NC1038-3 33 66,2 66,5 3NC2258-1 Siemens * 10/2015 153 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses I201_19435 Cylindrical fuse design 96 76 186 5 102 Type Dimensions A 3NC2391-0MK 40 3NC2392-0MK 80 3NC2393-0MK 120 3NC239.-0MK H E N L D M J K R I201_19439 J A e F C Type Dimensions F E D OC A 3NC18..-0MK 18 52,2 71,5 9 19 3NC26..-0MK 26 53,5 75,8 13 29 3NC18..-0MK, 3NC26..-0MK 154 Siemens * 10/2015 H 12 19 K 9 14 L 88 103 M 12 13 N 7 9,3 e R 1,4 14 19,7 2 5 6, O 50 200 2x A (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 75 80 M5 31 D 10 C A 48 B I201_19434 I201_19431 25 28 36 20 O14 O7,5 O10 117,5 Type 3NH5023 3NH5323 3NH5023 O5 98 Dimensions A B C D 59 M8 35,5 11 64 M10 38 11 3NH5723 Siemens * 10/2015 155 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design Characteristic curves 3NC10 series 10 x 38 mm aR 600 V AC/700 V DC, 3 ... 25 A 600 V AC, 32 A 3 ... 32 A Rated current: Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) I201_11453 10 4 6 4 C 6 4 2 2 10 3 Peak let-through current Virtual pre-arcing time tVS [s] 10 4 I201_11454 Size: Operational class: Rated voltage: 6 4 2 10 2 6 4 3A 6A 8A 10 A 12 A 16 A 20 A 25 A 32 A 2 10 1 6 4 2 10 32 A 25 A 20 A 16 A 3 6 4 12 A 10 A 8A 6A 3A 2 10 2 6 4 2 10 0 10 6 4 1 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 10 -1 6 4 2 10 -2 6 4 2 10 0 2 4 6 10 1 2 4 6 10 2 2 Prospective short-circuit current Correction factor kA for breaking I2t value 6 10 3 Peak arc voltage I201_11455 1600 0,8 1200 Peak arc voltage Correction factor 1 4 p I201_11456 10 -3 0,6 0,4 800 400 0,2 0 0 0 156 100 200 300 400 500 600 700 800 Recovery voltage Siemens * 10/2015 0 200 400 600 Recovery voltage 800 4 6 10 5 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC10..-0MK series 10 x 38 mm gR 690 V AC; 250 ... 400 V DC 6 ... 32 A I201_19384 10 5 6 Unlimited peak values: 4 2 DC component 50 % DC component 0 % C 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram 2 10 4 2 32 A 102 6 4 25 A 2 16 A 101 6 4 12 A 10 3 10 A 6 6A 4 20 A 2 I201_19387 Size: Operational class: Rated voltage: Rated current: 6 4 32 A 2 25 A 20 A 16 A 12 A 10 A 6A 0 10 6 4 2 10 2 2 6 10-1 6 4 4 2 2 10-2 6 4 10 1 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 100 2 4 6 8 101 2 4 6 8 102 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value p 6 8 103 [A] Peak arc voltage 2000 A I201_19390 1.2 1 1600 Peak arc voltage Correction factor p -3 I201_19391 10 4 6 10 5 0.8 0.6 1200 800 0.4 400 0.2 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 0 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 157 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC14 series 14 x 51 mm aR 660 V AC (1 ... 4 A); 690 V AC/800 V DC (5 ... 50 A) 1 ... 10 A Rated current: Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 4 I201_11459 6 4 6 4 2 2 10 3 Peak let-through current Virtual pre-arcing time tVS [s] 10 4 I201_11460 Size: Operational class: Rated voltage: 6 4 2 10 2 6 4 2 6 4 2 10 0 6 4 2 10 A 5A 10 2 1A 2A 3A 4A 5A 6A 10 A 10 1 10 3 6 4 2 10 1 6 4 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 10 -1 6 4 2 10 -2 6 4 2 10 0 2 4 6 10 1 2 4 6 10 2 2 Prospective short-circuit current Correction factor kA for breaking I2t value 6 10 3 Peak arc voltage I201_11461 1600 0,8 660 V 1200 Peak arc voltage Correction factor 1 4 p I201_11462 10 -3 690 V 0,6 0,4 800 400 0,2 0 0 0 100 200 300 400 500 Recovery voltage 158 Siemens * 10/2015 600 700 800 0 200 400 600 Recovery voltage 800 4 6 10 5 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC14 series 14 x 51 mm aR 660 V AC (1 ... 4 A); 690 V AC/800 V DC (5 ... 50 A) 15 ... 50 A Rated current: Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 6 4 tVS [s] 6 50 A 40 A 32 A 30 A 4 C 2 10 3 Peak let-through current Virtual pre-arcing time 10 4 I201_11463 10 4 6 4 2 10 2 6 4 10 1 6 4 2 2 10 3 6 25 A 20 A 15 A 4 2 10 2 15 A 20 A 25 A 30 A 32 A 40 A 50 A 2 I201_11464 Size: Operational class: Rated voltage: 6 4 2 10 0 10 1 6 4 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p 2 10 -1 6 4 2 10 -2 6 4 2 10 0 2 4 10 1 6 2 4 6 10 2 2 Prospective short-circuit current Correction factor kA for breaking I2t value 6 10 3 Peak arc voltage 1600 I201_11465 0,8 1200 Peak arc voltage Correction factor k A 1 4 p I201_11462 10 -3 30 A 0,6 32 A 0,4 800 400 0,2 0 0 100 200 300 400 600 700 Recovery voltage U w 500 800 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 159 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC14..-0MK series 14 x 51 mm gR, aR 690 V AC; 250 ... 700 V DC 6 ... 63 A I201_19385 10 5 6 Unlimited peak values: 4 2 DC component 50 % DC component 0 % C 103 6 4 2 63 A 102 6 4 50 A 40 A 32 A 2 25 A 1 10 6 4 20 A 16 A 2 10 A 0 10 6 4 6A Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram I201_19388 Size: Operational class: Rated voltage: Rated current: 2 10 4 6 63 A 50 A 40 A 32 A 25 A 20 A 16 A 10 A 6A 4 2 10 3 6 4 2 10 2 2 6 10-1 6 4 4 2 2 10-2 6 4 10 1 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 100 2 4 6 8 101 2 4 6 8 102 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value A 2000 1 1600 Peak arc voltage Correction factor Peak arc voltage I201_19390 1.2 p 6 8 103 [A] I201_19391 10 -3 0.8 0.6 1200 800 0.4 400 0.2 0 160 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 800 0 0 200 400 600 Recovery voltage 800 4 6 10 5 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC14..-5 series with striking pin 14 x 51 mm aR 690 V AC/600 V DC 10 ... 50 A Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 4 I201_13410 6 4 4 50 A 40 A 32 A 30 A C 2 6 Let-through current Virtual pre-arcing time tVS [s] 10 4 10 3 6 4 2 10 2 10 A 15 A 20 A 25 A 30 A 32 A 40 A 50 A 6 4 2 10 1 6 4 I201_13411 Size: Operational class: Rated voltage: Rated current: 2 10 3 6 4 25 A 20 A 15 A 10 A 2 10 2 6 4 2 2 10 0 10 1 6 4 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p 2 10 -1 6 4 2 10 -2 6 4 2 10 0 2 4 10 1 6 2 4 6 10 2 2 Prospective short-circuit current Correction factor kA for breaking I2t value 6 10 3 Peak arc voltage I201_13412 1400 1200 0,8 Peak arc voltage Correction factor 1 4 p I201_13413 10 -3 0,6 0,4 1000 800 600 400 0,2 200 0 0 0 100 200 300 400 500 600 Recovery voltage 700 800 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 161 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC18..-0MK series 18 x 88 mm gR 690 V AC/440 V DC 10 ... 50 A I201_19395 40 A 103 6 4 32 A 25 A 2 20 A 102 6 4 6 4 C 50 A 2 10 5 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram I201_19396 Size: Operational class: Rated voltage: Rated current: 16 A 10 A 2 2 10 4 6 50 A 40 A 32 A 25 A 20 A 16 A 10 A 4 2 10 3 1 10 6 4 6 4 2 0 10 6 4 2 10 2 2 6 10-1 6 4 Unlimited peak values: 4 DC component 50 % DC component 0 % 2 2 10-2 6 4 10 1 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 -3 10 6 4 2 10-4 4 6 8 101 2 4 6 8 102 2 Prospective short-circuit current Correction factor kA for breaking I2t value A 6 8 103 [A] Peak arc voltage 2000 1 1600 Peak arc voltage Correction factor p I201_19399 1.2 4 I201_19400 2 0.8 0.6 1200 800 0.4 400 0.2 0 162 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 800 0 0 200 400 600 Recovery voltage 800 4 6 10 5 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC22 series 22 x 58 mm aR 690 V AC/500 V DC (20 ... 80 A); 600 V AC/500 V DC (100 A) 20 ... 100 A Rated current: Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 4 I201_11470 6 4 4 C 2 100 A 80 A 63 A 50 A 6 10 3 Peak let-through current Virtual pre-arcing time tVS [s] 10 4 6 4 2 10 2 6 4 I201_11471 Size: Operational class: Rated voltage: 2 10 3 6 40 A 32 A 25 A 20 A 4 2 10 2 2 10 1 6 6 4 4 2 2 10 0 10 1 20 A 25 A 32 A 40 A 50 A 63 A 80 A 100 A 6 4 2 10 -1 6 4 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p 2 10 -2 6 4 2 10 1 2 4 6 10 2 2 4 6 10 3 2 Prospective short-circuit current Correction factor kA for breaking I2t value 10 4 Peak arc voltage 1400 I201_11472 600 V 0,8 6 690 V 0,6 1200 Peak arc voltage Correction factor 1 4 p 0,4 I201_11466 10 -3 1000 800 600 400 0,2 200 0 0 0 100 200 300 400 500 Recovery voltage 600 700 800 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 163 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC22..-0MK series 22 x 58 mm gR, aR 690 V AC; 250 ... 700 V DC 25 ... 125 A I201_19386 10 5 6 4 2 C 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram I201_19389 Size: Operational class: Rated voltage: Rated current: 2 102 6 4 2 125 A 1 2 10 4 125 A 100 A 80 A 63 A 50 A 40 A 32 A 25 A 6 4 2 10 3 100 A 10 6 4 2 80 A 6 63 A 4 50 A 0 10 6 4 2 40 A 2 32 A 10 2 25 A 6 Unlimited peak values: 4 DC component 50 % DC component 0 % 10-1 6 4 2 2 10-2 6 4 10 1 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 2 -3 10 6 4 2 10-4 2 4 6 8 102 2 4 6 8 103 2 Prospective short-circuit current Correction factor kA for breaking I2t value A [A] Peak arc voltage 2000 1 1600 Peak arc voltage Correction factor p 6 8 104 I201_19390 1.2 4 I201_19391 101 0.8 0.6 1200 800 0.4 400 0.2 0 164 100 200 300 400 500 600 700 Recovery voltage U w [V] Siemens * 10/2015 800 0 0 200 400 600 Recovery voltage 800 4 6 10 5 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC22..-5 series with striking pin 22 x 58 mm aR 690 V AC/500 V DC (20 ... 80 A); 600 V AC/500 V DC (100 A) 20 ... 100 A Rated current: Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) 10 4 I201_13414 6 4 4 C 2 100 A 80 A 63 A 50 A 6 Let-through current Virtual pre-arcing time tVS [s] 10 4 10 3 6 4 2 10 2 20 A 25 A 32 A 40 A 50 A 63 A 80 A 100 A 6 4 2 10 1 6 4 I201_13415 Size: Operational class: Rated voltage: 2 10 3 6 40 A 32 A 25 A 20 A 4 2 10 2 6 4 2 2 10 0 10 1 6 4 10 1 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p 2 10 -1 6 4 2 10 -2 6 4 2 10 1 2 4 10 2 6 2 4 6 10 3 2 Prospective short-circuit current Correction factor kA for breaking I2t value 6 10 4 Peak arc voltage I201_13416 1400 1200 0,8 600 V Peak arc voltage Correction factor 1 4 p I201_13417 10 -3 0,6 690 V 0,4 1000 800 600 400 0,2 200 0 0 0 100 200 300 400 500 Recovery voltage 600 700 800 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 165 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC23..-0MK series 22 x 127 mm gS, gR, aR Rated voltage: Rated current: Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz) I201_19392 103 6 4 50 A 40 A 2 32 A 102 6 4 25 A 20 A 2 16 A 101 6 4 10 A DC component 50 % DC component 0 % 2 10 4 6 50 A 40 A 32 A 25 A 20 A 16 A 10 A 6A 4A 2A 1A 4 2 10 3 6 4 2 100 6 4 2 10 2 6A 2 10-1 6 4 4A 6 2A 4 1A 2 2 -2 10 6 4 10 1 10 1 2 10-3 100 2 4 6 8 101 2 4 6 8 102 2 6 8 103 4 Prospective short-circuit current p [A] I2t characteristic I201_19394 5 Unlimited peak values: I 2 t [ A 2s] Unlimited peak values: 4 C 2 6 Peak let-through current [s] 10 6 4 vs Virtual pre-arcing time 10 5 Un = DC 1000 V 4 DC component 80 % DC component 0 % 2 10 5 6 4 50 A 2 40 A 32 A 10 4 6 4 25 A 20 A 2 16 A 10 3 6 10 A 4 2 6A 10 2 6 4A 4 2 10 1 2A 6 1A 4 2 10 0 10 1 166 1500 V AC/1000 V DC 1 ... 50 A I201_19393 Size: Operational class: 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current Siemens * 10/2015 4 6 10 5 p 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Cylindrical fuse design 3NC26..-0MK series 26 x 103 mm gR, aR 690 V AC/440 V DC 25 ... 125 A I201_19397 10 5 6 4 C 2 103 6 4 Peak let-through current Virtual pre-arcing time Let-through characteristics (current limitation at 50 Hz) 104 6 4 vs [s] Time/current characteristics diagram I201_19398 Size: Operational class: Rated voltage: Rated current: 2 102 6 4 125 A 2 100 A 101 6 4 2 2 125 A 100 A 80 A 63 A 50 A 40 A 32 A 25 A 10 4 6 4 2 80 A 10 3 63 A 6 50 A 4 40 A 0 10 6 4 2 32 A 25 A 10 2 2 10-1 6 4 6 Unlimited peak values: 4 DC component 50 % DC component 0 % 2 2 10 1 10 1 10-2 6 4 2 4 6 10 2 2 4 6 10 3 2 4 6 10 4 2 Prospective short-circuit current 4 6 10 5 p 2 2 4 6 8 102 2 4 6 8 103 2 4 Prospective short-circuit current Correction factor kA for breaking I2t value A 2000 1 1600 Peak arc voltage Correction factor Peak arc voltage I201_19399 1.2 p 6 8 104 [A] I201_19400 10-3 101 0.8 0.6 1200 800 0.4 400 0.2 0 100 200 300 400 500 600 700 Recovery voltage U w [V] 800 0 0 200 400 600 Recovery voltage 800 Siemens * 10/2015 167 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses NEOZED and DIAZED design Overview Benefits SILIZED is the brand name for the NEOZED fuses (D0 fuses) and the DIAZED fuses (D fuses) with quick-acting characteristic for semiconductor protection. The fuses are used in combination with fuse bases, fuse screw caps and accessory parts of the standard fuse system. SILIZED semiconductor fuses protect power semiconductors from the effects of short circuits because the super quick disconnect characteristic is far quicker than that of conventional fuses. They protect expensive devices and system components, such as semiconductor contactors, static relays, converters with fuses in the input and in the DC link, UPS systems and soft starters for motors up to 100 A. * SILIZED semiconductor fuses have an extremely compact design. This means they have a very small footprint - particularly the NEOZED version * The rugged and well-known DIAZED design complies with IEC 60269-3. It is globally renowned and can be used in many countries * A wide range of fuse bases and accessories is available for the NEOZED and DIAZED versions of the SILIZED semiconductor fuses. This increases the application options in many devices When using fuse bases and fuse screw caps made of molded plastic, always heed the maximum permissible power loss values due to the high power loss (power dissipation) of the SILIZED fuses. When using these components, the following maximum permissible power loss applies: * NEOZED D02: 5.5 W * DIAZED DII: 4.5 W * DIAZED DIII: 7.0 W This enables a partial thermal permanent load of only 50 %. The DIAZED screw adapter DII for 25 A is used for the 30 A fuse link. Technical specifications Fuse links, NEOZED design 5SE13 Standards DIN VDE 0636-3; IEC 60269-3; EN 60269-4 (VDE 0636-4); IEC 60269-4 Operational class gR Fuse links, DIAZED design 5SD4 Quick-acting Characteristic V AC V DC 400 250 500 500 Rated current In A 10 ... 63 16 ... 100 Rated breaking capacity kA AC kA DC 50 8 Rated voltage Un Any, preferably vertical Mounting position Using adapter sleeves Non-interchangeability Resistance to climate C Up to 45 at 95 % rel. humidity Ambient temperature C -5 to +40, humidity 90 % at 20 168 Siemens * 10/2015 Using screw adapter or adapter sleeves (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses NEOZED and DIAZED design Dimensional drawings 5SE1 Od I2_06252d Size D01 D02 Rated current in A 10 ... 16 20 ... 63 Dimension d 11 15.3 Dimension h 36 36 Size/thread DII/E27 h d 22,5 I201 06247 5SD420, 5SD430, 5SD440, 5SD480 Rated current in A 16 20 25 30 Dimension d 10 12 14 14 49 I201 06248 d 28 5SD450, 5SD460, 5SD470 Size/thread DIII/E33 Rated current in A 35 50 63 Dimension d 16 18 20 Size/thread DIV/R11/4" Rated current in A 80 100 5 7 49 I201_06682 Dimension d d 34,5 5SD510, 5SD520 57 Technical specifications Type Size NEOZED design In Pv A W K I2ts I2ta 1 ms 4 ms 230 V AC 400 V AC A2s A2s A2s A2s 5SE1310 5SE1316 D01 10 16 6.9 6.2 64 61 30 31 30 34 56 92 73 120 5SE1320 5SE1325 5SE1335 D02 20 25 35 8.1 8.2 16.7 64 63 100 50 120 145 56 120 182 146 166 361 190 215 470 50 63 12.0 15.5 80 96 460 845 540 932 1510 3250 1960 4230 I2ts I2ta 1 ms 500 V AC A2s A2s 5SE1350 5SE1363 Type Size DIAZED design In A 5SD420 5SD430 DII 5SD440 5SD480 Pv W K 16 20 12.1 12.3 63 69 16.2 35.8 60 139 25 30 12.5 13.4 61 65 48.9 85 205 310 5SD450 5SD460 5SD470 DIII 35 50 63 14.8 18.5 28 62 66 84 135 340 530 539 1250 1890 5SD510 5SD520 DIV 80 100 34.3 41.5 77 83 980 1950 4200 8450 Siemens * 10/2015 169 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses NEOZED and DIAZED design Characteristic curves 5SE13.. series D01, D02 gR 400 V AC/250 V DC 10 ... 63 A Melting I2t values diagram vs I201_11473a [s] 10 4 6 4 2 6 4 1 0 2 1 0 s -3 s - 4 1 0 2 2 s 4 1 0 6 4 2 2 3 1 0 10 1 6 3 A 6 6 4 5 0 A 4 2 2 10 0 3 5 A 2 5 A 2 1 0 6 6 4 2 0 A 1 6 A 1 0 A 4 20 A 2 10 A 10 -1 32/35 A 63 A 25 A 16 A 2 50 A 1 1 0 6 6 4 4 2 2 10 -2 1 0 6 4 0 1 0 1 2 4 6 8 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 e ff 2 10 -3 10 1 2 4 8 10 2 6 2 4 p 8 10 3 6 [A] Current limiting diagram 4 I2 _ 1 1 4 7 4 1 0 6 [A ] -2 1 0 6 4 6 3 A 5 0 A 4 c s 4 10 2 2 1 3 5 A 3 2 A 2 0 A 1 6 A 1 0 A 2 3 6 4 2 2 4 6 8 1 0 2 2 4 6 8 1 0 3 2 4 6 8 1 0 4 2 e ff $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component 170 -1 6 2 1 0 s 1 0 1 0 6 4 1 0 0 5 s 10 3 6 1 0 I2 _ 1 1 4 7 5 Time/current characteristics diagram [A 2 s ] Size: Operational class: Rated voltage: Rated current: Siemens * 10/2015 4 [A ] 6 8 1 0 5 4 [A ] 6 8 1 0 5 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses NEOZED and DIAZED design 5SD4, 5SD5 series DII, DIII, DIV gR Super quick 500 V AC/500 V DC 16 ... 100 A Melting I2t values diagram I2_06426c 10 4 vs[s] 6 4 2 6 4 2 10 3 10 6 I2_07070b Time/current characteristics diagram 2 s [A s] Size: Operational class: Characteristic: Rated voltage: Rated current: 2 10 5 6 4 6 4 2 2 10 2 10 4 6 4 6 4 2 2 100 A 10 1 10 3 80 A 6 4 6 4 63 A 50 A 2 2 10 0 10 2 35 A 30 A 6 4 6 4 25 A 20 A 20 A 50 A 30 A 80 A 2 2 25 A 16 A 10 -1 35 A 63 A 100 A 16 A 10 1 6 4 6 4 10 0s 10 -1s 10 -2s 10 -3s 10 - 4s 2 2 10 -2 10 0 10 0 6 4 2 4 6 8 10 1 2 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 10 4 ef [A] 2 10 -3 10 1 2 6 8 10 2 1 2 4 2 4 6 p [A] 8 10 3 Current limiting diagram 6 I2_06054b c [A] 104 4 100 A 80 A 63 A 50 A 35 A 30 A 25 A 20 A 16 A 2 103 6 4 2 102 102 2 4 6 8 103 2 4 6 8 104 2 4 6 8 105 2 ef [A] 4 $ Peak short-circuit current with largest DC component % Peak short-circuit current without DC component Siemens * 10/2015 171 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Overview Parameters The fuse links are selected according to rated voltage, rated current, breaking I2t value I2ta and varying load factor, taking into consideration other specified conditions. All of the following data refers, unless otherwise specified, to use of alternating current from 45 Hz to 62 Hz. Rated voltage Un The rated voltage of a SITOR fuse link is the voltage specified as the rms value of the AC voltage on the fuse link and in the ordering and configuration data and the characteristics. Always ensure that the rated voltage of the fuse link you select is such that the fuse link will reliably quench the voltage driving the short-circuit current. The driving voltage must not exceed the value Un + 10 %. Please note that the supply voltage Uv0 of a power converter can also be increased by 10 %. If, in the shorted circuit, two branches of a converter circuit are connected in series, and if the short-circuit current is sufficiently high, it can be assumed that voltage sharing is uniform. It is essential to observe the instructions in "Series connection of fuse links" on page 179. Rectifier operation For operating conditions that deviate from the above, the permissible load current In' of the SITOR fuse link can be determined using the following formula: In' = ku x kq x k x kl x VL x In with In Rated current of the fuse link1) ku Correction factor for ambient temperature (page 173) kq Correction factor for conductor cross-section (page 173) k Correction factor for conduction angle (page 173) kl Correction factor for forced-air cooling (page 173) VL Varying load factor (page 174). Test cross-sections Rated current Test cross-sections In (3NC10, 3NC11, 3NC14, 3NC15, 3NC22, 3NE1..., 3NE80.., 3NE4 series) 1) (all other series) A Cu mm2 Cu mm2 45 45 45 50 63 80 10 16 25 45 45 45 100 125 160 35 50 70 60 80 100 200 224 250 95 -120 125 150 185 315 350 400 2 x 70 2 x 95 2 x 95 240 260 320 450 500 560 2 x 120 2 x 120 2 x 150 320 400 400 630 710 800 2 x 185 2 x (40 x 5) 2 x (50 x 5) 480 560 560 900 1000 1100 2 x (80 x 4) --- 720 720 880 1250 1400 1600 ---- VSI voltage The rated current of a SITOR fuse link is the current specified in the "Selection and ordering data", in the "Characteristic curves" and on the fuse link as the rms value of an alternating current for the 45 Hz to 62 Hz frequency range. When operating fuse links with rated current, the following are considered normal operating conditions: * Natural air cooling with an ambient temperature of +45 C * Conductor cross-sections equal test cross-sections (see table "Test cross-sections"), for operation in LV HRC fuse bases and switch disconnectors, see "Selection and ordering data" " in Catalog LV 10. * Conduction angle of a half-period 120el * Continuous load maximum with rated current 172 Siemens * 10/2015 45 4 6 10 With converter equipment that can also be used for inverter operation, inverter shoot-through may occur as faults. In this case, the driving voltage UWK in the shorted circuit is the sum of the infeed direct voltage (e.g. the e.m.f. of the DC generator) and the AC-line supply voltage. When rating a fuse link, this sum can be replaced by an AC voltage whose rms value is 1.8 times that of the AC-line supply voltage (UWK = 1.8 Uv0). The fuse links must be rated so that they reliably quench the voltage UWK. Rated current In, load rating --- 25 35 40 Inverter operation VSI is the abbreviation for Voltage Sourced Inverter. The VSI voltage UVSI is a DC test voltage defined in IEC 60269-4 specially for use in applications with energy stores. The characteristic feature of such applications is the extremely steep rise in current in the event of a fault. The VSI voltage and the corresponding I2t value for SITOR fuses 3NB1 and 3NB2 is specified in the "Technical Specifications" table; the values for all other SITOR fuses are available on request. 1.0 1.5 2.5 10 16 20 The supply voltage Uv0 is the driving voltage with converter equipment that can only be used for rectifier operation. 1) 960 1080 1200 When using SITOR fuse links in LV HRC fuse bases according to IEC/EN 60269-2-1 and in fuse switch disconnectors and switch disconnectors with fuses, please also refer to the information in the "Selection and ordering data" in Catalog LV 10. (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Correction factor for ambient temperature ku 1,0 0,9 0,8 -40 -20 0 +20 +40 +60 Ambient temperature +80 C Correction factor for conductor cross-section kq The rated current of the SITOR fuse links applies to operation with conductor cross-sections that correspond to the respective test cross-section (see the table on page 172). In the case of reduced conductor cross-sections, the correction factor kq must be used, as shown in the following diagram: The rated current of the SITOR fuse links is based on a sinusoidal alternating current (45 Hz to 62 Hz). However, in converter operation, the branch fuses are loaded with an intermittent current, whereby the conduction angle is generally 180el or 120el. With this load current wave form, the fuse link can still carry the full rated current. In the case of smaller conduction angles, the current must be reduced in accordance with the following diagram. 1,1 1,0 0,9 0,8 0,7 I201_12637 1,1 I201_12636 Correction factor k u 1,2 Correction factor for conduction angle k Correction factor k The influence of the ambient temperature on the permissible load of the SITOR fuse link is taken into account using the correction factor ku as shown in the following diagram. 0,6 0,5 30 45 60 90 120 180 240 360 Valve conducting period el Correction factor for forced-air cooling kl 0,95 b 0,80 1,4 0,70 I201_12639 0,75 0,65 20 15 100 80 60 50 40 30 10 Connection cross-section % (as a % of the test cross-section) a = Reduction of cross-section of one connection b = Reduction of cross-section of both connections 1,3 1,2 I201_12638 0,85 In the case of increased air cooling, the current carrying capacity of the fuse links increase with the air speed, air speeds > 5 m/s do not produce any significant further increase in current carrying capacity. a 0,90 Correction factor k l Correction factor k q 1,00 1,1 1,0 0 2 4 Air velocity 6 m/s Siemens * 10/2015 173 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration the expected operating time, it may be possible to use a fuse link with a smaller varying load factor VL as shown in the following diagram. Varying load factor VL The varying load factor VL is a reduction factor by which the non-aging current carrying capacity of the fuse links can be determined for any load cycles. Due to their design, the SITOR fuse links have different varying load factors. In the characteristic curves of the fuse links, the respective varying load factor VL for >10000 load changes (1 hour "ON", 1 hour "OFF") is specified for the expected operating time of the fuse links. In the event of a smaller number of load changes during In the case of uniform loads (no load cycles and no shutdowns), the varying load factor can be taken as VL = 1. For load cycles and shutdowns that last longer than 5 min. and are more frequent than once a week, you need to select the varying load factor VL specified in the characteristic curves of the individual fuse links. I201_12640 LA / n 1,1 VL: 1,0 1,0 0,95 0,9 0,9 0,85 0,8 0,8 0,7 0,6 1 10 2 5 2 10 2 5 3 10 4 2 5 2 5 10 Permissible number of load cycles 5 10 Waveform of the varying load factor VL for load cycles Fuse currents for operation in power converter The rms value of the fuse current can be calculated for the most common converter circuits from the (smoothed) direct current Id or the conductor current IL according to the following table: Converter circuit Rms value of the conductor current (phase fuse) Rms value of the branch current (branch fuse) Single-pulse center tap connection (M1) 1.57 Id -- Double-pulse center tap connection (M2) 0.71 Id -- Three-pulse center tap connection (M3) 0.58 Id -- Six-pulse center tap connection (M6) 0.41 Id -- Double three-pulse center tap connection (parallel) (M3.2) 0.29 Id -- Two-pulse bridge circuit (B2) 1.0 Id 0.71 Id Six-pulse bridge circuit (B6) 0.82 Id 0.58 Id Single-phase bidirectional circuit (W1) 1.0 IL 0.71 IL 174 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration 2 2 2 I t values Melting I t value I ts In the event of a short circuit, the current of the fuse link increases during the melting time ts up to let-through current Ic (melting current peak). The melting I 2t value can be calculated from the value pairs of the time/current characteristic curve of the fuse link for any periods. During the arc quenching time tL, the electric arc develops and the short-circuit current is quenched (see the diagram below). As the melting time decreases, the melting I 2t value tends towards a lower limit value at which almost no heat is dissipated from the bottleneck of the fuse element to the environment during the melting process. The melting I 2t values specified in the selection and ordering data and in the characteristic curves correspond to the melting time tvs = 1 ms. c ts tA I201_12641 Quenching I 2t value I 2tL tL t Current path when switching fuse links 2 The integral of the current squared I dt over the total operating time (ts+tL), known as the breaking I 2t value, determines the heat to be fed to the semiconductor device that is to be protected during the breaking operation. To ensure adequate protection, the breaking I 2t value of the fuse link must be smaller than the I 2t value of the semiconductor device. As the temperature increases, i.e. preloading increases, the breaking I 2t value of the fuse link decreases almost in the same way as the I 2t value of a semiconductor device, so that it is sufficient to compare the I 2t values in a non-loaded (cold) state. The breaking I 2t value (I 2ta) is the sum of the melting I 2t value (I 2ts) and the quenching I 2t value (I 2tL). Whereas the melting I 2t value is a characteristic of the fuse link, the quenching I 2t value depends on circuit data, such as: * The recovery voltage Uw * The power factor p.f. of the shorted circuit * The prospective current Ip (current at the installation position of the fuse link if this is jumpered) The maximum quenching I 2t value is reached at a current of 10 x In to 30 x In depending on the fuse type. Breaking I 2t value I 2ta, correction factor kA The breaking I 2t values of the fuse links are specified in the characteristic curves for the rated voltage Un. To determine t he breaking I 2t value for recovery voltage Uw the correction factor kA must be taken into account. I 2ta (at Uw) = I 2ta (at Un) x kA The "correction factor kA" characteristic (see the following diagram) is specified in the characteristic curves for the individual fuse series. The breaking I 2t values determined in this way apply to prospective currents Ip 10 x In and p.f. = 0.35. 2 I dt (semiconductor, tvj = 25 C, 0,8 0,6 0,4 I201_12642 tp = 10 ms) > I t A (fuse link) Correction factor kA 1 2 0,2 100 200 300 400 500 600 700 Recovery voltage U w V Correction factor kA for breaking I2t value Example: Series 3NE8 0.. Siemens * 10/2015 175 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Taking into account the recovery voltage Uw The recovery voltage Uw is derived from the voltage driving the short-circuit current. For most faults, the driving voltage is equal to the supply voltage Uv0; however, for shoot-throughs it is 1.8 times the value for the supply voltage Uv0 (see rated voltage, page 172). If the shorted circuit contains two branches of a converter circuit and thus two fuse links in series, and if the short-circuit current is sufficiently high (see series connection, page 179) it can be assumed that there is a uniform voltage sharing, i.e. Uw = 0.5 x Uv0 or in the case of shoot-throughs Uw = 0.9 x Uv0. Influence of the power factor p.f. The specifications in the characteristic curves for the breaking I 2t values (I 2ta) refer to a power factor of p.f. = 0.35 (exception: for 3NC58.., 3NE64.., 3NE94.. SITOR fuse links, the following applies: p.f. = 0.2). 120 b 100 a 80 I201_12643 Cleaning- 2 value 2 A at p. f. (as a % of 2 A at p. f. = 0.35 or 0.2) % The dependence of the breaking I 2t values on the power factor p.f. at 1.0 x Un and at 0.5 x Un is shown in the following diagram. 60 0 0,2 0,4 0,6 0,8 Power factor p. f. Breaking I 2t value I 2ta of SITOR fuse links dependent on the power factor p.f. at 1.0 Un at 0.5 Un a = for 3NC58.., 3NE64.., 3NE94.. SITOR fuse links (reference to p.f. = 0.2) b = for all other SITOR fuse links (reference to p.f. = 0.35) 176 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Time/current characteristics Taking into account preloading, residual value factor RV The solid time/current characteristic curves in the following diagram specify the time to melting for the non-loaded fuse link in a cold state (max. +45 C). Preloading the fuse link shortens the permissible overload duration and the melting time. s 1x10 Virtual pre-arcing time t vs 4 1x10 3 The residual value factor RV is dependent on the preloading V (Irms rms value of the fuse current during the load cycle at permissible load current In') 2 1x10 I rms V = ------In 1 1x10 35 A 1x10 The residual value factor RV can be used to determine the time that a fuse link can be operated during a periodic or non-periodic load cycle, above and beyond the previously determined permissible load current In', with any overload current ILa without aging. 160 A 0 and the frequency of the overloads (see the following diagram, curves a and b). -1 1x10 1 I201_12657 -3 1x10 1 1 2 x10 4 6 81 3 2 4 6 81 2 2 x10 x10 Prospective short-circuit current 4 6 81 4 x10 A p 35 A: Operational class gR 160 A: Operational class aR If the time/current characteristic curve in the long-time range (tvs > 30 s) is dashed (fuse links of operational class aR), this specifies the limit of the permissible overload in a cold state. If the dotted part of the characteristic curve is exceeded, there is a risk of damage to the ceramic body of the fuse link. The fuse link can only be used for short-circuit protection. In this case, an additional protective device (overload relay, circuit breaker) is required to protect against overload. In the case of controlled converter equipment, the current limiter is sufficient. If the time/current characteristic curve is shown as a solid line over the entire time range (fuse links of operational class gR or gS), the fuse link can operate in the entire time range. This means it can be used both for overload and short-circuit protection. Residual value factor RV -2 1x10 I201_12644 c 0,8 0,6 b 0,4 a 0,2 0 0 0,2 0,4 0,6 0,8 Pre-load factor V 1 Permissible overload and melting time for previous load a = Frequent surge/load cycle currents (>1/week) b = Infrequent surge/load cycle currents (<1/week) c = Melting time for preloading Permissible overload duration = Residual value factor RV x melting time tvs (time/current characteristic curve) A reduction of the melting time of a fuse link in the case of preloading can be derived from curve c. Melting time = Residual value factor RV x melting time tvs (time/current characteristic curve) Real melting time The virtual melting time tvs is specified in the time/current characteristic curve, depending on the prospective current. It is a value that applies to the current squared (di/dt) = ). In the case of melting times tvs < 20 ms the virtual melting time tvs deviates from the real melting time ts. The real melting time may be several milliseconds longer (depending on the rate of current rise). Within a range of several milliseconds, during which the rise of the short-circuit current can be assumed to be linear, the real melting time for a sinusoidal current rise and 50 Hz is as follows: 2 3xI t s t = --------------s 2 I c Siemens * 10/2015 177 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration A The following diagram shows the let-through current Ic of a fuse link, depending on the prospective short-circuit current Ip using the 3NE4333-0B SITOR fuse link as an example. 5 Unlimited peak values: DC component 50% DC component 0% 4 1x10 450 A 1600 1400 1200 1000 800 600 400 200 100 0 200 3 1x10 1 2 2 4 6 1 3 2 4 6 1 42 4 6 1 5 x10 x10 x10 x10 Prospective short-circuit current p A Example: 3NE4333-0B SITOR fuse link Rated breaking capacity The rated breaking capacity of all SITOR fuse links is at least 50 kA, unless higher values are specified in the characteristic curves. The data applies to a test voltage of 1.1 x Un, 45 Hz to 62 Hz and 0.1 p.f. 0.2. In the case of inception voltages that are below the rated voltage, as well as rated currents of the fuse links that are below the maximum rated current of a fuse series, the breaking capacity is considerably higher than the rated breaking capacity. The peak arc voltage occurs as a cutoff voltage at the semiconductor devices not in the shorted circuit. In order to prevent voltage-related hazards, the peak arc voltage must not exceed the peak cutoff voltage of the semiconductor devices. Power dissipation, temperature rise On reaching the rated current, the fuse elements of the SITOR fuse links have a considerably higher temperature than the fuse elements of line protection fuse links. The power dissipation specified in the characteristic curves is the upper variance coefficient if the fuse link is loaded with the rated current. In the case of partial loads, this power dissipation decreases as shown in the following diagram. 100 80 60 40 20 0 0 I201_12646 1x10 400 600 800 1000 1200 V Recovery voltage Uw Example: 3NE4333-0B SITOR fuse link Power dissipation at partial load (as a % of the power dissipated at rated current) % 2 I201_12658 Let-through current c 1x10 2000 1800 I201_12645 During the quenching process, a peak arc voltage Us occurs at the connections of the fuse link that can significantly exceed the supply voltage. The level of the peak arc voltage depends on the design of the fuse link and the level of the recovery voltage. It is presented in characteristic curves as a function of the recovery voltage Uw (see the following diagram). V Peak arc voltage Us The let-through current Ic can be determined from the current limiting characteristics (current limitation at 50 Hz) specified for the respective fuse link. This depends on the prospective current and the DC component when the short circuit occurs (instant of closing). Peak arc voltage Us Let-through current Ic 60 80 40 Load current (as a % of rated current n ) 20 100 % The temperature rise specified in the characteristic curves applies to the respective reference point and is determined when testing the fuse link (test setup according to DIN VDE 0636, Part 23 and IEC 269-4). 178 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Parallel and series connection of fuse links Use with direct current Parallel connection In general, all SITOR fuses can be used for AC and DC applications. For AC fuse links that are to be used in DC circuits, some data may vary from the data specified in the characteristic curves for alternating current. Series connection There are two kinds of series connection available: * Series connection in the converter branch * Two fused converter branches through which a short-circuit current flows in series In both cases, uniform voltage sharing can only be assumed if the melting time of the SITOR fuse link does not exceed the value specified in the following table. SITOR fuse links Maximum melting time for uniform voltage sharing Type ms 3NC10.. 3NC14.. 3NC15.. 3NC22.. 10 3NC24.. 40 3NC58.. 3NC73.. 3NC84.. 10 3NE10.. 3NE12.. 3NE13.. 10 3NE14.. 20 3NE18.. 10 3NE32.. 3NE33.. 10 3NE34.. 3NE35.. 3NE36.. 20 3NE41.. 3NE43.. 10 3NE54.. 3NE56.. 20 3NE64.. 10 3NE74.. 3NE76.. 20 3NE80.. 3NE87.. 10 3NE94.. 10 3NE96.. 20 Permissible direct voltage The permissible direct voltage Uperm of the fuse links depends on the rated voltage Un, on the time constant = L/R in the DC circuit and on the prospective current Ip. The permissible direct voltage refers to the rated voltage Un and is specified depending on the time constant ; the prospective current is a parameter (see the following diagrams). 1,00 p 20 n 0,90 p= 10 n 0,80 p= 5 n 0,70 0,60 0,50 I201_12647 To boost the voltage, two or more parallel fuse links can be assigned to a single semiconductor device without reducing the current. The resulting breaking I 2t value increases with the square of the number of parallel connections. In this case, in order to prevent incorrect distribution of the current, you must only use fuse links of the same type or, better still, the parallel switched SITOR 3NB fuses. The new 1250 V DC fuses 3NB1 and 3NB2 have been explicitly tested with DC voltage. They can also be used with AC voltage; details on request. perm. DC voltage U perm rated voltage Un If a branch of a converter circuit has several semiconductor devices so that the fuse links are connected in parallel, only the fuse link connected in series to the faulty semiconductor device is tripped in the event of an internal short circuit. It must quench the full supply voltage. 0,40 0 10 20 40 50 Time constant 30 60 70 =L/R 80 ms 60 70 =L/R 80 ms Applies to all series except 3NE10.., 3NE18.. 0,90 p 20 n p= 10 n 0,70 p= 5 n 0,60 0,50 I201_12648 perm. DC vol tage Uperm rated voltage Un (600 V) 0,80 0,40 0,30 0 10 20 30 50 40 Time constant For series 3NE10.., 3NE18.. Cooling conditions for series-connected fuse links should be approximately the same. If faults are expected, during which the specified melting times are exceeded (as a result of a slower current rise), it can no longer be assumed that voltage sharing is uniform. The voltage of the fuse links must then be rated so that a single fuse link can quench the full supply voltage. It is best to avoid the series connection of fuse links in a converter connection branch and instead use a single fuse link with a suitably high rated voltage. Siemens * 10/2015 179 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Breaking I 2t value I 2ta I 2t Peak arc voltage Us I 2ta The breaking value depends on the voltage, on the time constant = L/R and on the prospective current Ip. It is calcu2 lated from the I ta value specified in the characteristic curve for the respective fuse link at rated voltage Un and correction factor kA whereby, instead of the recovery voltage Uw, the direct voltage is used against which the fuse link is to switch. 2 The breaking I t value determined in this way applies under the following conditions: * Time constant L/R 25 ms for Ip 20 x In * Time constant L/R 10 ms for Ip = 10 x In * The breaking I 2t values increase by 20 % * For Ip 20 x In and time constant L/R = 60 ms * For Ip = 10 x In and time constant L/R = 35 ms. The peak arc voltage Us is determined from the curve specified in the characteristics for the respective fuse link, whereby instead of the recovery voltage Uw, the direct voltage is used against which the fuse link is to switch. The peak arc voltage determined in this way applies under the following conditions: * Time constant L/R 20 ms for Ip 20 In * Time constant L/R 35 ms for Ip = 10 In. The switching voltages increase by 20 % * For Ip 20 In and time constant L/R = 45 ms * For Ip = 10 In and time constant L/R = 60 ms. Indicator An indicator displays the switching of the fuse link. The SITOR fuse links have an indicator whose operational voltage lies between 20 V (Un 1000 V) and 40 V (Un > 1000 V) Accessories Fuse bases, fuse pullers Some of the SITOR fuse links can be inserted in matching fuse bases. The matching fuse bases (single-pole and three-pole) and the respective fuse pullers are listed in the Technical specifications, from page 87. Note: Even if the values of the rated voltage and/or current of the fuse bases are lower than those of the allocated fuse link, the values of the fuse link apply. 180 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Some series of SITOR fuse links are suitable for operation in 3NP4 and 3NP5 fuse switch disconnectors or in 3KL and 3KM switch disconnectors with fuses (see Catalog LV 10, chapter on "Switch Disconnectors").. When using switch disconnectors, the following points must be observed: * Because, compared with LV HRC fuses for line protection, the power dissipation of the SITOR fuse links is higher, the permissible load current of the fuse links sometimes needs to be reduced; see below (Configuration Manual) * Fuse links with rated currents In > 63 A must not be used for overload protection even when they have operational class gR. Note: By contrast, all fuse links of the 3NE1... series with rated currents In from 16 A to 850 A and operational classes gR and gS can be used for overload protection. * The rated voltage and rated isolation voltage of the switch disconnectors must at least correspond to the existing voltage * When using fuse links of the 3NE32.., 3NE33.., 3NE43.., 3NC24.. and 3NC84.. series the breaking capacity of fuse switch disconnectors must not be fully utilized due to the slotted blade. Occasional switching of currents up to the rated current of the fuse links is permissible * When used in fuse switch disconnectors, fuse links of the 3NE41.. series may only be occasionally switched, and only without load, as this places the fuse blade under great mechanical stress Specifying the rated current In for non-aging operation with varying load Power converters are often operated not with a continuous load, but with varying loads; these can also temporarily exceed the rated current of the power converter. The selection process for non-aging operation of SITOR fuse links for four typical types of load is as follows:1) * Continuous load * Unknown varying load, but with known maximum current * Varying load with known load cycle * Occasional surge load from preloading with unknown surge outcome The diagrams for the correction factors ku, kq, k, kl, page 173, and the residual value factor RV, page 177 must be observed. The varying load factor VL for the fuse links is specified on page 174. The required rated current In of the fuse link is specified in two steps: 1. Specifying the rated current In on the basis of the rms value Irms of the load current: 1 I n > I rms ------------------------------------------------k u k q k k l VL Permissible load current In' of the selected fuse link: In' = ku kq kl kl VL In 2. Checking the permissible overload duration of current blocks exceeding the permissible fuse load current In'. In the Technical specifications, starting on page 87, the switch disconnectors are allocated to their respective individual fuse links. Melting time tvs (time/current characteristic curve) x Residual value factor RV Overload duration tk To do this, you require the previous load ratio I rms V = ------In as well as the characteristic curve "Permissible overload and melting time for previous load" (page 177, curve a) and the "Time/current characteristic curve" for the selected fuse link. If a determined overload duration is less than the respective required overload duration, then you need to select a fuse link with a greater rated current In (taking into account the rated voltage Un and the permissible breaking I 2t value) and repeat the check. Continuous load Load current Load Load I201_12649 Fuse switch disconnectors, switch disconnectors with fuses 0 t Rated current In of the fuse link 1 I n I La ---------------------------------------------------k u k q k k l VL ILa = Load current of the fuse link (rms value) Less than 1 shutdown per week: VL = 1 More than 1 shutdown per week: VL = see Technical specifications, from page 87. 1) In the case of varying loads that cannot be assigned to one of the four types of load shown here, please contact us. Siemens * 10/2015 181 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Unknown varying load, but with known maximum current Imax Occasional surge load from preloading with unknown surge outcome The required rated current In of the fuse link is specified in two steps: La max I201_12650 Load current 1. Specifying the rated current In on the basis of the previous load current Iprev: 0 t Rated current In of the fuse link Imax =Maximum load current of the fuse link (rms value) I rms V = ------In Varying load with known load cycle La La1 Load current as well as the characteristic curve "Permissible overload and melting time for previous load" (page 177, curve a or b) and the "Time/current characteristic curve" for the selected fuse link. n' La3 RMS I201_12651 La2 t2 t3 Permissible load current In' of the selected fuse link: In' = ku x kq x k x kl x VL x In 2. Checking the permissible overload duration of the surge current Isurge Melting time tvs (time/current characteristic curve) x Residual value factor RV surge time tsurge To do this, you require the previous load ratio 1 I n I max k u k q k k l VL t1 1 I n > I prev ---------------------------------------------------k u k q k k l VL t4 If a determined overload duration is less than the respective required overload duration tsurge, then you need to select a fuse link with a greater rated current In (taking into account the rated voltage Un and the permissible breaking I 2t value) and repeat the check. t surge Load SD t k k=1 -------------------------------------------SD 2 I rms = 2 2 I La1 t 1 + I La2 t 2 + I La3 t 3 ---------------------------------------------------------------SD ILK =Maximum load current of the fuse link (rms value) t surge t interval ' n I201_12652 I rms = 2 Lak I Load current k=n prev 0 t Condition: tpause 3 x tsurge tpause 5 min Selection examples For a converter assembly in circuit (B6) A (B6) C, whose rated direct current is Idn = 850 A, fuse links that can be installed as branch fuses should be selected. The choice of fuse is shown for different operating modes of the converter assembly. Data for converter assembly * Supply voltage UN = 3 AC 50 Hz 400 V * Recovery voltage UW = 360 V = UN x 0.9 (for shoot-throughs) * Thyristor T 508N (eupec), I2t value i2 dt = 320 x 10 3A2s (10 ms, cold) * Fuse links, natural air cooling, ambient temperature u = +35 C * Conductor cross-section for copper fuse links: 160 mm2 * Conversion factor direct current Id/fuse load current ILa: ILa = Id x 0.58. For the following examples, it is assumed, in the case of loads that exceed the rated direct current of the converter assembly, that the converter assembly is rated for these loads. 182 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Varying load with known load cycle Continuous, no-break load L a 1 L a 3 = 5 8 0 A L a n' I2_12653 La = 6 9 6 A 493 A = 3 1 7 A L a 2 = 2 9 0 A I2 _ 1 2 6 5 5 t e ff Direct current Id = Idn = 850 A ILa = Id x 0.58 = 493 A Selected: SITOR 3NE3335 fuse link (560 A/1000 V), VL = 1 Breaking I2t value I 2tA = 360 x 103 x 0.53 = 191 x 103 A2s Test cross-section to 172: 400 mm2 J The following correction factors are to be applied: ku = 1.02 (u = +35 C) kq = 0.91 (conductor cross-section, double-ended, 40 % of test cross-section) k = 1.0 (conduction angle = 120) kl = 1.0 (no forced-air cooling) max = 435 A I2_12654 La t Max. direct current Idmax = 750 A Max. fuse current Imax = Idmax x 0.58 = 435 A Selected: SITOR 3NE3334-0B fuse link (560 A/1000 V), VL = 1 Breaking I2t value I 2ta = 260 x 103 x 0.53 = 138 x 103 A2s Test cross-section to 172: 400 mm2 The following correction factors are to be applied: ku = 1.02 (u = +35 C) kq = 0.91 (conductor cross-section, double-ended, 40 % of test cross-section) k = 1.0 (conduction angle = 120) kl = 1.0 (no forced-air cooling) Required rated current In of the SITOR fuse link: 1 I n I max ------------------------------------------------- = 493 A k u k q k k l VL 1 435 A ----------------------------------------------------------------- = 469 A 1.02 0.91 1.0 1.0 1.0 J 4 J rms value of load current 2 Unknown varying load, but with known maximum current 3 Fuse current: ILa1 =1200 x 0.58 = 696 A ILa2 = 500 x 0.58 = 290 A ILa3 =1000 x 0.58 = 580 A I rms = 1 493 A ----------------------------------------------------------------- = 531 A 1.02 0.91 1.0 1.0 1.0 J Direct current: Id1 =1200 A t1 = 20 s Id2 = 500 A t2 = 240 s Id3 =1000 A t3 = 10 s Id4 = 0 A t4 = 60 s Required rated current In of the SITOR fuse link: 1 I n I La ------------------------------------------------- = 493 A k u k q k k l VL J2 5 , = 3 3 0 s 1 2 2 696 20 + 290 240 + 580 10 --------------------------------------------------------------------------------- = 317A 330 Selected: SITOR 3NE3333 fuse link (450 A/1000 V), VL = 1 Breaking I2t value I2ta = 175 x 103 x 0.53 = 93 x 103 A2s Test cross-section to 172: 320 mm2 The following correction factors are to be applied: ku = 1.02 (u = +35 C) kq = 0.94 (conductor cross-section, double-ended, 50 % of test cross-section) k = 1.0 (conduction angle = 120) kl = 1.0 (no forced-air cooling) 1. Required rated current In of the SITOR fuse link: 1 I n I rms ------------------------------------------------- = 493 A k u k q k k l VL 1 317 A ----------------------------------------------------------------- = 331 A 1.02 0.94 1.0 1.0 1.0 Permissible load current In' of the selected fuse link: In' = ku x kq x k x kl x VL x In = 1.02 x 0.94 x 1.0 x 1.0 x 1.0 x 450 = 431 A 2. Checking the permissible overload duration of current blocks exceeding the permissible fuse load current In'. Previous load ratio: I rms V = ------- = 317 -------- = 0.74 431 In Residual value factor RV: for V = 0.74 from curve a (characteristic curve page 177, frequent surge/load cycle currents) RV = 0.2 Current block ILa1: Melting time tvs: 230 s (from time/current characteristic curve for 3NE3 333) tvs x RV = 230 s x 0.2 = 46 s > t1 Current block ILa3: Melting time tvs: 1200 s (from time/current characteristic curve for 3NE3 333) tvs x RV = 1200 s x 0.2 = 240 s > t3 Siemens * 10/2015 183 (c) Siemens AG 2016 Fuse Systems SITOR Semiconductor Fuses Configuration Occasional surge load from preloading with unknown surge outcome surge = 1015 A La tsurge = 8 s 406 A I201_12656 prev= t Direct current: Idprev = 700 A Idsurge = 500 A tsurge = 8 s Fuse current: Iprev = Idprev x 0.58 = 406 A Isurge = Idsurge x 0.58 = 1015 A Let us assume the conditions tpause 3 tsurge and tpause 5 min are met. Selected: SITOR 3NE3333 fuse link (560 A/1000 V), VL = 1 Breaking I2t value I2ta = 360 x 103 x 0.53 = 191 x 103 A2s Test cross-section to 172: 400 mm2 The following correction factors are to be applied: ku = 1.02 (u = +35 C) kq = 0.91 (conductor cross-section, double-ended, 40 % of test cross-section) k = 1.0 (conduction angle = 120) kl = 1.0 (no forced-air cooling) 1. Required rated current In of the SITOR fuse link: 1 I n I prev ------------------------------------------------- = 493 A k u k q k k l VL 1 406 A ----------------------------------------------------------------- = 437 A 1.02 0.91 1.0 1.0 1.0 Permissible load current In' of the selected fuse link: In' =ku x kq x k x kl x VL x In = 1.02 x 0.91 x 1.0 x 1.0 x 1.0 x 560 = 520 A 2. Checking the permissible overload duration of the surge current Isurge Previous load ratio: I prev V = --------- = 406 -------- = 0.78 520 In Residual value factor RV: for V = 0.78 from curve a (characteristic curve page 177, frequent surge/load cycle currents) RV = 0.18 surge current Isurge: Melting time tvs: 110 s (from time/current characteristic curve for 3NE3333) tvs x RV = 110 s x 0.18 = 19.8 s > tsurge correction factors can be found on page172 and page 173. 184 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses Introduction Overview Special demands are made on fuses for application in photovoltaic systems. These fuses have a high DC rated voltage and a tripping characteristic specially designed to protect PV modules and their connecting cables (the newly defined operational class gPV). It is also crucial that the PV fuses do not age in spite of strongly alternating load currents, in order to ensure high plant availability throughout the service life of the PV system. The fuses must also be able to withstand high temperature fluctuations without damage. These requirements were only incorporated into an international standard in recent years and have now been published as IEC 60269-6. All Siemens photovoltaic fuse systems comply with this new standard. Furthermore, they also already comply with the recently agreed corrections to the characteristic curves, which will be incorporated in the next standard update. The IEC cylindrical fuses used as phase fuses also correspond to the characteristic curves specified in UL standard UL 2579. The non-fusing current Inf and fusing current If test currents are crucial to the shape of the characteristic curves. Standard Inf If Current IEC standard 1.13 x In 1.45 x In UL standard 1.0 x In 1.35 x In Future IEC standard 1.05 x In 1.35 x In Siemens fuses 1.13 x In 1.35 x In These test currents of gPV phase fuses to 32 A apply to a conventional test duration of one hour; at Inf, the fuse must not trip within an hour, at If, it must trip within an hour. The PV cylindrical fuses of size 10 mm x 38 mm offer an especially space-saving solution for the protection of the strings. The fuse holders of size 10 x 38 mm can be supplied in singlepole and two-pole versions with and without signal detectors. In the case of devices with signal detector, a small electronic device with LED is located behind an inspection window in the plug-in module. If the inserted fuse link is tripped, this is indicated by the LED flashing. The devices have a sliding catch that enables removal of individual devices from the assembly. The infeed can be from the top or the bottom. Because the cylindrical fuse holders are fitted with the same anti-slip terminals at the top and the bottom, the devices can also be bus-mounted at the top or the bottom. The PV fuses in LV HRC design are usually used as cumulative fuses upstream of the inverter. In addition, they can also be used for protecting groups (PV subarrays). For the PV cumulative fuses of size 1, the standard LV HRC fuse bases are available. For PV cumulative fuses of size 1L, 1XL, 2L, 2XL and 3L, we have developed a special 3NH7...-4 fuse base with a swiveling mechanism which combines maximum touch protection with maximum user-friendliness. This makes it possible to change fuses safely and without the need for any tools, such as a fuse handle. This provides safe and fast access even in an emergency. Our cylindrical fuse holders and fuse bases with swiveling mechanism comply with the IEC 60269-2 standard and are considered fuse disconnectors as defined in the IEC 60947 switchgear and controlgear standard. Under no circumstances are they suitable for switching loads. To ensure that PV fuses are correctly selected and dimensioned, the specific operating conditions and the PV module data must be taken into account when calculating voltage and current ratings. Benefits * Protection of the modules and their connecting cables in the event of reverse currents * Safe tripping in case of fault currents reduces the risk of fire due to DC electric arcs * Safe isolation when the fuse holder/fuse base is open PV cylindrical fuse system, 3NW70..-4, 3NW60..-4 PV LV HRC fuse systems, 3NH73..-4, 3NE13..-4D Siemens * 10/2015 185 (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses PV cylindrical fuses Technical specifications Cylindrical fuse links 3NW60..-4 mm x mm 10 x 38 IEC 60269-6 Size Standards Cylindrical fuse holders 3NW66..-4 UL 248-13, waiver U certification for China (File No. E469670) (2 to 16 A) Approvals 3NW70..-4 3NW76..-4 IEC 60269, IEC 60269-2, IEC 60947, UL 4248-1, -18 IEC 60269, IEC 60269-2, IEC 60947, UL 4248-1, -18 U (File No. E355487), s, U (E355487) 10 x 85 (versions without signal detector) Operational class Rated voltage Un Rated current In Rated short-circuit strength Rated breaking capacity Breaking capacity * Utilization category V DC A DC kA kA DC gPV 1000 2 to 20 -30 1500 (20 A: 1200 V) 4 to 20 10 1000 30 30 -- -- AC-20B, DC-20B 1500 32 Max. power dissipation of the fuse link W -- 4 6 Rated impulse withstand voltage Overvoltage category kV --- 6 II --- Pollution degree No-voltage changing of fuse links Sealable when installed Mounting position Current direction ---Any, preferably vertical -- 2 Yes Yes -- Degree of protection acc. to IEC 60529 Terminals with touch protection acc. to BGV A3 incoming and outgoing feeder --- IP20, with connected conductors1) Yes Any (signal detector with antiparallel LED) Ambient temperature Conductor cross-sections * Finely stranded, with end sleeve * AWG (American Wire Gauge) C mm AWG --- 0.75 ... 25 18 ... 4 Tightening torque Nm -- 2.5 1) -25 to +55C, humidity 90 % at +20C 2 Degree of protection IP20 is tested according to regulations using a straight test finger (from the front), with the device mounted and equipped with a cover, housing or some other enclosure. 186 Siemens * 10/2015 (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses PV cylindrical fuses Characteristic curves 103 20 A 16 A 6 4 12 A 10 A 8A 2 102 6A 4A 2A 6 4 6 4 2 103 20 A 6 4 16 A 12 A 10 A 2 102 8A 6A 4A 6 4 2 2 101 101 6 4 6 4 2 2 100 100 6 4 6 4 2 2 10-1 10-1 6 4 6 4 2 2 10-2 10-2 6 4 6 4 2 I201_19161 [s] 104 vs vs 2 Virtual pre-arcing time [s] 6 4 Virtual pre-arcing time I201_18898 104 2 10-3 100 2 4 6 8 101 2 4 6 8 102 2 4 Prospective short-circuit current 6 8 103 p [A] 2 10-3 103 2 4 6 8 104 2 4 6 8 105 2 Prospective short-circuit current Time/current characteristics diagram 3NW600.-4 p 4 6 8 106 [A] Time/current characteristics diagram 3NW660.-4 Correction factor; ambient temperature k I202_02187 1,1 1,05 K 1 0,95 0,9 0,85 0,8 0 10 20 30 40 50 60 70 80 90 C Characteristic curves diagram Correction factor Ambient temperature Siemens * 10/2015 187 (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses PV cylindrical fuses Dimensional drawings 10,3 I2_06703c 3NW660.-4 3NW7613-4 G 3NW600.-4 38 I201_19112 85 10 x 85 mm 2,5 Nm 3NW70. .-4 40 48 58 64,5 1-pole 36 45 81 I202_01298 18 7 2-pole Circuit diagrams 2 2 4 1 1 3 1-pole 188 I201_19111 10 x 38 mm 130 104,5 8,2 2-pole Siemens * 10/2015 37 49 58 22,3 (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses PV cylindrical fuses More information Selecting and dimensioning photovoltaic fuses from Siemens Standards: The contents of the new standard IEC 60269-6 are currently being drawn up. We follow this new standard when rating and labeling our PV fuses. Until now, some of our rivals have been relying on products based on the standard IEC 60269-4 "Fuses for semiconductor protection". Differences between the two standards are particularly evident for the rated voltage and the test voltage and in the definition of the operational class. Terms: UOC STC (also called VOC STC)1) Voltage under standard test conditions on an unloaded string taking into account minimum ambient temperature (no-load voltage). The voltage UOC STC of a string is obtained by multiplying the single voltages UOC STC of a PV module (UOC STC x M2)). ISC STC Short-circuit current of a PV module, a PV string, a PV subgenerator or a PV generator under standard test conditions IMPP Is the largest possible working current of a string (MPP = Maximum Power Point). Rated making and breaking capacity Under draft standard IEC 60269-6 a rated breaking capacity of at least 10 kA is required. While this is comparatively low compared with other fuses, it is more than adequate for handling the fault currents occurring in PV systems. We have tested our PV fuses at 30 kA. Dimensioning rules PV fuses are to be dimensioned according to special rules with regard to rated voltage, rated current and operational class (characteristic). Dimensioning rule The rated voltage4) of the fuse should be calibrated 20 % higher than the open-circuit voltage UOC STC of a string. Extreme operating conditions, e.g. temperatures down to -25 C, are thus taken into account. Rated voltage Our PV fuses have been tested according to draft standard IEC 60269-6 with the rated voltage, i.e. the test voltage is the same as the rated voltage. Based on IEC 60269-4, some manufacturers have issued two voltage values for their fuses, e.g. 900 V (tested 1000 V). IP max Is the maximum occurring load current; this is usually equivalent to IMPP. Rated current 1. To prevent unwanted tripping of the PV fuse during normal operation and in case of a fault in a different string that is connected in parallel, the rated current of the PV fuse must be greater than the short-circuit current ISC of the respective module or string: In 1.4 ISC. ISC MOD Short-circuit current of a PV module under regional conditions. The value 1.4 was determined in draft standard IEC 60269-6 and should apply to the simple dimensioning of the fuse. Standard test conditions (STC) Test conditions that are laid down in EN 60904-3 for PV cells and PV modules: * Solar radiation 1000 W/m * Ambient temperature 25 C * Air distribution (AM) 1.5 This value contains the following correction factors for the standard test conditions: A higher ambient temperature of 45 C, a higher solar radiation of 1200 W/m and the reduction due to the variable loading. Standard test conditions are normally specified by the manufacturer of the PV module in data sheets. According to EN 60469-1, Table 1, the following reduction factors must be applied: Operational class We use draft standard IEC 60269-6 as a guide when naming the operational class gPV. Accordingly, the symbols are also on the fuse: I202_01302 I202_01303 It is important that the fuse has a full-range characteristic that can cut off with certainty all possible fault currents, and especially also small fault currents3). An additional reduction must be used when several fuse holders are bundled. Number of main circuits Rated diversity factor 2 and 3 0.9 5 and 6 0.8 6 ... 9 0.7 10 and more 0.6 Since the fuses are only operated with around 70 to 80 % of the load current, a further reduction is only necessary from around six main circuits (e.g. three two-pole devices), including also where the fuses only have maximum power dissipation of 3.4 W. The test currents for PV fuses are defined in draft standard IEC 60269-6. Inf = 1.13 x In (test current at which the fuse must not trip for one hour). If = 1.45 x In (test current at which the fuse must trip within one hour). 1) Voltage of the unloaded circuit under standard test conditions. 2) M is the number of PV modules connected in series in a string. 3) Note: A difference in the overload current and the short-circuit current is not meaningful when protecting PV systems, because even for a short circuit, only small currents occur, which are not designated as short-circuit currents in terms of the standards of overcurrent protective devices. Therefore in the following we shall refer to fault currents. 4) Note: Unlike with mechanical switching devices, when two fuses (positive pole and negative pole) are used, you cannot count on a division of the voltage in the event of fault current tripping. Accordingly every fuse must be dimensioned with the full rated voltage. For the time/current characteristic curve diagram, see page 187. Siemens * 10/2015 189 (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses PV cylindrical fuses Fuses with a lower rated current have a lower power dissipation, so that the reduction is considerably less The 10 A fuse for example has a rated power dissipation of 1.5 W, with the result that no reduction is necessary here. In the event of extreme solar radiation a further reduction of the rated current of the fuse may be necessary. The short circuit current ISC MOD is dependent on regional climatic conditions. Under particular climatic conditions and cloud constellations, in particular high in the mountains, higher values for the solar radiation than the 1200 W/m used above may by all means occur (above: simplified calculation). In order to incorporate the peak values into the calculation, we recommend using the following correction factors. Climate zone Max. solar radiation Correction factor Standard test conditions 1000 W/m 1 Moderate climate zone 1200 W/m 1.2 Moderate climate zone/high mountains 1400 ... 1600 W/m 1.4 ... 1.6 Africa 1.4 ... 1.5 1400 ... 1600 W/m The rated current of the fuse refers to an ambient temperature of 25 C. Cut-off performance will change at higher temperatures. A further reduction may be required for an ambient temperature higher than the ambient temperature used above (+45 C). 2.To protect the modules and their connecting cables, the PV fuse should cut off fault currents reliably and in time. Fault currents can result from faulty modules, double ground faults or incorrect wiring. The PV modules are rated in such a way that they can continuously withstand the fault current in the forward direction without any problems. However, fault currents which flow through the string or the PV module in a reverse direction are particularly critical. This fault current ISC REVERSE is calculated from the number of parallel connected strings n-1 multiplied by the short circuit current ISC MOD of a string or module. ISC REVERSE = n-1 x ISC MOD This ISC MOD is likewise dependent on the regional circumstances described above: ISC MOD = 1.21) x ISC STC Only above n = 3 parallel strings are PV phase fuses meaningful at all. To protect the PV modules against reverse currents ISC REVERSE that have a value higher than the reverse current resistance of the PV modules IMOD REVERSE, the "cut-off current" of the PV fuse must be of a smaller size than the permitted and tested reverse current resistance of the module. You can dispense with PV fuses if the reverse current resistance of the PV modules is greater than the fault current: IMOD REVERSE > ISC REVERSE The manufacturers of the modules normally test their modules with a 1.35x reverse current for two hours. For protection, you therefore need a fuse that trips earlier under these conditions. 1) Climate zone-dependent correction factor 1.2 ... 1.6 (see the table on page 190). 2) Iz is the permitted capacity of the line/cable. 190 Siemens * 10/2015 The PV fuses have a "disconnect current" (generally referred to as high test current If), which causes the fuse to disconnect at 1.45 x the rated current in less than one hour (at the latest). To connect the tested reverse current resistance of the PV modules IMOD REVERSE with the cut-off performance of the fuse, we recommend use of a conversion factor of 0.9. For the rated current of the PV fuse, In produces the following dimensioning rules: In 0.9 x IMOD REVERSE This does not consider possible fault currents, if any, which are fed by the back-up batteries and/or the solar converters. Protection of the factory-fitted connecting cables of the PV modules should be mainly ensured by the manufacturer. Connecting cables/wires of a string must generally be able to withstand n times the short-circuit current ISC MOD. As with other cables and wires, the following simple relationship applies: In Iz2) If several strings connected in parallel are grouped together, the aforementioned dimensioning rules also apply. The rated current of the PV fuse group should be at least 1.21) times greater than the total of the short-circuit currents of the group. (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses PV cumulative fuses Technical specifications Fuse links Fuse bases 3NE1...-4 / -4D / -4E / -5E Size 1 1L Standards IEC 60269-6 2L 3NH7...-4 3L 1XL 2XL 1 1L 2L 3L 1XL 2XL IEC 60269, IEC 60269-2, IEC 60947 gPV Operational class Rated voltage Un V DC 1000 at time constant (L/R) 3 ms 1500 at time constant (L/R) 3 ms Rated current In A DC 63 ... 160 200/250 315/400 500/630 63 ... 200 250/315 250 Rated short-circuit strength kA -- 30 Rated breaking capacity kA DC 30 -- -- AC-20B, DC-20B (switching without load) -- 40 No-voltage changing of fuse links -- Yes Sealable when installed -- Yes Mounting position Any, preferably vertical Breaking capacity * Utilization category Max. power dissipation of the fuse link W 1000 -- Current direction 400 90 110 630 130 250 90 400 110 Any Ambient temperature C -25 to +55C, humidity 90 % at +20C Tightening torque Nm -- Microswitch for "tripped" signaling 5 A/250 V AC, 0.2 A/250 V DC 1500 20 In the status "fuse not blown", contacts 1 and 3 are closed. 1 2 3 Characteristic curves Virtual pre-arcing time 63 A 80 A 100 A 125 A 160 A 200 A 250 A 315 A 400 A 500 A 630 A 2 102 6 4 2 101 6 4 2 100 6 4 I201_18418 6 4 vs 2 103 6 4 2 10 3 6 4 63 A 80 A 2 100 A 125 A 160 A 200 A 250 A 315 A 10 2 6 4 2 10 1 6 4 2 10 0 6 4 2 10-1 6 4 2 10 -1 6 4 2 10-2 6 4 2 10-3 1 10 104 I202_02188b Virtual melting time vs 104 6 4 2 2 4 6 8 102 2 4 6 8 103 2 Prospective short-circuit current 4 6 8104 2 10 -2 6 4 2 10 -3 101 2 Time/current characteristics diagram 1000 V 4 6 102 2 4 6 103 2 4 6 104 2 Prospective short-circuit current 4 6 105 Time/current characteristics diagram 1500 V Siemens * 10/2015 191 (c) Siemens AG 2016 Fuse Systems Photovoltaic Fuses PV cumulative fuses Dimensional drawings 3NE1 t2 h1 h2 I201_19154 a t1 c d b b I201_10899a Size In b A mm h1 h2 t1 t2 Type 1 63 ... 160 52 66.5 135 50 13.5 3NX3121 1L 200, 250 52 106.5 175 50 13.5 3NX3122 2L 315, 400 60 106.5 189 57 15 3NX3123 3L 500, 630 75 125.5 201 68.5 17.5 1XL 63 ... 200 52 126.5 189 50 13.5 2XL 250, 315 60 126.5 205 57 15 a b c d 67 71.3 44 50.5 81 78.8 71 77 95 93.3 80 86 mm 3NH73..-4 e a I202_02190a g 11 c b I202_02191 Drilling plan d a1 102,5 6 d a2 f 20,5 Size Dimensions a1 Size a2 b c d e f g mm 30 Dimension a mm 1 25 1 71.3 71.3 266 230 67 124 316.4 317.7 1L 65 1L 71 75 306 270 73 130 362 313 2L 65 2L 79 83 326 296 87 144 390 335 3L 80 3L 93 97 341 311 101 158 418 359 1XL 84 1XL 71 76 325 289 73 124 380 332 2XL 80 2XL 79 83 341 311 87 144 410 354 Fuse bases with swiveling mechanism, 3NH7 3..-4 Circuit diagrams 2 1 1-pole 192 Siemens * 10/2015 20,5 (c) Siemens AG 2016 (c) Siemens AG 2016 Siemens AG Energy Management Low Voltage & Products Postfach 10 09 53 93009 REGENSBURG GERMANY www.siemens.com/lowvoltage Subject to change without prior notice PDF (3ZW1012-3NW10-0AB1) PH 0216 196 En Produced in Germany (c) Siemens AG 2016 The information provided in this brochure contains merely general descriptions or characteristics of performance which in case of actual use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract. Availability and technical specifications are subject to change without notice. All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.