1 of 115GS1582 Multi-Rate Serializer with Cable Driver, Audio Multiplexer and ClockCleanerTM
www.gennum.com
Data Sheet
40117 - 4 December 2011
GS1582 Multi-Rate Serializer with Cable Driver, Audio Multiplexer and
ClockCleanerTM
Key Features
HD-SDI, SD-SDI, DVB-ASI transmitter with audio
embedding
Integrated SMPTE 292M and 259M-C compliant cable
driver
•Integrated ClockCleaner
User selectable video processing features, including:
Generic ancillary data insertion
Support for HVF or EIA/CEA-861 timing input
Automatic standard detection and indication
Enhanced SMPTE 352M payload identifier
generation and insertion
TRS, CRC, ANC data checksum, and line number
calculation and insertion
EDH packet generation and insertion
Illegal code remapping
SMPTE 292M and SMPTE 259M-C compliant
scrambling and NRZ NRZI encoding
Blanking of input HANC and VANC space
User selectable audio processing features, including:
SMPTE 299M and SMPTE 272M-A/C compliant
audio embedding
Support for up to 8 channels
Support for audio group replacement
JTAG test interface
1.8V core and 3.3V charge pump power supply
1.8V and 3.3V digital I/O support
Low power standby mode
Operating temperature range: -20oC to +85oC
Pb-free, RoHS compliant, 11mm x 11mm 100-ball BGA
package
Applications
SMPTE 292M and SMPTE 259M-C Serial Digital
Interfaces
DVB-ASI Serial Digital Interfaces
Description
The GS1582 is the next generation multi-standard
serializer with an integrated cable driver. The device
provides robust parallel to serial conversion, generating a
SMPTE 292M/259M-C compliant serial digital output
signal. The integrated cable driver features an output
disable (high impedance) mode and an adjustable signal
swing. Data input is accepted in 20-bit parallel format or
10-bit parallel format. An associated parallel clock input
must be provided at the appropriate operating frequency;
74.25/74.1758/13.5MHz (20-bit mode) or
148.5/148.352/27MHz (10-bit mode).
The GS1582 features an internal PLL which, if desired, can
be configured for a loop bandwidth below 100kHz. When
used in conjunction with the GO1555 Voltage Controlled
Oscillator, the GS1582 can tolerate well in excess of 300ps
jitter on the input PCLK and still provide output jitter within
SMPTE specifications.
In addition to serializing the input, the GS1582 performs
NRZ-to-NRZI encoding and scrambling as per SMPTE
292M/259M-C when operating in SMPTE mode. When
operating in DVB-ASI mode, the device will insert K28.5
sync characters and 8b/10b encode the data prior to
serialization. The device also provides a range of other data
processing functions. All processing features are optional
and may be enabled/disabled via external control pin(s)
and/or host interface programming.
The GS1582 can embed up to 8 channels of audio into the
video data stream in accordance with SMPTE 299M and
SMPTE 272M. The audio input signal formats supported by
the device include AES/EBU and I2S serial digital formats
with a 16, 20 or 24 bit sample size and a 48 kHz sample rate.
Additional audio processing features include individual
channel enable, channel swap, group swap, ECC
generation and audio channel status insertion.
Typical power consumption, including the GO1555 VCO, is
500mW. The standby feature allows the power to be
reduced to 125mW. Power may be reduced to less than
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
2 of 115
10mW by also removing the power to the cable driver and
eliminating transitions at the parallel data and clock inputs.
The GS1582 is Pb-free and RoHS compliant.
Functional Block Diagram
GS1582 Functional Block Diagram
Input
Mux/
Demux
DIN[19:0]
SD/HD
Audio
Embedding
SMPTE 352M
Generation and
Insertion
ANC Data
Insertion
TRS, Line
Number
and CRC
Insertion
EDH
Packet
Insertion
NRZ/NRZI
SMPTE
Scrambler
DVB ASI
ENDEC
F/DE
V/VSYNC
H/HSYNC
TIM_861
Parallel to Serial
Converter
Mux
SMPTE
Cable
Driver
SDO
SDO
RSET
SDO_EN/DIS
PCLK
ACLK1
ACLK2
WCLK1
WCLK2
Ain_1/2
Ain_3/4
Ain_5/6
Ain_7/8
AUDIO_INT
GRP1_EN/DIS
GRP2_EN/DIS
GSPI Host Interface
HANC/
VANC
Blanking
PhaseDetector/
Chargepump
CP_RES
LF
VCO
2.5V
Regulator
VCO_VCC
VCO_GND
LOCKED
CS_TMS
SCLK_TCK
SDIN_TDI
SDOUT_TDO
DVB_ASI
ClockCleaner™
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
3 of 115
Revision History
Version ECR PCN Date Changes and/or Modifications
4 157323 November
2011
Corrected a typo under Default column for Address 422h in Table 4-44.
3 151526 52183 March
2009
Changed Parallel Input Data Hold Time from 2ns to 0.8ns in Table 2-3: AC Electrical
Characteristics.
2 150785 51685 October
2008
Changed Figure 4-30: GSPI Write Mode Timing.
1 146167 November
2007
Converted to a Data Sheet.
Updates to: Note 4 in Table 2-2 on page 20, Audio Modes of Operation on page 38,
Arbitrary, SMPTE 352M & EDH Packet Detect on page 40, Table 4-3 on page 39, 4.8
Ancillary Data Insertion, Separate Line Mode on page 64, Concatenated Mode on
page 65, Command Word Description on page 79, 4.13 GSPI Host Interface,
Table 4-33, 4.9.3 Video Standard Indication, 2.3 DC Electrical Characteristics, 4.9.4.4
Ancillary Data Checksum Generation and Insertion, Table 2-3: AC Electrical
Characteristics, 4.7.14 Interrupt Control,4.9.4.1 SMPTE 352M Payload Identifier Packet
Insertion, 4.7.9.1 SD Formats and 4.7.9.2 HD Formats.
0 145472 June 2007 Converted to Preliminary Data Sheet. Changes were made in the following areas;
Table 1-1: Pin Descriptions, 2.1 Absolute Maximum Ratings, 2.2 Recommended
Operating Conditions, 2.3 DC Electrical Characteristics, 2.4 AC Electrical
Characteristics, 4.3 SMPTE Mode, 4.3.1 HVF Timing, 4.6 Standby Mode, 4.7.20 Audio
Word Clock, 4.8 Ancillary Data Insertion, 4.8.3 VANC Insertion, 4.9.4.1 SMPTE 352M
Payload Identifier Packet Insertion, 4.9.4.3 EDH Generation and Insertion, 4.11.2 Loop
Filter, 4.11.3 Lock Detect Output, 4.13.1 Command Word Description, Table 4-44: SD
Audio Configuration and Status Registers, Table 4-45: HD Audio Configuration and
Status Registers, 4.15 Device Reset, 5.1 Typical Application Circuit (Part A), 7.1
Package Dimensions, 7.2 Packaging Data, 7.2 Packaging Data, 7.5 Ordering
Information,
B 144894 April 2007 Changed pin F4 to RSV and added drive strength values for pin H4, H7, and J9 in Pin
Assignment and Pin Descriptions. Modified input voltage range parameter in
Absolute Maximum Ratings. Updated serial output intrinsic jitter value in AC
Electrical Characteristics. Added digital input/output circuits in Section 3. Added note
to 4.7.20 Audio Word Clock.
A 141222 March
2007
New Document.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
4 of 115
Contents
1. Pin Out...............................................................................................................................................................9
1.1 Pin Assignment ..................................................................................................................................9
1.2 Pin Descriptions ............................................................................................................................. 10
2. Electrical Characteristics ......................................................................................................................... 19
2.1 Absolute Maximum Ratings ....................................................................................................... 19
2.2 Recommended Operating Conditions .................................................................................... 19
2.3 DC Electrical Characteristics ..................................................................................................... 20
2.4 AC Electrical Characteristics ..................................................................................................... 21
3. Input/Output Circuits ............................................................................................................................... 23
4. Detailed Description.................................................................................................................................. 26
4.1 Functional Overview .................................................................................................................... 26
4.2 Parallel Data Inputs ....................................................................................................................... 26
4.2.1 Parallel Input in SMPTE Mode....................................................................................... 27
4.2.2 Parallel Input in DVB-ASI Mode................................................................................... 27
4.2.3 Parallel Input in Data-Through Mode......................................................................... 27
4.2.4 Parallel Input Clock (PCLK) ............................................................................................ 28
4.3 SMPTE Mode ................................................................................................................................... 29
4.3.1 HVF Timing.......................................................................................................................... 29
4.3.2 CEA 861 Timing.................................................................................................................. 31
4.4 DVB-ASI mode ................................................................................................................................ 35
4.4.1 Control Signal Inputs........................................................................................................ 35
4.5 Data-Through Mode ..................................................................................................................... 36
4.6 Standby Mode ................................................................................................................................. 36
4.7 Audio Multiplexer ......................................................................................................................... 37
4.7.1 Audio Core Configurations ............................................................................................ 37
4.7.2 Audio Detection ................................................................................................................. 38
4.7.3 Audio Modes of Operation ............................................................................................. 38
4.7.4 Audio Packet Delete ......................................................................................................... 40
4.7.5 Arbitrary, SMPTE 352M & EDH Packet Detect......................................................... 40
4.7.6 Audio Packet Multiplexing............................................................................................. 41
4.7.7 Audio Insertion After Video Switching Point .......................................................... 42
4.7.8 Audio Data Packets........................................................................................................... 42
4.7.9 Audio Control Packets .....................................................................................................46
4.7.10 Setting Packet DID .......................................................................................................... 48
4.7.11 Audio Group Replacement .......................................................................................... 49
4.7.12 Channel and Group Activation .................................................................................. 51
4.7.13 ECC Error Detection & Correction (HD Mode Only)............................................ 51
4.7.14 Interrupt Control ............................................................................................................. 51
4.7.15 Audio Clocks..................................................................................................................... 51
4.7.16 5-frame Sequence Detection....................................................................................... 52
4.7.17 Audio Input Format........................................................................................................ 53
4.7.18 Audio Channel Status Input ........................................................................................ 56
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
5 of 115
4.7.19 Audio Crosspoint............................................................................................................. 58
4.7.20 Audio Word Clock .......................................................................................................... 59
4.7.21 GS1582 SD Audio FIFO Block ..................................................................................... 59
4.7.22 Audio Sample Distributions......................................................................................... 60
4.7.23 Audio Mute........................................................................................................................ 63
4.8 Ancillary Data Insertion .............................................................................................................. 63
4.8.1 Ancillary Data Insertion Operating Mode................................................................. 64
4.8.2 HANC Insertion .................................................................................................................. 65
4.8.3 VANC Insertion .................................................................................................................. 66
4.9 Additional Processing Functions .............................................................................................. 66
4.9.1 ANC Data Blanking ........................................................................................................... 66
4.9.2 Automatic Video Standard Detection......................................................................... 66
4.9.3 Video Standard Indication ............................................................................................. 67
4.9.4 Packet Generation and Insertion.................................................................................. 69
4.10 Parallel to Serial Conversion ................................................................................................... 74
4.11 Internal ClockCleanerTM PLL .................................................................................................. 75
4.11.1 External VCO.................................................................................................................... 75
4.11.2 Loop Filter.......................................................................................................................... 75
4.11.3 Lock Detect Output......................................................................................................... 76
4.12 Serial Digital Output .................................................................................................................. 77
4.12.1 Output Swing.................................................................................................................... 77
4.13 GSPI Host Interface ..................................................................................................................... 77
4.13.1 Command Word Description...................................................................................... 79
4.13.2 Data Read and Write Timing ....................................................................................... 79
4.13.3 Configuration and Status Registers........................................................................... 81
4.14 JTAG Test Operation ................................................................................................................ 106
4.15 Device Reset ................................................................................................................................108
5. Application Reference Design ............................................................................................................. 109
5.1 Typical Application Circuit (Part A) .......................................................................................109
5.2 Typical Application Circuit (Part B) .......................................................................................110
6. References & Relevant Standards .......................................................................................................111
7. Package & Ordering Information ........................................................................................................ 112
7.1 Package Dimensions ................................................................................................................... 112
7.2 Packaging Data ............................................................................................................................. 113
7.3 Marking Diagram ......................................................................................................................... 113
7.4 Solder Reflow Profile .................................................................................................................. 114
7.5 Ordering Information ................................................................................................................. 114
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
6 of 115
List of Figures
Figure 3-1: Differential Output Stage (SDO/SDO) .............................................................................. 23
Figure 3-2: Charge Pump Current Setting Resistor (CP_RES) .......................................................... 23
Figure 3-3: PLL Loop Filter .......................................................................................................................... 24
Figure 3-4: VCO Input .................................................................................................................................. 24
Figure 3-5: Digital Input Pin with Weak Pull Up(>33kW) ................................................................ 25
Figure 3-6: 5V Tolerant Input Pin (All Other Input Pins) .................................................................. 25
Figure 3-7: Digital Output Pin with High Impedance Mode ............................................................ 25
Figure 4-1: PCLK to Data Timing ............................................................................................................... 27
Figure 4-2: H_Blanking, V_Blanking, F_Digital Timing .................................................................... 30
Figure 4-3: HSYNC:VSYNC:DE Input Timing 1280 x 720p @ 59.94/60 ....................................... 32
Figure 4-4: HSYNC:VSYNC:DE Input Timing 1920 x 1080i @ 59.94/60 ...................................... 32
Figure 4-5: HSYNC:VSYNC:DE Input Timing 720 (1440) x 480i @ 59.94/60 ............................. 33
Figure 4-6: HSYNC:VSYNC:DE Input Timing 1280 x 720p @ 50 ................................................... 34
Figure 4-7: HSYNC:VSYNC:DE Input Timing 1920 x 1080i @ 50 .................................................. 34
Figure 4-8: HSYNC:VSYNC:DE Input Timing 720 (1440) x 576 @ 50 ........................................... 35
Figure 4-9: DVB-ASI FIFO Implementation using the GS1582 ....................................................... 36
Figure 4-10: Audio Multiplexer Top Level ............................................................................................ 38
Figure 4-11: Ancillary Data Packet Placement Example .................................................................. 40
Figure 4-12: SD Audio Data Packet Structure ...................................................................................... 42
Figure 4-13: SD Extended Audio Data Packet Structure .................................................................. 43
Figure 4-14: HD Audio Data Packet Structure ..................................................................................... 44
Figure 4-15: SD Audio Control Packet Structure .................................................................................46
Figure 4-16: HD Audio Control Packet Structure ................................................................................ 47
Figure 4-17: Audio Group Replacement Example (HD Formats) .................................................. 50
Figure 4-18: ACLK to Data & Control Signal Input Timing ............................................................... 52
Figure 4-19: AES/EBU Sub-frame Formatting ......................................................................................55
Figure 4-20: AES/EBU Audio Input Format .......................................................................................... 55
Figure 4-21: Serial Audio Input: Left Justified; MSB First ................................................................. 56
Figure 4-22: Serial Audio Input: Left Justified; LSB First .................................................................. 56
Figure 4-23: Serial Audio Input: Right Justified; MSB First .............................................................. 56
Figure 4-24: Serial Audio Input: Right Justified; LSB First ............................................................... 56
Figure 4-25: I2S Audio Input ...................................................................................................................... 56
Figure 4-26: Gennum Serial Peripheral Interface (GSPI) .................................................................. 78
Figure 4-27: Command Word .................................................................................................................... 79
Figure 4-28: Data Word ............................................................................................................................... 79
Figure 4-29: GSPI Read Mode Timing ..................................................................................................... 80
Figure 4-30: GSPI Write Mode Timing .................................................................................................... 80
Figure 4-31: In-Circuit JTAG ....................................................................................................................107
Figure 4-32: System JTAG .........................................................................................................................107
Figure 4-33: Reset Pulse ............................................................................................................................. 108
Figure 7-1: Pb-free Solder Reflow Profile ............................................................................................ 114
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
7 of 115
List of Tables
Pin Descriptions .................................................................................................................................................9
Recommended Operating Conditions .................................................................................................... 18
DC Electrical Characteristics ...................................................................................................................... 19
AC Electrical Characteristics ...................................................................................................................... 20
Parallel Data Input Format ......................................................................................................................... 27
Standby Power Consumption .................................................................................................................... 36
Audio Multiplexer Modes of Operation ................................................................................................. 38
Non-audio Ancillary Data Packet DIDs .................................................................................................. 40
Audio Data Packet Word Descriptions ................................................................................................... 42
Extended Audio Data Packet Word Descriptions ............................................................................... 43
Audio Data Packet Word Descriptions ................................................................................................... 44
Audio Control Packet Word Descriptions ............................................................................................. 45
Audio Control Packet Word Descriptions ............................................................................................. 46
Audio Group DID Host Interface Settings ............................................................................................. 48
Audio Data and Control Packet DID Setting Register ........................................................................ 48
GS1582 Serial Audio Data Inputs ............................................................................................................. 51
Frame Rates with AFN = 0 ........................................................................................................................... 52
Frame Rates with varying samples per frame ...................................................................................... 52
Audio Input Formats ..................................................................................................................................... 53
Audio Channel Status Block Default Settings ...................................................................................... 56
Audio Channel Status Information Register Settings ........................................................................ 56
Audio Channel Mapping Codes ................................................................................................................ 57
Source Input Address Registers ................................................................................................................ 57
Audio Clock Selection Host Interface Settings ..................................................................................... 58
Audio Buffer Pointer Offset Settings ....................................................................................................... 59
5-frame Sequence Sample Distribution ................................................................................................. 59
Group 1 Audio Sample Distribution ........................................................................................................ 60
Group 2 Audio Sample Distribution ........................................................................................................ 60
Group 3 Audio Sample Distribution ........................................................................................................ 60
Group 4 Audio Sample Distribution ........................................................................................................ 60
Group 1 Audio Sample Distribution ........................................................................................................ 61
Group 2 Audio Sample Distribution ........................................................................................................ 61
Group 3 Audio Sample Distribution ........................................................................................................ 61
Group 4 Audio Sample Distribution ........................................................................................................ 61
Synchronous Audio Sample Distributions ............................................................................................ 62
Host Interface Description for Video Standard Register .................................................................. 66
Host Interface Description for Raster Structure Registers .............................................................. 66
Supported Video Standards ....................................................................................................................... 67
Host Interface Description for Internal Processing Disable Register ........................................... 69
Host Interface Description for SMPTE 352M Packet Line Number Insertion Registers ......... 70
Host Interface Description for SMPTE 352M Payload Identifier Registers ................................. 70
Host Interface Description for EDH Flag Register (SD Mode Only) .............................................. 72
Serial Digital Output Rates .......................................................................................................................... 74
Loop Filter Component Values .................................................................................................................. 75
GSPI Timing Parameters .............................................................................................................................. 79
GS1582 Internal Registers ........................................................................................................................... 80
Video Configuration and Status Registers ............................................................................................. 81
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
8 of 115
SD Audio Configuration and Status Registers ...................................................................................... 88
HD Audio Configuration and Status Registers ..................................................................................... 98
Packaging Data ............................................................................................................................................. 113
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
9 of 115
1. Pin Out
1.1 Pin Assignment
132 45678910
A
B
C
D
E
F
G
H
J
K
LOCKED
PCLK
DIN16
DIN15
DIN14 DIN12
DIN10
DIN8
DIN6
DIN4
DIN2
DIN1
DIN19
DIN13
DIN11
DIN9
DIN7
DIN5
DIN3 DIN0
SD/HD
CP_VDD
IO_VDD
ANC_
IO_VDD
CORE
_VDD
IO_GND
CORE
_VDD
CORE
_GND
CORE
_GND
DETECT
_TRS
DVB_ASISMPTE_
BYPASS
20bit/
10bit
SDIN
_TDI
SCLK
_TCLK
SDOUT
_TDO
CS_
TMS
CD_VDD
RSET
TIM 861
GRP2_
EN/DIS
NC
LF
SDO
SDO
VCO_
VCC
VCO_
GND
DIN17 VCO
CD_GND
PD_VDD
AUDIO
_INT
V/VSYNC
IO_GND
CD_GND
STANDBY
ACLK_1
Ain_1/2
NC
NC
JTAG/
HOST
SDO_EN/
DIS
RESET
IOPROC
_EN/DIS
WCLK_2 WCLK_1
NC
NC
Ain_3/4
NC
ACLK_2
Ain_5/6
Ain_7/8
DIN18 F/DE
VCO_
GND
CP_RES
PD_VDD
CORE
_GND
CORE
_GND
CORE
_GND
CORE
_GND
H/HSYNC
CP_GND
CD_GND
CORE
_GND
CORE
_GND
CORE
_GND
CORE
_GND CD_GND
CORE
_GND
CORE
_VDD
CORE
_GND
CORE
_VDD
PD_GND PD_GND PD_GND
GRP1_
EN/DIS
RSV
BLANK
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
10 of 115
1.2 Pin Descriptions
Table 1-1: Pin Descriptions
Pin
Number
Name Timing Ty p e Description
A1, A2, B1,
B2, B3, C1,
C2, C3, D1,
D2
DIN[19:10] Synchronous
with PCLK
Input PARALLEL DATA BUS
Signal levels are LVCMOS/LVTTL compatible.
DIN19 is the MSB and DIN10 is the LSB.
HD 20-bit mode
SD/HD = LOW
20bit/10bit = HIGH
Luma data input in SMPTE mode
SMPTE_BYPASS = HIGH
DVB_ASI = LOW
Data input in Data-Through mode
SMPTE_BYPASS = LOW
DVB_ASI = LOW
HD 10-bit mode
SD/HD = LOW
20bit/10bit = LOW
Multiplexed Luma and Chroma data
input in SMPTE mode
SMPTE_BYPASS = HIGH
DVB_ASI = LOW
Data input in Data-Through mode
SMPTE_BYPASS = LOW
DVB_ASI = LOW
SD 20-bit mode
SD/HD = HIGH
20bit/10bit = HIGH
Luma data input in SMPTE mode
SMPTE_BYPASS = HIGH
DVB_ASI = LOW
Data input in Data-Through mode
SMPTE_BYPASS = LOW
DVB_ASI = LOW
DVB-ASI data input in DVB-ASI mode
SMPTE_BYPASS = LOW
DVB_ASI = HIGH
SD 10-bit mode
SD/HD = HIGH
20bit/10bit = LOW
Multiplexed Luma and Chroma data
input in SMPTE mode
SMPTE_BYPASS
= HIGH
DVB_ASI = LOW
Data input in data through mode
SMPTE_BYPASS
= LOW
DVB_ASI = LOW
DVB-ASI data input in DVB-ASI mode
SMPTE_BYPASS
= LOW
DVB_ASI = HIGH
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
11 of 115
A3 F/DE Synchronous
with PCLK
Input PARALLEL DATA TIMING
Signal levels are LVCMOS/LVTTL compatible.
TIM_861 = LOW:
Used to indicate the ODD / EVEN field of the video signal when
DETECT_TRS is set LOW. The device will set the F bit in all outgoing
TRS signals for the entire period that the F input signal is HIGH
(IOPROC_EN/DIS must also be HIGH).
The F signal should be set HIGH for the entire period of field 2 and
should be set LOW for all lines in field 1 and for all lines in
progressive scan systems.
The F signal is ignored when DETECT_TRS = HIGH.
TIM_861 = HIGH:
The DE signal is used to indicate the active video period. DE is HIGH
for active data and LOW for blanking. See Section 4.3.1 and
Section 4.3.2 for timing details.
The DE signal is ignored when DETECT_TRS = HIGH.
A4 H/HSYNC Synchronous
with PCLK
Input PARALLEL DATA TIMING
Signal levels are LVCMOS/LVTTL compatible.
TIM_861 = LOW:
The H signal is used to indicate the portion of the video line
containing active video data, when DETECT_TRS is set low.
Active Line Blanking
The H signal should be set HIGH for the entire horizontal blanking
period, including the EAV and SAV TRS words, and LOW otherwise.
This is the default setting.
TRS Based Blanking (H_CONFIG = 1h)
The H signal should be set HIGH for the entire horizontal blanking
period as indicated by the H bit in the received TRS ID words, and
LOW otherwise.
The H signal is ignored when DETECT_TRS = HIGH.
TIM_861 = HIGH:
The HSYNC signal indicates horizontal timing. See Section 4.3.1 for
timing details.
The HSYNC signal is ignored when DETECT_TRS = HIGH.
A5, E1, G10,
K8
CORE_VDD Non
Synchronous
Input
Power
Power supply connection for the digital core logic. Connect to +1.8V
DC digital.
A6, B6 PD_VDD Analog Input
Power
Power supply connection for the phase detector. Connect to +1.8V
DC analog.
A7 LF Analog Input PLL loop filter connection.
A8 VCO_VCC Analog Output
Power
Power supply for the external voltage controlled oscillator.
2.5V DC supplied by the device to the external VCO.
A9 VCO Analog Input Input from external VCO.
A10 CP_VDD Analog Input
Power
Power supply connection for the charge pump and on chip VCO
regulator. Connect to +3.3V DC analog.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
12 of 115
B4 PCLK Input PARALLEL DATA BUS CLOCK
Signal levels are LVCMOS/LVTTL compatible.
HD 20-bit mode PCLK = 74.25MHz or 74.25/1.001MHz
HD 10-bit mode PCLK = 148.5MHz or 148.5/1.001MHz
SD 20-bit mode PCLK = 13.5MHz
SD 10-bit mode PCLK = 27MHz
B5, C5, D5,
E2, E5, E6,
E7, F5, F6,
F7, G9, J8
CORE_GND Non
Synchronous
Input
Power
Ground connection for the digital core logic. Connect to digital
GND.
C6, C7, C8 PD_GND Analog Input
Power
Ground connection for the phase detector. Connect to analog GND.
B7 CP_RES Input Charge pump current setting resistor.
B8, B9 VCO_GND Analog Output
Power
Ground pins for the VCO.
B10 CP_GND Analog Input
Power
Ground pin for the charge pump and PLL.
C4 V/VSYNC Synchronous
with PCLK
Input PARALLEL DATA TIMING
Signal levels are LVCMOS/LVTTL compatible.
TIM_861 = LOW:
The V signal is used to indicate the portion of the video field/frame
that is used for vertical blanking, when DETECT_TRS is set LOW.
The V signal should be set HIGH for the entire vertical blanking
period and should be set LOW for all lines outside of the vertical
blanking interval.
The V signal is ignored when DETECT_TRS = HIGH.
TIM_861 = HIGH:
The VSYNC signal indicates vertical timing. See Section 4.3.1 for
timing details.
The VSYNC signal is ignored when DETECT_TRS = HIGH.
C9, D9, E9,
F9
CD_GND Analog Input
Power
Ground connection for the serial digital cable driver. Connect to
analog GND.
C10, D10 SDO, SDO Analog Output Serial digital output signal operating at 1.485Gb/s, 1.485/1.001Gb/s,
or 270Mb/s.
The slew rate of these outputs is automatically controlled to meet
SMPTE 292M and 259M requirements according to the setting of
the SD/HD pin.
Serial digital output signal from the internal cable driver.
NOTE: The SDO/SDO output signals will be set to high impedance
when RESET = LOW.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
13 of 115
D3 STANDBY Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Power down input.
When set HIGH, the device will be in standby mode.
D4 SDO_EN/DIS Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to enable or disable the serial digital output stage.
When set LOW, the serial digital output signals SDO and SDO are
disabled and become high impedance.
When set HIGH, the serial digital output signals SDO and SDO are
enabled.
The SDO and SDO outputs will also be high impedance when the
RESET pin is LOW.
D6, D7, D8,
E4, E8, F8
NC No connect. Not connected internally.
E3 SD/HD Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
When set LOW, the device will be configured to transmit signals of
1.485Gb/s - 1.485/1.001Gb/s rates only.
When set HIGH, the device will be configured to transmit signals of
a 270Mb/s rate only.
E10 CD_VDD Analog Input
Power
Power supply connection for the serial digital cable driver. Connect
to +3.3V DC analog.
F1, F2, H1,
H2, J1, J2,
J3, K1, K2,
K3
DIN[9:0] Synchronous
with PCLK
Input PARALLEL DATA BUS
Signal levels are LVCMOS/LVTTL compatible.
DIN9 is the MSB and DIN0 is the LSB.
HD 20-bit mode
SD/HD = LOW
20bit/10bit = HIGH
Chroma data input in SMPTE mode
SMPTE_BYPASS =HIGH
DVB_ASI = LOW
Data input in Data-Through mode
SMPTE_BYPASS
= LOW
DVB_ASI = LOW
HD 10-bit mode
SD/HD = LOW
20bit/10bit = LOW
High impedance in all modes.
SD 20-bit mode
SD/HD = HIGH
20bit/10bit = HIGH
Chroma data input in SMPTE mode
SMPTE_BYPASS
= HIGH
DVB_ASI = LOW
Data input in Data-Through mode
SMPTE_BYPASS
= LOW
DVB_ASI = LOW
Forced low in DVB-ASI mode
SMPTE_BYPASS
= LOW
DVB_ASI = HIGH
SD 10-bit mode
SD/HD = HIGH
20bit/10bit = LOW
High impedance in all modes.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
14 of 115
F3 DETECT_TRS Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to select external HVF timing mode or TRS Extraction timing
mode.
When DETECT_TRS = LOW, the device will use timing from the
externally supplied H:V:F or CEA-861 timing signals, dependent on
the state of the TIM_861 pin.
When DETECT_TRS = HIGH, the device will extract timing from TRS
signals embedded in the supplied video stream.
F4 RSV Reserved. Do not connect.
F10 RSET Analog Input An external 1% resistor connected to this input is used to set the
SDO/SDO output amplitude.
G1, H10 IO_VDD Non
Synchronous
Input
Power
Power supply connection for digital I/O buffers. Connect to +3.3V or
+1.8V DC digital.
G2, H9 IO_GND Non
Synchronous
Input
Power
Ground connection for digital I/O buffers. Connect to digital GND.
G3 TIM_861 Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to select external CEA-861 timing mode.
When DETECT_TRS = LOW and TIM_861 = LOW, the device will use
externally supplied H:V:F timing signals.
When DETECT_TRS = LOW and TIM_861 = HIGH, the device will use
externally supplied HSYNC, VSYNC, DE timing signals.
When DETECT_TRS = HIGH, the device will extract timing from TRS
signals embedded in the supplied video stream.
G4 20bit/10bit Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to select the input data bus width.
G5 DVB_ASI Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
When set HIGH, the device is configured for the transmission of
DVB-ASI data in SD mode (SD/HD = HIGH).
When set LOW, the device will not support the encoding of DVB-ASI
data.
NOTE: When operating in DVB-ASI mode the SD/HD pin must be set
HIGH and SMPTE_BYPASS must be set LOW.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
15 of 115
G6 SMPTE_BYPASS Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to enable/disable all forms of encoding/decoding, scrambling
and EDH insertion.
When set LOW, the device will operate in data through mode
(DVB_ASI = LOW), or in DVB-ASI mode (DVB_ASI = HIGH).
No SMPTE scrambling will take place and none of the I/O processing
features of the device will be available when SMPTE_BYPASS is set
LOW.
When set HIGH, the device will perform SMPTE scrambling and I/O
processing.
G7 IOPROC_EN/DIS Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to enable or disable I/O processing features.
When set HIGH, the following I/O processing features of the device
are enabled:
Audio Embedding
EDH Packet Generation and Insertion (SD-only)
SMPTE 352M Packet Generation and Insertion
ANC Data Checksum Calculation
ANC Data Insertion
Line-based CRC Generation and Insertion (HD-only)
Line Number Generation and Insertion (HD-only)
TRS Generation and Insertion
Illegal Code Remapping
To enable a subset of these features, set IOPROC_EN/DIS = HIGH and
disable the individual feature(s) in the IOPROC_DISABLE register
accessible via the host interface.
When set LOW, the I/O processing features of the device are
disabled, and can not be enabled by changing the settings in the
IOPROC_DISABLE register.
G8 RESET Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to reset the internal operating conditions to default settings
and to reset the JTAG test sequence.
Normal Mode (JTAG/HOST = LOW)
When set LOW, all functional blocks will be set to default conditions
and all input and output signals become high
impedance including
the serial digital outputs SDO and
SDO.
When set HIGH, normal operation of the device resumes 10usec
after the low to high transition of the RESET signal.
JTAG Test Mode (JTAG/HOST = HIGH)
When set LOW, all functional blocks will be set to default and the
JTAG test sequence will be held in reset.
When set HIGH, normal operation of the JTAG test sequence
resumes.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
16 of 115
H3 ANC_BLANK Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to enable or disable ANC data blanking.
When set LOW, the HANC and VANC data is mapped to the
appropriate blanking levels.
H4 LOCKED Synchronous
with PCLK
Output STATUS SIGNAL OUTPUT
Signal levels are LVCMOS / LVTTL compatible.
This signal is set HIGH by the device when the internal PLL has
achieved lock to the supplied PCLK signal.
This pin is set LOW by the device under all other conditions.
IO_VDD = 3.3V
Drive Strength = 8mA
IO_VDD = 1.8V
Drive Strength = 4mA
H5 GRP2_EN/DIS Non
Synchronous
Input Enable Input for Audio Group 2.
H6 GRP1_EN/DIS Non
Synchronous
Input Enable Input for Audio Group 1.
H7 AUDIO_INT Non
Synchronous
Output STATUS SIGNAL OUTPUT
Signal levels are LVCMOS/LVTTL compatible.
Summary Interrupt from Audio Processing.
This signal is set HIGH by the device to indicate a problem with the
audio processing which requires the Host processor to interrogate
the interrupt status registers.
IO_VDD = 3.3V
Drive Strength = 8mA
IO_VDD = 1.8V
Drive Strength = 4mA
H8 JTAG/HOST Non
Synchronous
Input CONTROL SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Used to select JTAG Test Mode or Host Interface Mode.
When set HIGH, CS_TMS, SDOUT_TDO, SDI_TDI and SCLK_TCK are
configured for JTAG boundary scan testing.
When set LOW, CS_TMS, SDOUT_TDO, SDI_TDI and SCLK_TCK are
configured as Gennum Serial Peripheral Interface (GSPI) pins for
normal host interface operation.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
17 of 115
J4 AIN_5/6 Synchronous
with ACLK_2
Input Serial Audio Input; Channels 5 and 6.
J5 WCLK_2 Clock Input 48kHz word clock for Audio Group 2.
J6 AIN_1/2 Synchronous
with ACLK_1
Input Serial Audio Input; Channels 1 and 2.
J7 WCLK_1 Clock Input 48kHz word clock for Audio Group 1.
J9 SDOUT_TDO Synchronous
with
SCLK_TCK
Output COMMUNICATION SIGNAL OUTPUT
Signal levels are LVCMOS/LVTTL compatible.
Serial Data Output / Test Data Output
Host Mode (JTAG/HOST = LOW)
This pin operates as the host interface serial output, used to read
status and configuration information from the internal registers of
the device.
JTAG Test Mode (JTAG/HOST = HIGH)
This pin is used to shift test results and operates as the JTAG test
data output, TDO.
NOTE: If the host interface is not being used leave this pin
unconnected.
IO_VDD = 3.3V
Drive Strength = 12mA
IO_VDD = 1.8V
Drive Strength = 4mA
J10 SCLK_TCK Non
Synchronous
Input COMMUNICATION SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Serial Data Clock / Test Clock.
Host Mode (JTAG/HOST = LOW)
SCLK_TCK operates as the host interface burst clock, SCLK.
Command and data read/write words are clocked into the device
synchronously with this clock.
JTAG Test Mode (JTAG/HOST = HIGH)
This pin is the TEST MODE START pin, used to control the operation
of the JTAG test clock, TCK.
NOTE: If the host interface is not being used, tie this pin HIGH.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
18 of 115
K4 AIN_7/8 Synchronous
with ACLK_2
Input Serial Audio Input; Channels 7 and 8.
K5 ACLK_2 Clock Input 3.072MHz audio clock for Audio Group 2 (channels 5-8).
K6 AIN_3/4 Synchronous
with ACLK_1
Input Serial Audio Input; Channels 3 and 4.
K7 ACLK_1 Clock Input 3.072MHz audio clock for Audio Group 1(channels 1-4).
K9 CS_TMS Synchronous
with
SCLK_TCK
Input COMMUNICATION SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Chip Select / Test Mode Start.
Host Mode (JTAG/HOST = LOW)
CS_TMS operates as the host interface chip select, CS, and is active
LOW.
JTAG Test Mode (JTAG/HOST = HIGH)
CS_TMS operates as the JTAG test mode start, TMS, used to control
the operation of the JTAG test, and is active HIGH.
NOTE: If the host interface is not being used, tie this pin HIGH.
K10 SDIN_TDI Synchronous
with
SCLK_TCK
Input COMMUNICATION SIGNAL INPUT
Signal levels are LVCMOS/LVTTL compatible.
Serial Data In / Test Data Input
Host Mode (JTAG/HOST = LOW)
This pin operates as the host interface serial input, SDIN, used to
write address and configuration information to the internal
registers of the device.
JTAG Test Mode (JTAG/HOST = HIGH)
This pin is used to shift and operates as the JTAG test data input,
TDI.
NOTE: If the host interface is not being used, tie this pin HIGH.
Table 1-1: Pin Descriptions (Continued)
Pin
Number
Name Timing Ty p e Description
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
19 of 115
2. Electrical Characteristics
2.1 Absolute Maximum Ratings
2.2 Recommended Operating Conditions
Parameter Value/Units
Supply Voltage, Core (CORE_VDD) -0.3V to +2.1V
Supply Voltage, Analog 1.8V (PD_VDD) -0.3V to +2.1V
Supply Voltage, I/O (IO_VDD) -0.3V to +3.6V
Supply Voltage, Analog 3.3V (CP_VDD, CD_VDD) -0.3V to +3.6V
Input Voltage Range (ACLK, WCLK, AIN, PCLK, DIN) -0.5V to IO_VDD+0.25V
Input Voltage Range (VCO, CP_RES, LF, RSET) -0.5V to +3.6V
Input Voltage Range (All other pins) -0.5V to +5.25V
Ambient Operating Temperature -40°C < TA < 95°C
Storage Temperature -40°C < TSTG < 125°C
Peak Reflow Temperature (JEDEC J-STD-020C) 260°C
ESD Sensitivity, HBM (JESD22-A114) 4000V
ESD Sensitivity, MM (JESD22-A115) 200V
NOTES:
1. Absolute Maximum Ratings are those values beyond which damage may occur. Functional
operation under these conditions or at any other condition beyond those indicated in the AC/DC
Electrical Characteristics sections is not implied.
Table 2-1: Recommended Operating Conditions
Parameter Symbol Conditions Min Typ Max Units Notes
Operating Temperature Range,
Ambient
TA -20 25 85 °C
Supply Voltage, Digital Core CORE_VDD 1.71 1.8 1.89 V
Supply Voltage, Phase Detector PD_VDD 1.71 1.8 1.89 V
Supply Voltage, Charge Pump CP_VDD 3.13 3.3 3.47 V
Supply Voltage, Cable Driver CD_VDD 3.13 3.3 3.47 V
Supply Voltage, Digital I/O IO_VDD 1.8V mode 1.71 1.8 1.89 V
Supply Voltage, Digital I/O IO_VDD 3.3V mode 3.13 3.3 3.47 V
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
20 of 115
2.3 DC Electrical Characteristics
Table 2-2: DC Electrical Characteristics
Guaranteed over recommended operating conditions unless otherwise noted.
Parameter Symbol Conditions Min Typ Max Units Notes
System
External VCO Power
Supply Voltage
(VCO_VDD)
2.375 2.5 2.625 V 1
+1.8V Supply Current I1V8 10/20bit HD, Audio Enabled 138 165 mA 2,4
10/20bit HD, Audio Disabled 109 130 mA 2,4
10/20bit SD, Audio Enabled 112 130 mA 2,4
10/20bit SD, Audio Disabled 104 120 mA 2,4
DVB_ASI 100 120 mA 2,4
+3.3V Supply Current I3V3 10/20bit HD, Audio Enabled 74 86 mA 3,4
10/20bit HD, Audio Disabled 74 86 mA 3,4
10/20bit SD, Audio Enabled 74 86 mA 3,4
10/20bit SD, Audio Disabled 74 86 mA 3,4
DVB_ASI 74 86 mA 3,4
Total Device Power PD10/20bit HD, Audio Enabled 491 600 mW 4
10/20bit HD, Audio Disabled 440 540 mW 4
10/20bit SD, Audio Enabled 445 545 mW 4
10/20bit SD, Audio Disabled 430 530 mW 4
DVB_ASI 424 510 mW 4
Reset 310 mW
Standby 10 125 mW 5
Digital I/O
Input Logic LOW VIL 3.3V or 1.8V operation 0.3 x
IO_VDD
V–
Input Logic HIGH VIH 3.3V or 1.8V operation 0.7 x
IO_VDD
––V
Output Logic LOW VOL 1.8V mode 0.3 V
3.3V mode 0.4 V
Output Logic HIGH VOH 1.8V mode 1.4 V
3.3V mode 2.4 V
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
21 of 115
2.4 AC Electrical Characteristics
Output
Output Common
Mode Voltage
VCMOUT 75Ω load, RSET=750Ω
SD and HD mode
CD_VDD
- ΔVSDD
–V
NOTES
1. VCO_VDD guaranteed only when GO1555 is connected.
2. Sum of all 1.8V supplies.
3. Sum of all 3.3V supplies.
4. IO_VDD = 3.3V. When IO_VDD = 1.8V, the current/power consumption is lower by up to 5mA/10mW.
5. See Standby Section for details.
Table 2-2: DC Electrical Characteristics (Continued)
Guaranteed over recommended operating conditions unless otherwise noted.
Parameter Symbol Conditions Min Typ Max Units Notes
Table 2-3: AC Electrical Characteristics
Guaranteed over recommended operating conditions unless otherwise noted.
Parameter Symbol Conditions Min Ty p Max Units Notes
System
Device Latency 10-bit SD 550 PCLK
20-bit HD 1065 PCLK
DVB-ASI 15 PCLK
10-bit SD or 20-bit
HD; All Audio
Disabled
27 PCLK
Reset Pulse Width treset –10ms1
Parallel Input
Parallel Clock Frequency fPCLK 13.5 – 148.5 MHz
Parallel Clock Duty Cycle DCPCLK –40 60%
Input Data Setup Time tsu 50% levels; 3.3V or
1.8V operation
2– ns 4
Input Data Hold Time tih 0.8 ns 4
Serial Audio Data Input
Input Data Set-up Time tsu 50% levels;
3.3V or 1.8V
operation
74 – – ns
Input Data Hold Time tih 74 – – ns
Serial Digital Output
Serial Output Data Rate DRSDO 1.485 Gb/s
1.485/1.001 Gb/s
270 Mb/s
Serial Output Swing VSDD RSET = 750Ω
75Ω load
750 800 850 mVp-p
Serial Output Rise/Fall Time
20% ~ 80%
trfSDO HD mode 120 270 ps
trfSDO SD mode 400 660 800 ps
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
22 of 115
Mismatch in rise/fall time Δtr,Δtf––35ps
Duty Cycle Distortion 1 5 % 5
Overshoot SD/HD=0 5 10 % 5
SD/HD=1 3 8 % 5
Output Return Loss ORL 5 MHz - 1.485 GHz 18 dB 6
Serial Output Intrinsic Jitter tOJ Pseudorandom and
SMPTE Colour Bars
HD signal
–3580ps 2
tOJ Pseudorandom and
SMPTE Colour Bars
SD signal
100 200 ps 3
GSPI
GSPI Input Clock Frequency fSCLK 50% levels
3.3V or 1.8V
operation
––10MHz
GSPI Input Clock Duty Cycle DCSCLK 40 50 60 %
GSPI Input Data Setup Time 1.5 ns
GSPI Input Data Hold Time 1.5 ns
GSPI Output Data Hold Time 15pF load 1.5 ns
CS low before SCLK rising
edge
50% levels
3.3V or 1.8V
operation
1.5 ns
Time between end of
command word (or data in
Auto-Increment mode) and
the first SCLK of the
following data word - write
cycle
50% levels
3.3V or 1.8V
operation
37.1 ns
Time between end of
command word (or data in
Auto-Increment mode) and
the first SCLK of the
following data word - read
cycle
50% levels
3.3V or 1.8V
operation
148.4 ns
CS high after SCLK falling
edge
50% levels
3.3V or 1.8V
operation
37.1 ns
NOTES:
1. See ’Device Reset’ on page 108, Figure 4-33.
2. Alignment Jitter = measured from 100kHz to 148.5MHz
3. Alignment Jitter = measured from 1kHz to 27MHz
4. Input setup and hold time is dependent on the rise and fall time on the parallel input. Parallel clock and data with rise time or fall time greater
than 500ps require larger setup and hold times.
5. Single Ended into 75Ω external load.
6. ORL depends on board design. The GS1582 achieves this specification on Gennum’s evaluation boards.
Table 2-3: AC Electrical Characteristics (Continued)
Guaranteed over recommended operating conditions unless otherwise noted.
Parameter Symbol Conditions Min Ty p Max Units Notes
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
23 of 115
3. Input/Output Circuits
All resistors in ohms, all capacitors in farads, unless otherwise shown.
Figure 3-1: Differential Output Stage (SDO/SDO)
Figure 3-2: Charge Pump Current Setting Resistor (CP_RES)
CD_VDD
I
REF
SDO SDO
CP_RES
200
800mV
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
24 of 115
Figure 3-3: PLL Loop Filter
Figure 3-4: VCO Input
800
800
VDD
5.6K
5.6K
VDD
LF
50
50
40K
160K
VDD
50pF
VCO
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
25 of 115
Figure 3-5: Digital Input Pin with Weak Pull Up(>33kΩ)
(ACLK[2:1], WCLK[2:1], AIN[4:1], PCLK, DIN[19:0])
Figure 3-6: 5V Tolerant Input Pin (All Other Input Pins)
Figure 3-7: Digital Output Pin with High Impedance Mode
(LOCKED, AUDIO_INT, SDOUT_TDO)
IO_VDD
Input Pin
Input Pin
IO_VDD
Output Pin
EN
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
26 of 115
4. Detailed Description
4.1 Functional Overview
The GS1582 is a multi-rate serializer with an integrated cable driver and embedded
audio multiplexer. When used in conjunction with the external GO1555 Voltage
Controlled Oscillator, a transmit solution at 1.485Gb/s, 1.485/1.001Gb/s or 270Mb/s is
realized.
The device has three basic modes of operation that must be set through external device
pins; SMPTE mode, DVB-ASI mode, and Data-Through mode.
In SMPTE mode, the device will accept 10-bit multiplexed or 20-bit demultiplexed
SMPTE compliant data at both HD and SD signal rates. By default, the device’s additional
processing features, including audio embedding, will be enabled in this mode.
In DVB-ASI mode, the GS1582 will accept an 8-bit parallel DVB-ASI compliant transport
stream on DIN[17:10]. The serial output data stream will be 8b/10b encoded with
stuffing characters added as per the standard.
Data-Through mode allows for the serializing of data not conforming to SMPTE or
DVB-ASI streams. No additional processing will be done in this mode.
In Standby mode, the device power consumption will be reduced.
The serial digital output features a high impedance mode and adjustable signal swing.
The output slew rate is automatically set by the SD/HD pin setting.
GS1582 provides several data processing functions including generic ANC insertion,
SMPTE 352M and EDH data packet generation and insertion, automatic video standards
detection, and TRS, CRC, ANC data checksum, and line number calculation and
insertion. These features are all enabled/disabled collectively using the external IO
processing pin, but may be individually disabled via internal registers accessible
through the GSPI host interface.
Finally, the GS1582 contains a JTAG interface for boundary scan test implementations.
4.2 Parallel Data Inputs
Data is clocked into the device on the rising edge of PCLK as shown in Figure 4-1.
The input data format is defined by the setting of the external SD/HD, SMPTE_BYPASS,
and DVB_ASI pins and may be presented in 10-bit or 20-bit format. The input data bus
width is controlled by the 20bit/10bit input pin.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
27 of 115
Figure 4-1: PCLK to Data Timing
4.2.1 Parallel Input in SMPTE Mode
When the device is operating in SMPTE mode, see SMPTE Mode on page 29, both SD and
HD data may be presented to the input bus in either multiplexed or demultiplexed form
depending on the setting of the 20bit/10bit input pin.
In 20-bit mode, (20bit/10bit = HIGH), the input data format should be word aligned,
demultiplexed luma and chroma data. Luma words should be presented on DIN[19:10]
while chroma words should be presented on DIN[9:0].
In 10-bit mode, (20bit/10bit = LOW), the input data format should be word aligned,
multiplexed luma and chroma data. The data should be presented on DIN[19:10].
DIN[9:0] will be high impedance in this mode.
4.2.2 Parallel Input in DVB-ASI Mode
When operating in DVB-ASI mode, see DVB-ASI mode on page 35, the GS1582 must be
set to 10-bit operation mode by setting the 20bit/10bit pin LOW.
The device will accept 8-bit data words on DIN[17:10]. DIN17 = HIN is the most
significant bit of the encoded transport stream data and DIN10 = AIN is the least
significant bit.
In addition, DIN19 and DIN18 will be configured as the DVB-ASI control signals
INSSYNCIN and KIN respectively. See DVB-ASI mode on page 35 for a description of
these DVB-ASI specific input signals.
DIN[9:0] will have a Logic Level HIGH in DVB-ASI mode.
4.2.3 Parallel Input in Data-Through Mode
When operating in Data-Through mode, see Data-Through Mode on page 36, the
GS1582 passes data from the parallel input bus to the serial output without performing
any encoding or scrambling. The input data bus width is controlled by the setting of the
20bit/10bit pin.
PCLK
DIN[19:0] DATA
Control signal
input
t
SU
t
IH
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
28 of 115
4.2.4 Parallel Input Clock (PCLK)
The frequency of the PCLK input signal required by the GS1582 is determined by the
input data format. Table 4-1 below lists the possible input signal formats and their
corresponding parallel clock rates. Note that the DVB-ASI input will only be in 10-bit
format, when setting the 20bit/10bit pin LOW.
Table 4-1: Parallel Data Input Format
Input Data Format DIN [19:10] DIN [9:0] PCLK
Control Signals
20bit/
10bit
SD/
HD
SMPTE_BYPASS DVB_ASI
SMPTE MODE
20-bit DEMULTIPLEXED SD LUMA CHROMA 13.5MHz HIGH HIGH HIGH LOW
10-bit MULTIPLEXED SD LUMA /
CHROMA
HIGH
IMPEDANCE
27MHz LOW HIGH HIGH LOW
20-bit DEMULTIPLEXED
HD
LUMA CHROMA 74.25 or
74.25/
1.001MH
z
HIGH LOW HIGH LOW
10-bit MULTIPLEXED HD LUMA /
CHROMA
HIGH
IMPEDANCE
148.5 or
148.5/
1.001MH
z
LOW LOW HIGH LOW
DVB-ASI MODE
10-bit DVB-ASI DVB-ASI
DATA
HIGH
IMPEDANCE
27MHz LOW HIGH LOW HIGH
LOW HIGH LOW HIGH
DATA-THROUGH MODE
20-bit SD DATA DATA 13.5MHz HIGH HIGH LOW LOW
10-bit SD DATA HIGH
IMPEDANCE
27MHz LOW HIGH LOW LOW
20-bit HD DATA DATA 74.25 or
74.25/
1.001MH
z
HIGH LOW LOW LOW
10-bit HD DATA HIGH
IMPEDANCE
148.5 or
148.5/
1.001MH
z
LOW LOW LOW LOW
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
29 of 115
4.3 SMPTE Mode
The GS1582 operates in SMPTE mode when the SMPTE_BYPASS pin is set HIGH and the
DVB_ASI pin is set LOW.
In this mode, the parallel data will be scrambled according to SMPTE 259M or 292M, and
NRZ-to-NRZI encoded prior to serialization.
4.3.1 HVF Timing
In SMPTE mode, the GS1582 can automatically detect the video standard and generate
all internal timing signals. The total line length, active line length, total number of lines
per field/frame and total active lines per field/frame are calculated for the received
parallel video.
When DETECT_TRS is LOW, the video standard and timing signals are based on the
externally supplied H_Blanking, V_Blanking, and F_Digital signals. These signals go to
the H/HSYNC, V/VSYNC and F/DE pins respectively. When DETECT_TRS is HIGH, the
video standard timing signals will be extracted from the embedded TRS ID words in the
parallel input data. Both 8-bit and 10-bit TRS code words will be identified by the device.
NOTE: IO processing must be enabled for the device to remap 8-bit TRS words to the
corresponding 10-bit value for transmission. See Section 4.9.4.2 for more information.
The GS1582 determines the video standard by timing the horizontal and vertical
reference information supplied at the H/HSYNC, V/VSYNC, and F/DE input pins, or
contained in the TRS ID words of the received video data. Therefore, full
synchronization to the received video standard requires one complete video frame.
Once synchronization has been achieved, the GS1582 will continue to monitor the
received TRS timing or the supplied H, V, and F timing information to maintain
synchronization. GS1582 will lose all timing information immediately following loss of
H, V and F.
The H signal timing should also be configured via the H_CONFIG bit of the internal
IOPROC_DISABLE register as either active line based blanking or TRS based blanking.
See Packet Generation and Insertion on page 69.
Active line based blanking is enabled when the H_CONFIG bit is set LOW. In this mode,
the H input should be HIGH for the entire horizontal blanking period, including the EAV
and SAV TRS words. This is the default H timing used by the device.
The timing of these signals is shown in Figure 4-2.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
30 of 115
Figure 4-2: H_Blanking, V_Blanking, F_Digital Timing
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
31 of 115
4.3.2 CEA 861 Timing
The GS1582 extracts timing information from externally provided HSYNC, VSYNC, and
DE signals when CEA 861 timing mode is selected by setting DETECT_TRS = LOW and
the TIM_861 = HIGH.
Horizontal sync (H), Vertical sync (V), and Data Enable (DE) timing must be provided via
the H/HSYNC, V/VSYNC and F/DE input pins. The host interface register bit H_CONFIG
will be ignored in the CEA 861 input timing mode.
The GS1582 will determine the EIA/CEA-861 standard and embed EAV and SAV TRS
words in the output serial video stream.
Video standard detection is not dependent on the HSYNC pulse width or the VSYNC
pulse width and therefore the GS1582 will tolerate non-standard pulse widths. In
addition, the device can compensate for up to ±1 PCLK cycle of jitter on VSYNC with
respect to HSYNC and sample VSYNC correctly.
NOTE 1: The period between the leading edge of the HSYNC pulse and the leading edge
of Data Enable (DE) must follow the timing requirements described in the EIA/CEA-861
specification. The GS1582 embeds TRS words according to this timing relationship to
maintain compatibility with the corresponding SMPTE standard.
NOTE 2: When CEA 861 standards 6 & 7 [720(1440)x480i] are presented to the GS1582,
the device will embed TRS words corresponding to the timing defined in SMPTE 125M
to maintain SMPTE compatibility.
CEA 861 standards 6 & 7 [720(1440)x480i] define the active area on lines 22 to 261 and
285 to 524 inclusive (240 active lines per field). SMPTE 125M defines the active area on
lines 20 to 263 and 283 to 525 inclusive (244 lines on field 1; 243 lines on field 2).
Therefore, in the first field, the GS1582 adds two active lines above and two active lines
below the original active image. In the second field it adds two lines above and one line
below the original active image.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
32 of 115
Figure 4-3: HSYNC:VSYNC:DE Input Timing 1280 x 720p @ 59.94/60
Figure 4-4: HSYNC:VSYNC:DE Input Timing 1920 x 1080i @ 59.94/60
1650 cl ocks
110
HSYNC
VSYNC
720 Active Vertical Lines
Data
Enable
745 746 747 748 749 750 1 2 3 4 5 6 7 25 26 745 746 750
Progressive Frame: 30 Verti cal Blanking Lines
1650 Total Horizontal Clocks per line
Data
Enable
HSYNC
40
1280 Clocks for Active Video370
110 220 clocks
~
~
~
~
~
~
~
~
~
~
~
~
2200 Total Horizontal Clocks per line
Data
Enable
HSYNC
44
1920 Clocks for Active Video280
88 148 clocks
2200 clocks
88
HSYNC
VSYNC
540 Active Vertical Lines per field
Data
Enable
1123 1124 1125 1 2 3 4 5 6 7 8 19 20 21 560 561 562
Field 1: 22 Vertical Blanking Lines
1100
2200 clocks
88
HSYNC
VSYNC
540 Active Vertical Lines per field
Data
Enable
560 561 562 563 564 565 566 567 568 569 570 582 583 584 1123 1124 1125
Field 2: 23 Vertical Blanking Lines
~
~
~
~~
~~
~
~
~
~
~
~
~
~
~
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
33 of 115
Figure 4-5: HSYNC:VSYNC:DE Input Timing 720 (1440) x 480i @ 59.94/60
1716 Total Horizontal Clocks per line
Data
Enable
HSYNC
124
1440 Clocks for Active Video276
38 114 clocks
1716 clocks
38
HSYNC
VSYNC
240 Active Vertical Lines per field
Data
Enable
524 525 1 2 3 4 5 6 7 8 9 21 22 261 262 263
Field 1: 22 Vertical Blanking Lines
858
1716 clocks
HSYNC
VSYNC
Data
Enable
261 262 263 264 265 266 267 268 269 270 271 284 285 524 525 1
Field 2: 23 Vertical Blanking Lines
~
~
~
~
~
~
~
~
238
238
~
~
~
~
~
~
~
~
240 Active Vertical Lines per field
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
34 of 115
Figure 4-6: HSYNC:VSYNC:DE Input Timing 1280 x 720p @ 50
Figure 4-7: HSYNC:VSYNC:DE Input Timing 1920 x 1080i @ 50
1980 clocks
440
HSYNC
VSYNC
720 Active Vertical Lines
Data
Enable
745 746 747 748 749 750 1 2 3 4 5 6 7 25 26 745 746 750
Progressive Frame: 30 Vertical Blanking Lines
1980 Total Horizontal Clocks per line
Data
Enable
HSYNC
40
1280 Clocks for Active Video700
440 220 clocks
~
~
~
~
~
~
~
~
~
~
~
~
2640 Total Horizontal Clocks per line
Data
Enable
HSYNC
44
1920 Clocks for Active Video720
528 148 clocks
2640 clocks
528
HSYNC
VSYNC
540 Active Vertical Lines per field
Data
Enable
1123 1124 1125 1 2 3 4 5 6 7 8 19 20 21 560 561 562
Field 1: 22 Vertical Blanking Lines
1320
2640 clocks
528
HSYNC
VSYNC
540 Active Vertical Lines per field
Data
Enable
560 561 562 563 564 565 566 567 568 569 570 582 583 584 1123 1124 1125
Field 2: 23 Vertical Blanking Lines
~
~
~
~~
~~
~
~
~
~
~
~
~
~
~
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
35 of 115
Figure 4-8: HSYNC:VSYNC:DE Input Timing 720 (1440) x 576 @ 50
4.4 DVB-ASI mode
The GS1582 operates in DVB-ASI mode when the SMPTE_BYPASS pin is set LOW and
the DVB_ASI and SD/HD pins are set HIGH.
In this mode, all SMPTE processing functions are disabled, and the 8-bit transport stream
data will be 8b/10b encoded prior to serialization.
4.4.1 Control Signal Inputs
In DVB-ASI mode, the DIN19 and DIN18 pins are configured as DVB-ASI control signals
INSSYNCIN and KIN respectively.
When INSSYNCIN is set HIGH, the device will insert K28.5 sync characters into the data
stream. This function is used in system implementations where the GS1582 is preceded
by an external data FIFO. Parallel DVB-ASI data may be clocked into the FIFO at some
rate less than 27MHz. The INSSYNCIN input may then be connected to the FIFO empty
signal, providing a means of padding the data transmission rate to 27MHz. See
Figure 4-9.
1728 Total Horizontal Clocks per line
Data
Enable
HSYNC
126
1440 Clocks for Active Video288
24 138 clocks
1728 clocks
24
HSYNC
VSYNC
288 Active Vertical Lines per field
Data
Enable
623 624 625 1 2 3 4 5 6 7 22 23 310 311 312
Field 1: 24 Vertical Blanking Lines
864
1728 clocks
HSYNC
VSYNC
Data
Enable
310 311 312 313 314 315 316 317 318 319 320 335 336 623 624 625
Field 2: 25 Vertical Blanking Lines
~
~
~
~
~
~
~
~
264
264
~
~
~
~
~
~
~
~
288 Active Vertical Lines per field
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
36 of 115
NOTE: 8b/10b encoding will take place after K28.5 sync character insertion.
KIN should be set HIGH whenever the parallel data input is to be interpreted as any
special character defined by the DVB-ASI standard (including the K28.5 sync character).
This pin should be set LOW when the input is to be interpreted as data.
NOTE: When operating in DVB-ASI mode, DIN[9:0] are set to high impedance.
Figure 4-9: DVB-ASI FIFO Implementation using the GS1582
4.5 Data-Through Mode
The GS1582 may be configured to operate as a simple parallel-to-serial converter. In this
mode, the device passes data to the serial output without performing any scrambling or
encoding.
Data-through mode is enabled only when both the SMPTE_BYPASS and DVB_ASI pins
are set LOW.
4.6 Standby Mode
In standby mode, the power consumption of the GS1582 is reduced to 125mW. Standby
mode is enabled when the STANDBY pin is set HIGH. Once the STANDBY pin is set
HIGH, it may take up to 50ms for power reduction to take place.
In this mode, the serial output pins are set to high impedance, and the GS1582 loses lock
to the reference input PCLK. While in standby mode, the programmed register values
are retained. However, no registers can be accessed for reading or writing via the GSPI
port. No write bits will be captured and all read functions will return a value of 0.
The power in standby mode can be further reduced through two means:
1. Eliminate activity on all parallel data and clock inputs. This can be achieved by
setting the parallel data and clock HIGH, or not driving them. Setting the parallel
inputs to LOW is not recommended as it will result in a smaller power saving.
2. Remove the 3.3V supply to the CD_VDD pin of the device.
The standby power consumption under various conditions is shown in Table 4-2:
Standby Power Consumption.
In order to return to normal operation from standby mode, the STANDBY pin must be set
to LOW. Once normal operation is resumed, the GS1582 will re-lock to the reference
8
8
AIN ~ HIN
PCLK = 27MHz
INSSYNCIN
SDO
CLK_IN
CLK_OUT
FIFO
SDO
WRITE_CLK
<27MHz
FIFO_EMPTY
TS
KIN GS1582
KIN
READ CLK
=27MHz
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
37 of 115
PCLK. The recovery time from standby mode is the same as initial power-up but no reset
is required. Once the GS1582 re-locks to the reference PCLK, operation is resumed
according to the configuration held before entering standby mode.
4.7 Audio Multiplexer
Up to eight channels of audio may be embedded into the GS1582 video data stream in
accordance with SMPTE 299M and SMPTE 272M. The audio data is input in two groups
of four channels, with corresponding clock signals.
The audio input signal formats supported include AES/EBU and three other industry
standard serial digital formats. 16, 20 and 24-bit audio sample sizes are supported at
48kHz synchronous for SD formats and 48kHz synchronous or asynchronous for HD
formats.
Additional audio processing features include audio mute, individual channel enable,
channel re-mapping, audio group replacement, cascade, group selection, and audio
channel status insertion.
The audio system clock can be provided by Gennum’s GEN-ClocksTM series of clock
generation ICs. In serial formats, the audio clocks required by the core are two word
clocks and two signals that are a multiple of 64fs.
The SD audio multiplexer core is compliant with SMPTE 272M A and C. The HD audio
multiplexer core is fully compliant with SMTPE 299M.
4.7.1 Audio Core Configurations
Figure 4-10 shows the top level block diagrams of both the SD and HD multiplexer cores.
Each group of audio has one word clock signal and one audio clock signal. Data present
at Ain_1/2 and Ain_3/4 share clocks present at WCLK1 and ACLK1, while data present
at Ain_5/6 and Ain_7/8 share clocks present at WCLK2 and ACLK2.
Audio embedding may be disabled for each group independently using the pins
GRP1_EN/DIS and GRP2_EN/DIS.
Table 4-2: Standby Power Consumption
Standby Condition Typical Power Consumption (mW)
STANDBY asserted 125
STANDBY asserted
Parallel data and clock inactive
100
STANDBY asserted
3.3V supply removed from CD_VDD
35
STANDBY asserted
Parallel data and clock inactive
3.3V supply removed from CD_VDD
<10
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
38 of 115
NOTE: Disabling a single group does not reduce the power consumption of the GS1582,
however disabling both groups results in a power reduction.
Figure 4-10: Audio Multiplexer Top Level
4.7.2 Audio Detection
The audio multiplexer detects the presence of audio data and control packets in any of
four embedded audio groups. The presence of audio data is indicated by the
ADPGx_DET bits in the host interface, while the presence of control packets is indicated
by the ACPGx_DET bits in the host interface. In SD mode, the presence of extended
audio data packets is indicated by the AXPGx_DET bits in the host interface.
These detection flags are asserted for the duration that audio data packets are detected.
For SD formats, the first Ancillary Data Flag (ADF) must always be contiguous after the
EAV words. For HD formats, the first Ancillary Data Flag must always be contiguous
after the two EAV CRC words. By default, the device will delete all incoming ancillary
data with audio data or control packet DID's.
Refer to Section 4.13.3 for HD and SD audio multiplexer status and configuration
registers.
4.7.3 Audio Modes of Operation
The audio multiplexer operates in three distinct modes: normal mode, cascade mode,
and audio group replacement mode.
In normal operating mode, up to two audio groups can be added to the output video. (See
Table 4-3: Audio Multiplexer Modes of Operation). All existing audio packets are
SD and HD
Audio Embedding Block
PCLK
10
GRP1_EN/DIS
ACLK1
WCLK1
Ain_1/2
Ain_3/4
GRP2_EN/DIS
ACLK2
WCLK2
Ain_5/6
Ain_7/8
10
AUDIO_INT
RESET
Configuration & status register read/write access
AUDIO_INS
(From IOPROC_DIS register)
IOPROC_EN/DIS
SD/HD
LOCKED
_
_
_
_
_
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
39 of 115
deleted from the video input, however arbitrary packets, SDTI packets and SMPTE 352M
packets are not deleted.
When the EN_CASCADE host interface bit is set HIGH, the audio multiplexer operates
in cascade mode. Up to two audio groups can be added to the video output. The added
groups will not replace existing embedded audio groups. No existing packets are
deleted from the video input, and the added audio packets are appended to the last
packet in the video input.
In cascade mode, if the audio multiplexer is configured to add group 1 audio data
packets with the same group number as an existing group, MUX_ERRA will be asserted
in the host interface. Similarly, MUX_ERRB will be asserted if the configuration leads to
replacing existing groups with group 2.
When the AGR bit in the host interface is set HIGH, the audio multiplexer operates in
group replacement mode. In this mode, added audio groups can replace existing
embedded audio groups. The embedded audio groups will be sorted by audio group
number. No packets will be deleted from the video input (except for the audio packets
being replaced). SDTI packets and SMPTE 352M packets are placed before the audio
packets, and arbitrary packets are placed after the audio packets in SD mode.
NOTE 1: When audio group replacement mode is selected, the cascade function is
disabled.
NOTE 2: In normal SD mode, if the incoming stream has a completely full HANC space,
the outgoing HANC space will only get filled with up to 235 words and the remainder of
the space is left blank. This will not occur if there are one or more words free in the
incoming HANC space.
NOTE 3: SD audio in cascade mode may only be inserted if the HANC space of the
incoming stream is not completely full. If the incoming stream has a full HANC space,
audio packets will be inserted beyond the HANC boundary. The space following the
inserted audio packets will then be blanked until the next EAV is detected in the video
stream. This will not occur if there are two or more words free at the end of the incoming
HANC space after the existing packets.
NOTE 4: HD audio in normal mode may only be inserted if the HANC space of the
incoming stream is not completely full. If the incoming stream has a full HANC space,
packets will be inserted beyond the HANC boundary. The space following the inserted
packets will then be blanked until the next EAV is detected in the video stream. This will
not occur if there are two or more words free at the end of the incoming HANC space
after the existing packets.
Table 4-3: Audio Multiplexer Modes of Operation
Host Interface Registers Operating Mode
EN_CASCADE = 0, AGR = 0 Normal Mode
EN_CASCADE = 1, AGR = 0 Cascade Mode
EN_CASCADE = 0, AGR = 1 Audio Group Replacement Mode
EN_CASCADE = 1, AGR = 1 Audio Group Replacement Mode
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
40 of 115
4.7.4 Audio Packet Delete
Ancillary data packets with non-audio data ID words, such as arbitrary, EDH, SDTI
header and SMPTE 352M, will not be deleted from the data stream. On lines where
SMPTE 352M or SDTI header packets exist, the audio data packets must be contiguous
to the 352M and SDTI packets in SD mode. For HD formats, the audio data packets must
always be contiguous after the two EAV CRC words. If this is not the case, all existing
audio data and control packets will be deleted.
When the EN_CASCADE host interface bit is set HIGH, all existing audio data and
control packets will remain in the video stream.
When the AGR bit in the host interface is set HIGH, audio group replacement mode is
selected. In this mode, existing audio data and control packets will not be deleted from
the data stream with the exception of any packets of groups being replaced.
In cases where the ADF is not placed immediately after the CRC or EAV words, or there
are gaps between the packets, the audio core will delete all existing audio data and
control packets, regardless of the EN_CASCADE or AGR setting. Figure 4-11 shows an
example of correct and incorrect placement of ancillary data packets for a SD format.
Figure 4-11: Ancillary Data Packet Placement Example
4.7.5 Arbitrary, SMPTE 352M & EDH Packet Detect
The audio multiplexer detects the presence of any arbitrary data packets. If present,
these packets will be removed and stored for re-insertion after audio packets have been
embedded. If there is insufficient HANC space available, the arbitrary data packet will
be discarded.
To detect the arbitrary data packet, the audio core looks for any ancillary data packets
which have a DID other than audio, extended audio, control, SDTI header, SMPTE 352M
or EDH packets. Arbitrary data packets and formatting are defined in SMPTE 291M.
Arbitrary data packets are only present on the luma channel of the HD video input.
All EDH processing is carried out following the audio core, as the CRC's will require
updating. The audio core detects the presence of EDH packets in the HANC region.
These packets are preserved and re-embedded after multiplexing of audio packets,
according to RP 165. The audio core does not perform EDH CRC calculation and flag
updates.
BlankBlank Blank
EAV
HANC with space between EAV and Ancillary Data (Audio Packets will be deleted)
SAV
Audio
Group 1
Audio
Group 2
Correct placement of Ancillary Data within HANC Space
Blank
EAV
SAV
Audio
Group 1
Audio
Group 2
352M/SDTI
Packet
352M/SDTI
Packet
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
41 of 115
Since the audio core multiplexes audio packets on to lines where the ancillary data
packet containing EDH checkwords and status flags is to be placed (lines 9 and 272 in
525, and lines 5 and 318 in 625), if there is insufficient horizontal ancillary data space
available after audio multiplexing, the EDH block will overwrite audio packets. This
problem may occur in both 525 and 625 when 16 channels (4 audio groups) of 24-bit
audio are embedded.
NOTE 1: The audio sample distribution used by the SD audio core for both 525 and 625
will increase the available space in the horizontal ancillary data space.
NOTE 2: Due to the large size of the horizontal ancillary data space in 720p/24, 720p/25
and 720p/30 video standards, the maximum number of ancillary data words the audio
core can process is limited to 1024 when configured to these standards.
Table 4-4 lists the data ID's and packet lengths for arbitrary, EDH, SDTI header and
SMPTE 352M packets.
When the presence of a SMPTE 352M packet is detected, the audio core extracts and
stores the packet for re-insertion. Audio data packets will always be placed after the
SMPTE 352M packet.
NOTE: When serializing SDTI signals, it is recommended that the user ensure there are
no SMPTE 352M packets present in the input video data.
4.7.6 Audio Packet Multiplexing
The SD core places audio data packets contiguously after the EAV. Any Extended Audio
Data Packets are placed immediately following the Audio Data Packet of the same audio
group.
The HD core places audio data packets contiguously after the two line CRC words.
In cases where the SMPTE 352M packet or SDTI header are present after the EAV or CRC,
the audio data will be placed contiguously from the 352M or SDTI header packets. On
lines where the 352M or SDTI header packets are present, there may be insufficient
HANC space for embedding 4 audio groups. If there is insufficient HANC space
available, the 352M or SDTI header packets are always re-inserted and the remaining
audio group packet to be inserted is discarded.
Table 4-4: Non-audio Ancillary Data Packet DIDs
Ancillary Data Packet DID SDID Packet Length (Words)
Arbitrary (SMPTE 291M) User User 262 max
EDH (RP 165) 1F4h 23
Payload Identifier (SMPTE 352M) 241h 101h 11
SDTI Header (SMPTE 305M) 140h 101h 53
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
42 of 115
On lines where the EDH packet is present, the audio data will be embedded up to the
point reserved for the EDH packet. If there is insufficient HANC space available, the
EDH packet is always re-inserted and the audio data packet discarded.
In the case where there is insufficient room in the HANC space to embed the selected
audio data packets, the multiplexer core will delete any arbitrary data packets. If there
is still insufficient room in the HANC space, the multiplexer core will not embed audio
data packets.
4.7.7 Audio Insertion After Video Switching Point
4.7.7.1 SD Formats
The switching lines for SD formats are defined in SMPTE RP 168 as lines 10 and 273 for
525-line based formats, and lines 6 and 319 for 625-line based formats. The audio core
does not place any audio data or control packets in the line immediately after the video
switching line. For example, with the standard switch point of line 10 for field 1 in 525,
there will be no audio data or control packets on line 11. The next packets will appear on
line 12.
4.7.7.2 HD Formats
The video switching lines for HD formats are defined in SMPTE 299M as lines 7 and 569.
The audio core does not place any audio data or control packets in the line immediately
after the video switching point. For example, with the standard switch point of line 7 for
field 1, there will be no audio data packets in line 8. The next packets will appear on line
9. The audio control packets will be multiplexed once per field, two lines after the video
switch point, on lines 9 and 571.
4.7.8 Audio Data Packets
4.7.8.1 SD Formats
Figure 4-12 shows the structure of the SD audio data packet as defined in SMPTE 272M.
Table 4-5 lists the descriptions of the audio data packet words. The audio core
automatically generates certain audio data packet words, as shown in Table 4-5.
Figure 4-12: SD Audio Data Packet Structure
ADF
Audio Sample Words
10-bit
DID
DBN
DC
CH1
CH2
CH3
CH4
CS
X X+1 X+2 X X+1 X+2 X X+1 X+2 X X+1 X+2 X X+1 X+2 X X+1 X+2
CH3
CH4
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
43 of 115
Figure 4-13 shows the structure of the extended audio data packets as defined in SMPTE
272M. Table 4-6 lists the descriptions of the extended audio data packet words. The
audio core automatically generates certain audio data packet words. The extended
audio data packet is embedded immediately after the audio data packet with same
group DID.
Figure 4-13: SD Extended Audio Data Packet Structure
Table 4-5: Audio Data Packet Word Descriptions
Name No. of
Words
Description Data Auto-Generation
ADF 3 Ancillary Data Flag 000h
3FFh
3FFh
Yes
DID 1 Audio Group Data ID 2FFh
1FDh
1FBh
2F9h
See Table 4-10
DBN 1 Data Block Number Repeat 1-255 Yes
DC 1 Data Count Yes
CH1 4 Channel 1 ancillary data
words
CH2 4 Channel 2 ancillary data
words
CH3 4 Channel 3 ancillary data
words
CH4 4 Channel 4 ancillary data
words
CS 1 Checksum Yes
ADF
Extended Audio
10-bit
DID
DBN
DC
AUX
AUX
AUX
AUX
CS
AUX
AUX
AUX
AUX
AUX
AUX
AUX
AUX
AUX
AUX
AUX
AUX
AUX
AUX
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
44 of 115
For both audio data and extended audio packets, the Data Block Number is embedded
with a running sequence of 1 to 255.
4.7.8.2 HD Formats
Figure 4-14 shows the structure of the audio data packets as defined in SMPTE 299M.
The audio data packets are multiplexed into the chroma channel of the video data
stream. Table 4-7 lists the descriptions of the audio data packet words. The audio core
automatically generates certain audio data packet words, as shown in Table 4-7.
Figure 4-14: HD Audio Data Packet Structure
Table 4-6: Extended Audio Data Packet Word Descriptions
Name No. of
Words
Description Data Auto-Generation
ADF 3 Ancillary Data Flag 000h
3FFh
3FFh
Yes
DID 1 Audio Group Data ID 1FEh
2FCh
2FAh
1F8h
See Table 4-10
DBN 1 Data Block Number Repeat 1-255 Yes
DC 1 Data Count Yes
AUX 4 Auxiliary data from one
channel pair words
CS 1 Checksum Yes
ADF
User Data Words
ECC0
10-bit
DID
DBN
DC
CLK
CH1
CH2
CH3
CH4
ECC1
ECC2
ECC3
ECC4
ECC5
CS
ECC Protected
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
45 of 115
Table 4-7: Audio Data Packet Word Descriptions
Name No. of
Words
Description Data Auto-Generation
ADF 3 Ancillary Data Flag 000h
3FFh
3FFh
Yes
DID 1 Audio Group Data ID 2E7h
1E6h
1E5h
2E4h
See Table 4-10
DBN 1 Data Block Number Repeat 1-255 Yes
DC 1 Data Count 218h Yes
CLK 2 Audio Clock Phase Data Yes
CH1 4 Channel 1 ancillary data
words
CH2 4 Channel 2 ancillary data
words
CH3 4 Channel 3 ancillary data
words
CH4 4 Channel 4 ancillary data
words
ECC0-5 6 Error correction code for
lower 8 bits of first 24 words
–Yes
CS 1 Checksum.
Calculates the sum of lower 9
bits of 22 words from DID
–Yes
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
46 of 115
4.7.9 Audio Control Packets
4.7.9.1 SD Formats
In SD mode, the control packets are inserted in the first line after the blanking line, and
following the audio data packets.
Figure 4-15 shows the structure of the SD audio control packet as defined in SMPTE
272M. An audio control packet is multiplexed once per field in the video data stream.
Table 4-8 lists descriptions of the audio control packet words. The audio core
automatically generates certain audio control packet words.
Figure 4-15: SD Audio Control Packet Structure
Table 4-8: Audio Control Packet Word Descriptions
Name No. of
Words
Description Data Auto-Generation
ADF 3 Ancillary Data Flag 000h
3FFh
3FFh
Yes
DID 1 Audio Group Data ID 1EFh
2EEh
2EDh
1ECh
See Table 4-10
DBN 1 Data Block Number Repeat
1-255
Yes
DC 1 Data Count Yes
AF1-2 1 Ch1/2 Audio Frame Number Yes
AF3-4 1 Ch3/4 Audio Frame Number Same as AF1-2
RATE 1 Sampling Frequency Yes
ACT 1 Active Channel ACT[8:1] setting
DELA0-
3
3 Ch1/Ch1&2 Delay Data 27-bit Host
Interface setting
DELB0-
3
3 Ch3/Ch3&4 Delay Data 27-bit Host
Interface setting
DELC0-
3
3 Ch2 Delay Data 27-bit Host
Interface setting
ADF
User Data Words
10-bit
DID
DBN
DC
AF1-2
DELA0-3
DELB0-3
CS
RATE
ACT
AF3-4
DELC0-3
DELD0-3
RSRV
RSRV
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
47 of 115
4.7.9.2 HD Formats
In HD mode, the control packets are inserted in the first line after the blanking line in the
Luma channel in the first available space.
Figure 4-16 shows the structure of the HD audio control packet as defined in SMPTE
299M. An audio control packet is multiplexed once per field in the luma channel of the
video data stream. Table 4-9 lists descriptions of the individual audio control packet
words. The audio core automatically generates certain audio control packet words.
Figure 4-16: HD Audio Control Packet Structure
DELD0-
3
3 Ch4 Delay Data 27-bit Host
Interface setting
RSRV 2 Reserved Words 200h Yes
CS 1 Checksum. Calculates the
sum of lower 9 bits of 22
words from DID
–Yes
Table 4-8: Audio Control Packet Word Descriptions (Continued)
Name No. of
Words
Description Data Auto-Generation
Table 4-9: Audio Control Packet Word Descriptions
Name No. of
Words
Description Data Auto-Generation
ADF 3 Ancillary Data Flag 000h
3FFh
3FFh
Yes
DID 1 Audio Group Data ID 1E3h
2E2h
2E1h
1E0h
See Table 4-10
DBN 1 Data Block Number 200h Yes
DC 1 Data Count 10Bh Yes
AF 1 Audio Frame Number Yes
ADF
User Data Words
10-bit
DID
DBN
DC
AF
DEL1-2
DEL3-4
RSRV
CS
RATE
ACT
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
48 of 115
4.7.9.3 Audio Control Packet Insertion
To multiplex audio control packets for audio group 1 channels 1 to 4 (inputs Ain_1/2 and
Ain_3/4), the CTRA_ON bit of the host interface must be set HIGH. To multiplex audio
control packets for audio group 2 channels 5 to 8 (inputs Ain_5/6 and Ain_7/8), the
CTRB_ON bit must be set HIGH. In addition, the multiplexer will only embed or replace
group 1 control packets if one or more of ACT1, ACT2, ACT3 and ACT4 are set. Similarly,
group 2 control packets will only be embedded or replaced if ACT5, ACT6, ACT7 or
ACT8 are set.
By default, the audio control packets are embedded. The audio frame sequence is also
embedded for 29.97fps video standards. Setting the AFNA_AUTO and AFNB_AUTO bits
in the host interface LOW disable the audio frame sequence insertion. When set LOW,
the audio frame number will be set to zero (200h). The RATE word is always set to zero
to denote 48kHz audio only.
Control packet data can be programmed via the corresponding registers in the host
interface.
Refer to Section 4.13.3 for HD and SD audio multiplexer status and configuration
registers.
4.7.10 Setting Packet DID
The audio group DID for audio group 1 input channels 1 to 4 (Ain_1/2 and Ain_3/4) is set
in the IDA[1:0] bits of the host interface. The audio group DID for audio group 2 input
channels 5 to 8 (Ain_5/6 and Ain_7/8) is set in IDB[1:0] of the host interface. Table 4-10
shows the 2-bit host interface setting for the corresponding audio group DID.
For 24-bit audio support using the SD core, the extended audio group DID for audio
group 1 input channels 1 to 4 is set to the same group in IDA[1:0] of the host interface.
The extended audio group DID for audio group 2 input channels 5 to 8 is set to the same
RATE 1 Sampling Frequency Yes
ACT 1 Active Channel ACT[8:1] setting
DELA0-3 3 Ch1/2 Delay Data 27-bit Host Interface
setting
DELB0-3 3 Ch3/4 Delay Data 27-bit Host Interface
setting
RSRV 2 Reserved Words 200h Yes
CS 1 Checksum. Calculates the sum of
lower 9 bits of 15 words from
DID
–Yes
Table 4-9: Audio Control Packet Word Descriptions (Continued)
Name No. of
Words
Description Data Auto-Generation
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
49 of 115
group in IDB[1:0] of the host interface. 24-bit support is selected by setting the 24BIT bit
of host interface HIGH.
When the host interface CASCADE bit is set LOW, the audio core defaults to audio
groups 1 and 2, where Ain_1/2 and Ain_3/4 are multiplexed with audio group 1 DID,
and Ain_5/6 and Ain_7/8 with audio group 2 DID.
When the CASCADE bit is set HIGH, the GS1582 defaults to audio groups 3 and 4, where
Ain_1/2 and Ain_3/4 are multiplexed with audio group 3 DID, and Ain_5/6 and Ain_7/8
with audio group 4 DID.
NOTE: If IDA and IDB are set to the same value, these bits will automatically revert to
their default values.
Any other configurations can be programmed for the audio groups as required.
4.7.11 Audio Group Replacement
Audio group replacement mode allows the multiplexing of new audio groups, whilst
replacing existing embedded audio with the same group DID. All other embedded audio
groups will remain in the video stream. Up to two groups of audio (and extended audio
for SD formats) can be replaced at once.
The first function performed by the GS1582 is deleting the audio group or groups to be
replaced. The next step is removing and storing any other audio packets that are to be
preserved. The final step is to embed the new and stored audio data packets so they are
contiguous from the EAV (for HD formats, they will be contiguous after the line CRC
words). See Figure 4-17.
Table 4-10: Audio Group DID Host Interface Settings
Audio Group SD
Data DID
SD
Extended DID
HD
Data DID
SD
Control DID
HD
Control DID
Host Interface
Register
Setting (2-bit)
1 2FFh 1FEh 2E7h 1EFh 1E3h 00b
2 1FDh 2FCh 1E6h 2EEh 2E2h 01b
3 1FBh 2FAh 1E5h 2EDh 2E1h 10b
4 2F9h 1F8h 2E4h 1ECh 1E0h 11b
Table 4-11: Audio Data and Control Packet DID Setting Register
Name Description Default CASCADE
set LOW
Default CASCADE
set HIGH
IDA[1:0] Group 1 audio data and control
packet DID setting
00b 10b
IDB[1:0] Group 2 audio data and control
packet DID setting
01b 11b
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
50 of 115
On lines where the SMPTE 352M packet is already present, the audio core places new
and existing audio data packets contiguously after the 352M packets. For HD formats,
the 352M packets are embedded in the luma channel of the video data stream; therefore,
no audio data packets will be placed after the 352M packets.
Figure 4-17: Audio Group Replacement Example (HD Formats)
Audio group replacement mode is selected by setting the AGR bit of the host interface
HIGH. By default, the GS1582 replaces two audio groups with their DID set in IDA[1:0]
and IDB[1:0]. To replace only one audio group, with group DID set in IDA[1:0], set the
ONE_AGR bit in the host interface HIGH. The audio control packets, if present, will not
be replaced unless the CTR_AGR host interface bit is set HIGH. The audio control packet
information will be replaced with data programmed in the associated registers in the
host interface. See Audio Control Packets on page 46.
Refer to Section 4.13.3 for HD and SD multiplexer core status and configuration
registers.
Blank (200
h
)
Video Signal Input to Audio Core (with existing Audio Data Packets)
Blank (200
h
)
EAV
Video Signal after deleting Audio Groups 1 & 2 (ONE_AGR = 0)
SAV
Audio
Group 3
Audio
Group 4
LN
CRC
Blank (200
h
)
EAV
Video Signal Output after replacement of Audio Groups 1 & 2
SAV
Audio
Group 1
(New)
Audio
Group 2
(New)
Audio
Group 3
(Old)
Audio
Group 4
(Old)
LN
CRC
Blank (200
h
)
EAV
SAV
Audio
Group 1
Audio
Group 2
Audio
Group 3
Audio
Group 4
LN
CRC
Blank (200
h
)
EAV
Video Signal after Audio Groups 3 & 4 stored in RAM
SAV
LN
CRC
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
51 of 115
4.7.12 Channel and Group Activation
Multiplexing of individual audio channels is enabled by setting the ACT bits in host
interface register 0Ch. When set HIGH, the corresponding audio channel is multiplexed
into the video data stream. Channels designated as not active (ACT set LOW) will be
embedded with null samples (all bits set to zero). When all ACT bits are set LOW, no
audio data packets will be multiplexed.
When ACT[1-4] are set LOW, the audio group set in IDA[1:0] will not be multiplexed.
Similarly, when ACT[5-8] are set LOW, the audio group set in IDB[1:0] will not be
multiplexed. This allows four channel, single group operation.
By default, all audio channels are enabled.
Refer to Section 4.13.3 for HD and SD audio multiplexer status and configuration
registers.
4.7.13 ECC Error Detection & Correction (HD Mode Only)
The GS1582 will generate the error detection and correction fields in the audio data
packets.
All generated error detection and correction complies with SMPTE 299M.
4.7.14 Interrupt Control
The GS1582 can be programmed to assert the interrupt signal (AUDIO_INT, pin H7)
whenever an internal interrupt condition exists.
To enable a particular type of interrupt, the corresponding bit in the host interface must
be set. If the audio interrupt bit is un-masked, and the interrupt condition is met, the
AUDIO_INT pin will go HIGH. For example, if the EN_ADPG_1 is enabled, and the
incoming video has embedded audio in group one, then the AUDIO_INT pin will go
HIGH.
Please refer to Section 4.13.3 for HD and SD audio multiplexer status and configuration
registers for a complete listing of the audio interrupts.
4.7.15 Audio Clocks
The audio multiplexer has 4 clock inputs: ACLK_1, ACLK_2, WCLK_1 and WCLK_2. For
serial audio input modes ACLK_1/2 must be provided at 64fs, where fs is the
fundamental sampling frequency of 48kHz. An audio word clock at 48kHz must also be
supplied at the WCLK_1/2 inputs. For AES/EBU audio input mode, the ACLK_1/2 and
WLCK_1/2 inputs are not required. All required clocks will automatically be derived
from the AES/EBU preambles. ACLK_1/2 and WCLK_1/2 will be HIGH impedance in
AES/EBU audio input mode.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
52 of 115
Figure 4-18: ACLK to Data & Control Signal Input Timing
4.7.16 5-frame Sequence Detection
5-frame sequence detection is required for 525-line based standard definition formats
and to embed the Audio Frame Number word in the audio control packets for
synchronous audio in both HD and SD formats.
4.7.16.1 SD Audio Multiplexing
The GS1582 detects the frame sequence that describes the sample distribution for
synchronous audio. This information is used in the generation of the Audio Frame
Number (AFN) field, describing the position of the current frame within the sequence.
AFN values will only be generated for group A if the AFNA_AUTO bit in the host
interface, and for group B if the AFNB_AUTO bit is set.
If the GS1582 is not configured to generate AFN values, the AFN field will be set to 0 at
all times. However, if the core is configured to generate AFN values, the AFN value will
be between 1 and 5, depending on where the given frame lies in the frame sequence.
With a frame rate of 25 Hz, each frame will contain 1920 samples, and each frame will
have an AFN of one (see Table 4-13). For a frame rate of 29.97 Hz, 8008 samples are
distributed over 5 frames, as shown in Table 4-14.
The GS1582 will add the offset specified in the AFN_OFS[2:0] host interface field to the
generated AFN. The result will wrap around, leaving the resulting AFN in the range of 1
through 5.
Table 4-12: GS1582 Serial Audio Data Inputs
Parameter Symbol Conditions Min Typ Max Units
Input Data Set-up
Time
tSU 50% levels;
3.3V or 1.8V
operation
74 ns
Input Data Hold Time tIH 74 ns
ACLK
A_IN_[8/7:2/1] DATA
Control signal
input
t
SU
t
IH
DATA
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
53 of 115
4.7.16.2 HD Audio Multiplexing
If the ASXA bit of the host interface is set to asynchronous audio, the GS1582 will set the
AFN of the group 1 control packets to zero. The GS1582 will also set the AFN of the group
1 control packets to zero if the AFNA_AUTO bit in the host interface is not set. The same
relationship holds for the ASXB and AFNB_AUTO bits for group 2.
The GS1582 will detect video standards with 29.97 and 59.94 frame rates by using the
5-frame sequence detect block. If a 5-frame sequence is detected, the Audio Frame
Number word in the audio control packets will be embedded with the running sequence
1 through 5.
The GS1582 will add the offset specified in the AFN_OFS[2:0] host interface field to the
generated AFN. The result will wrap around, leaving the resulting AFN in the range of 1
through 5.
In cases where each frame has the same number of samples, the Multiplexer will set the
AFN to zero for every frame. These cases are shown in Table 4-13. In cases where each
frame has a different number of samples, the sequences shown in Table 4-14 are used.
4.7.17 Audio Input Format
The GS1582 accepts two audio input formats, AES/EBU digital audio input and serial
digital audio input, as listed in Table 4-15. The serial audio input can be formatted in the
following five modes:
•I
2S
•Left Justified; MSB first
Table 4-13: Frame Rates with AFN = 0
Frame Rate (fps) Samples per Video Frame
30 1600
25 1920
60 800
24 2000
23.98 2002
Table 4-14: Frame Rates with varying samples per frame
Frame Rate (fps) Samples,
AFN = 11
Samples,
AFN = 21
Samples,
AFN = 31
Samples,
AFN = 41
Samples,
AFN = 51
29.97 1602 1601 1602 1601 1602
59.94 801 800 801 801 801
NOTES:
1. AFNs are assuming AFN_OFS = 0.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
54 of 115
•Left Justified; LSB first
Right Justified; MSB first
Right Justified; LSB first
The audio input format for each audio group is configured using the AMA[1:0] (group 1
channels 1 and 2/Stereo Pair A), AMB[1:0] (group 1 channels 3 and 4/Stereo Pair B),
AMC[1:0] (group 2 channels 5 and 6/Stereo Pair C), and AMD[1:0] (group 2 channels 7
and 8/Stereo Pair D) host interface registers. The default audio mode is I2S input. For
serial input formats, MSB first is default, and LSB first is available via the LSB_FIRSTx bit
in the host interface.
NOTE: Since the audio clocks are common to all channels within one group, all channels
in each group of four must be the same format. However there is no restriction on the
format of different channels in one group when audio is in AES/EBU format. Also, the
audio format of each group may be different.
4.7.17.1 AES/EBU Mode
In AES/EBU input mode, the audio sample bit rate of 64fs (3.072MHz) is effectively
doubled by the bi-phase mark encoding, resulting in an effective input data rate at 128fs
(6.144MHz). The AES/EBU sub-frame formatting is shown in Figure 4-19 below.
Table 4-15: Audio Input Formats
AMx[1:0] LSB_FIRSTx Audio Output Format
00 0 AES/EBU audio input
01 0 Serial audio input: Left justified; MSB first
01 1 Serial audio input: Left justified; LSB first
10 0 Serial audio input: Right justified; MSB first
10 1 Serial audio input: Right justified; LSB first
11 0 I2S serial audio input (Default)
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
55 of 115
Figure 4-19: AES/EBU Sub-frame Formatting
The audio clock to data timing and input format is shown in Figure 4-20.
Figure 4-20: AES/EBU Audio Input Format
NOTE: Due to the bi-phase mark encoding used in AES/EBU mode, for each logic 1 bit
period, there will be an additional transition. In Figure 4-20, this additional transition is
not shown.
In the event of a parity error in Stereo Pair A in AES/EBU mode, the GS1582 will set the
AES_ERRA bit in the host interface. The same is true of AES_ERRB for Stereo Pair B,
AES_ERRC for Stereo Pair C, and AES_ERRD for Stereo Pair D.
NOTE: In order to read back the parity error bits of register 1, register 2 must be read first
to trigger an update of these bits. The parity error bits will be cleared when read from
register 1.
4.7.17.2 Serial Audio Input Mode
In serial audio input modes, the GS1582 clocks the audio data input on the rising edge of
the ACLK_1/2 input clock at 64fs (3.072MHz), as shown in Figure 4-21, Figure 4-24 and
Figure 4-25 below.
24 -bit
Sync
Preamble 24-bit Audio Sample Word VUCP
034 27 28 29 30 31
Channel Status Bit
Validity Bit
User Data Bit
Parity Bit
20-bit
Sync
Preamble 20-bit Audio Sample Word VUCP
034 27 28 29 30 31
LSB MSB
LSB MSB
78
Aux
Data
16-bit
Sync
Preamble 16-bit Audio Sample Word VUCP
034 27 28 29 30 31
LSB MSB
78
Aux
Data
11 12
Set To
Zero
AIN
MSB
282787210
LSB
3456 29 30 31
VUCPAUXPreamble MSB
28278721
LSB
3456 29 30 31
VUCPAUXPreamble
0
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
56 of 115
Figure 4-21: Serial Audio Input: Left Justified; MSB First
Figure 4-22: Serial Audio Input: Left Justified; LSB First
Figure 4-23: Serial Audio Input: Right Justified; MSB First
Figure 4-24: Serial Audio Input: Right Justified; LSB First
Figure 4-25: I2S Audio Input
4.7.18 Audio Channel Status Input
The Audio Channel Status block information can be programmed via the host interface
using the ACSR[183:0] register (see Table 4-17: Audio Channel Status Information
Register Settings). The Audio Channel Status input consists of 24 bytes transmitted 1 bit
per audio sample over a 192-frame sequence. The same audio channel status
information is embedded for each sample in an audio frame, over all 8 input channels.
The GS1582 generates the Z bit to denote the start of the Audio Channel Status block.
WCLK
ACLK
AIN 23
MSB
22 012345621
LSB
23
MSB
22 012345621
LSB
Channel A (Left) Channel B (Right)
WCLK
ACLK
AIN 0
LSB
1232221201918172
MSB LSB MSB
Channel A (Left) Channel B (Right)
01 232221201918172
WCLK
ACLK
AIN 23
MSB
22 01220 17181921
LSB MSB LSB
Channel A (Left) Channel B (Right)
23 22 01220 17181921
WCLK
ACLK
AIN 0
LSB
123222136542
MSB
0
LSB
123222136542
MSB
Channel A (Left) Channel B (Right)
WCLK
ACLK
AIN 23
MSB
22 01234567
LSB
23
MSB
22 01234567
LSB
Channel A (Left) Channel B (Right)
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
57 of 115
When the ACS_REGEN bit in the host interface is set HIGH, the GS1582 will use the
Audio Channel Status information programmed in the ACSR[183:0] register to replace
the Audio Channel Status block in all eight channels. The CRC for the Audio Channel
Status block will be calculated automatically. The GS1582 will use this new Audio
Channel Status information only when ACS_APPLY is HIGH and a new status boundary
at this point. When the ACS_APPLY is set, the APPLY_WAITA host interface bit will be
asserted until a status boundary for audio group 1 occurs. Similarly, APPLY_WAITB will
be asserted starting when ACS_APPLY is set, and ending when a status boundary for
audio group 2 occurs.
Table 4-16 shows the default settings for the Audio Channel Status block. The GS1582
automatically generates the CRC byte.
Table 4-16: Audio Channel Status Block Default Settings
Name Byte Bit Default Mode
PRO 0 0 1b Professional use of channel status
block
Emphasis 0 2-4 100b None.
Receiver manual override disabled
Sample
Frequency
0 6-7 01b 48kHz.
Manual override or auto disabled
Channel Mode 1 0-3 0001b Two channels.
Manual override disabled
AUX 2 0-2 000b SD Mode:
Maximum audio word length is 20 bits
001b HD Mode:
Maximum audio word length is 24 bits
Source Word
Length
2 3-5 101b Maximum word length
(based on AUX setting).
24-bit for HD formats;
20-bit for SD formats
Table 4-17: Audio Channel Status Information Register Settings
Name Description Default
ACSR[7-0] Audio channel status block byte 0 set 85h
ACSR[15-8] Audio channel status block byte 1 set 08h
ACSR[23-16] Audio channel status block byte 2 set 28h (SD)
2Ch (HD)
ACSR[31-24]
ACSR[183-176]
Audio channel status block set for bytes 3 to 22 00h
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
58 of 115
4.7.19 Audio Crosspoint
The audio crosspoint allows any single input channel to be embedded as one or more of
the 8 embedded audio channels. The default setting is for one-to-one mapping, where
Ain_1/2 is embedded as Ch1 and Ch2, Ain_3/4 is embedded as Ch3 and Ch4, and so on.
The same audio channel cannot be used in both group 1 and 2 at the same time. The
GS1582 will assert the XPOINT_ERROR host interface bit if any audio channel is
programmed to be included in both groups.
The source channel is set via the host interface. Table 4-18 lists the 3-bit address for
audio channel mapping.
NOTE: Audio channels can be paired only when both channels are derived from the
same word clock and are synchronous.
Table 4-18: Audio Channel Mapping Codes
Audio Input Channel 3-bit Host Interface Source Address
Group 1 channel 1 000b
Group 1 channel 2 001b
Group 1 channel 3 010b
Group 1 channel 4 011b
Group 2 channel 1 100b
Group 2 channel 2 101b
Group 2 channel 3 110b
Group 2 channel 4 111b
Table 4-19: Source Input Address Registers
Name Description Default
GP1_CH1_SRC[2:0] Group 1 channel 1 source selector 000b
GP1_CH2_SRC[2:0] Group 1 channel 2 source selector 001b
GP1_CH3_SRC[2:0] Group 1 channel 3 source selector 010b
GP1_CH4_SRC[2:0] Group 1 channel 4 source selector 011b
GP2_CH1_SRC[2:0] Group 2 channel 1 source selector 100b
GP2_CH2_SRC[2:0] Group 2 channel 2 source selector 101b
GP2_CH3_SRC[2:0] Group 2 channel 3 source selector 110b
GP2_CH4_SRC[2:0] Group 2 channel 4 source selector 111b
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
59 of 115
4.7.20 Audio Word Clock
The GS1582 uses two word clocks, WCLK_1 and WCLK_2. By default, Audio group 1 will
use the clock at the WCLK_1 input, and Audio group 2 will use the word clock at
WCLK_2. The word clock assignment for each audio group can be changed by
programming the GP1_WCLK_SRC[1:0] and GP2_WCLK_SRC[1:0] registers.
In AES mode, the audio clocks are extracted from the input audio data. By default, audio
clock for group 1 is extracted from channel pair 1/2, and audio clock group 2 is extracted
from channel pair 5/6. The default can be changed by programming the
GP1_WCLK_SRC[1:0] and GP2_WCLK_SRC[1:0] register. Table 4-20: Audio Clock
Selection Host Interface Settings shows the audio clock source for each setting of the
registers.
Each audio group consists of 4 channels, which share the same word clock. Therefore,
the audio data applied to each channel within the group must be the same format and
have identical word clock requirements.
NOTE: In AES mode, by default, word clock is extracted from channels 1/2 for Audio
group 1 and channels 5/6 for Audio group 2. If audio is applied only to 3/4 or 7/8 only,
then no audio is embedded until the word clock source is changed from channels 1/2 or
5/6, to channels 3/4 or 7/8.
4.7.21 GS1582 SD Audio FIFO Block
The GS1582 SD audio FIFO block contains the audio sample buffers. There is a buffer per
audio channel, which are 52 audio samples deep. At power up or reset, the read pointer
is held at the zero position until 26 samples have been written into the FIFO. Once audio
is being multiplexed, the offset between the audio sample buffer read and write pointers
is maintained at an average of 26 samples.
The position of the write pointer with respect to the read pointer is checked constantly.
If the write pointer is less than 6 samples ahead of the read pointer, a sample is repeated
from the read-side of the buffer. If the write pointer is less than 6 samples behind the
read pointer, a sample is dropped. This scheme avoids buffer underflow/overflow
conditions.
The repeat or drop sample operation is performed up to a maximum of 28 consecutive
times. After 28 repeat/drops, the GS1582 will mute (null audio packets are embedded).
Table 4-20: Audio Clock Selection Host Interface Settings
GP_WCLK_SRC[1:0] Word Clock Extraction Source
(AES Mode)
WCLK Source (Serial
Audio Mode)
00b Channels 1/2 WCLK_1
01b Channels 3/4 WCLK_1
10b Channels 5/6 WCLK_2
11b Channels 7/8 WCLK_2
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
60 of 115
The audio buffer pointer offset can be reduced from 26 samples to 12 or 6 samples using
the OS_SEL[1:0] host interface register. The default setting is 26 samples (see Table 4-21).
When the OS_SEL[1:0] bits are set for 6-sample pointer offset, no boundary checking is
performed.
The CLEAR_AUDIO bit in the host interface can be used to clear the FIFOs. When
asserted, this bit resets the FIFOs to the start-up state.
4.7.22 Audio Sample Distributions
4.7.22.1 525-line Audio Sample Distribution
This following sample distribution allows the embedding of 16 channels (4 audio
groups) of 24-bit sampled audio into the HANC of 525-line based video formats.
The sample distribution is established for group 1 and then offset by 1 line for each
subsequent group. The sample distribution is as follows (start line is 12):
{[3](10+G),([4],[3]15)15,[4],[3](11-G),[0],[3](3+G),([4],[3]15)15,[4/3],[3]12,[4],[3](4-G),[0]}5
[#] = Number of samples / line
[4/3] = One line with either 3 or 4 samples depending on five-frame sequence
(#) = Number of times to repeat the sequence. When this # is 0, no samples are inserted
G = Audio group number from 1 to 4
{…}5 = 5-frame sequence as shown in Table 4-22:
Table 4-21: Audio Buffer Pointer Offset Settings
OS_SEL[1:0] Buffer Pointer Offset
00 26 samples (default)
01 12 samples
10 6 samples
Table 4-22: 5-frame Sequence Sample Distribution
Frame Number of samples
1 1602
2 1601
3 1602
4 1601
5 1602
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
61 of 115
Table 4-23, Table 4-24, Table 4-25, and Table 4-26 show the audio sample distributions
for each of the four audio groups. Each distribution has 525 lines with either 1602 or
1601 samples based on the frame number of the five-frame sequence.
NOTE: When 1602 samples are required, the [4/3] term represents a line with 4 samples.
When 1601 samples are required, the [4/3] term represents a line with 3 samples.
4.7.22.2 625-line Audio Sample Distribution
The following sample distribution is for 625-line video standards which leaves more free
HANC space when inserting 16 channels (4 audio groups) of 24-bit sampled audio.
The sample distribution is established for group 1 and then offset by 1 line for each
subsequent group. The sample distribution is as follows (start line is 8):
[3](G-1),([4],[3]11)25,[4],[3](12-G),[0], [3](G-1),([4],[3]11)24,[4],[3](23-G),[0]
Table 4-23: Group 1 Audio Sample Distribution
[3](10+1) ([4],[3]15)15 [4],[3](11-1) [0],[3](3+1) ([4],[3]15)15 [4/3],[3]12 [4],[3](4-1),[0]
Samples 33 735 34 12 735 40 / 39 13
Lines 11 240 11 5 240 13 5
Table 4-24: Group 2 Audio Sample Distribution
[3](10+2) ([4],[3]15)15 [4],[3](11-2) [0],[3](3+2) ([4],[3]15)15 [4/3],[3]12 [4],[3](4-2),[0]
Samples 36 735 31 15 735 40 / 39 10
Lines 12 240 10 6 240 13 4
Table 4-25: Group 3 Audio Sample Distribution
[3](10+3) ([4],[3]15)15 [4],[3](11-3) [0],[3](3+3) ([4],[3]15)15 [4/3],[3]12 [4],[3](4-3),[0]
Samples 39 735 28 18 735 40 / 39 7
Lines 13 240 9 7 240 13 3
Table 4-26: Group 4 Audio Sample Distribution
[3](10+4) ([4],[3]15)15 [4],[3](11-4) [0],[3](3+4) ([4],[3]15)15 [4/3],[3]12 [4],[3](4-4),[0]
Samples 42 735 25 21 735 40 / 39 4
Lines 14 240 8 8 240 13 2
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
62 of 115
[#] = Number of samples / line
(#) = Number of times to repeat the sequence
[3](0) = No lines with no samples
G = Audio group number from 1 to 4
NOTE: For audio group 1, the [3](G-1) terms are 0 (zero) and lines 8 and 321 start with the
4 samples of the ([4],[3]11)25 and ([4],[3]11)24 sequences, respectively.
Table 4-27, Table 4-28, Table 4-29, and Table 4-30 show the audio sample distributions
for each of the four audio groups. Each distribution has 625 lines with 1920 samples.
Table 4-27: Group 1 Audio Sample Distribution
[3](1-1) ([4],[3]11)25 [4],[3](12-1) [0],[3](1-1) ([4],[3]11)24 [4],[3](23-1),[0]
Samples 0 925 37 0 888 70
Lines 0 300 12 1 288 24
Table 4-28: Group 2 Audio Sample Distribution
[3](2-1) ([4],[3]11)25 [4],[3](12-2) [0],[3](2-1) ([4],[3]11)24 [4],[3](23-2),[0]
Samples 3 925 34 3 888 67
Lines 1 300 11 2 288 23
Table 4-29: Group 3 Audio Sample Distribution
[3](3-1) ([4],[3]11)25 [4],[3](12-3) [0],[3](3-1) ([4],[3]11)24 [4],[3](23-3),[0]
Samples 6 925 31 6 888 64
Lines 2 300 10 3 288 22
Table 4-30: Group 4 Audio Sample Distribution
[3](4-1) ([4],[3]11)25 [4],[3](12-4) [0],[3](4-1) ([4],[3]11)24 [4],[3](23-4),[0]
Samples 9 925 28 9 888 61
Lines 3 300 9 4 288 21
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
63 of 115
4.7.22.3 Synchronous Audio Sample Distributions
Table 4-31 lists the audio sample distributions for synchronous audio at all the video
frame rates supported by the GS1582.
4.7.23 Audio Mute
When the AUDIO_MUTEn bits of the host interface are set HIGH, the embedded audio
sample data will be set to all zeros (null audio packets). To set all the embedded audio
channels to mute, set the host interface AUDIO_ALL bit HIGH.
Refer to Section 4.13.3 for GS1582 status and configuration registers.
4.8 Ancillary Data Insertion
Horizontal or vertical ancillary data words may be inserted on up to four different lines
per video frame. In order to insert HANC data, the ANC_TYPE bit in the host interface,
must be set LOW. VANC data can be inserted by setting the ANC_TYPE bit in the host
interface HIGH. By default, at power up, HANC data insertion is selected.
The user must write the ancillary data words to be inserted, the line number for the
insertion, and the total number of words to be inserted to the designated registers in the
host interface. At power up, or after system reset, all ANC data insertion line numbers
and total number of words default to zero.
All data words including the ancillary packet ADF, DBN, DC, DID, SDID, and
CHECKSUM (placeholder) must be provided. The user provided CHECKSUM word is a
placeholder. The correct value will be calculated and inserted automatically.
Two modes of operation are provided – separate line mode and concatenated mode. By
default, at power up or after system reset, separate line operating mode is selected.
The GS1582 ancillary data insertion provides no error checking or correction. The
provided ancillary data must be fully SMPTE compliant.
The PACKET_MISSED bit in the host interface is set if:
Table 4-31: Synchronous Audio Sample Distributions
Frame Rate (fps) Samples per Video Frame
30 1600/1
29.97 8008/5
25 1920/1
60 800/1
59.94 4004/5
24 2000/1
23.98 2002/1
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
64 of 115
An ancillary data packet is only partially inserted because there is no more free
space in the HANC or VANC region of the selected line
An ancillary data packet is not inserted at all because there is no free space in the
HANC or VANC region of the selected line
The number of words to insert programmed through the host interface is greater
than the maximum allowed for the operating mode (128 in separate line mode or
512 in concatenated line mode). Under this condition, the bit will be set once the
maximum number has been reached
This bit is cleared once per frame on the rising edge of V or when it is read through the
host interface.
In SD mode, two modes of operation are provided – separate line mode and
concatenated mode. By default, at power up or after system reset, separate line
operating mode is selected.
Ancillary data packets are inserted into the multiplexed YCbCr video stream. In HD
mode, by default ancillary data packets will be inserted into the luma channel. Insertion
in the chroma channel may be selected via the host interface. Ancillary data insertion in
the luma and chroma channels can be selected on a per line basis.
Ancillary data insertion only takes place if the IOPROC_EN/DIS pin is set HIGH,
SMPTE_BYPASS is set HIGH, and the ANC_INS bit in the IOPROC_DISABLE register is
set LOW.
NOTE 1: It is good practice to program the ancillary data words prior to programming
the line number and number of words. Ancillary data insertion only begins once the line
number and number of words are set to a non-zero value. Therefore, this practice
ensures that no data is written to the ANC space before the programming is complete. As
such, no unintended data is written to the ANC space, even if the programmed line
number is reached before the programming is complete. Also, read/write conflicts are
avoided.
NOTE 2: In both separate line mode and concatenated mode, more than one ANC packet
may be inserted per line. The user provided ANC packets must contain a checksum
place holder word. The correct checksum for each packet will then be re-calculated and
inserted by GS1582. The total number of words for all the provided ancillary data
packets with checksum should not exceed 128 in separate line mode and 512 in
concatenated mode.
4.8.1 Ancillary Data Insertion Operating Mode
4.8.1.1 Separate Line Mode
In separate line mode, it is possible to insert horizontal or vertical ancillary data on up to
four lines per video frame. For each of the four video lines, up to 128 8-bit HANC or
VANC data words can be inserted. Separate line mode is selected by setting the
ANC_INS_MODE bit in the host interface LOW. By default, at power up, separate line
mode is selected.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
65 of 115
The non-zero video line numbers on which to insert the ancillary data, the ancillary data
type (HANC or VANC), and the total number of words to insert per line must be provided
via the host interface. At power up, or after system reset, all ancillary data insertion line
numbers and total number of words default to zero.
If the total number of data words specified per line exceeds 128 only the first 128 data
words will be inserted.
The device automatically converts the provided 8-bit data words into the 10-bit data,
formatted according to SMPTE 291M prior to insertion.
4.8.1.2 Concatenated Mode
In concatenated mode, it is possible to insert up to 512 8-bit horizontal or vertical
ancillary data words on one line per video frame. Concatenated line mode can be
selected by setting the ANC_INS_MODE bit in the host interface HIGH. By default, at
power up, separate line mode is selected.
The non-zero video line number on which to insert the ancillary data, the ancillary data
type (HANC or VANC), and the total number of words to insert must be provided via the
host interface. At power up, or after system reset, the ancillary data insertion line
number and total number of words default to zero.
If the total number of data words specified exceeds 512 only the first 512 data words will
be inserted.
The device automatically converts the provided 8-bit data words into the 10-bit data
formatted according to SMPTE 291M prior to insertion.
4.8.2 HANC Insertion
By default, at power up or after system reset, all ancillary data is inserted in the HANC
space. Data is inserted contiguously starting at the TRS EAV or the first available location
following any audio and pre-existing ancillary data packets. Data insertion terminates
when all provided data words have been inserted or at the start of the TRS SAV code,
whichever occurs first. If termination occurs before all words have been inserted, the
PACKET_MISSED bit will be set in the host interface.
NOTE 1: EDH packet insertion in SD mode occurs following ancillary data insertion.
Thus, any HANC data inserted on the same line as the EDH packet may be overwritten
during EDH insertion. When HANC data is inserted on an EDH line, the
PACKET_MISSED bit may be erroneously set, even though the ancillary data packet has
been inserted correctly.
NOTE 2: HANC space ancillary data headers undergo 8-bit to 10-bit remapping. This
means that when the 8 MSBs are all zero, the value gets mapped to 000 and when the 8
MSBs are all 1, the value gets mapped to 3FF. (i.e. 000, 001, 002, 003 −−> 000 and 3FE,
3FD, 3FC −−> 3FF)
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
66 of 115
4.8.3 VANC Insertion
Ancillary data insertion into the VANC space can be selected via the host interface. Data
is inserted contiguously starting at the TRS SAV or the first available location following
any pre-existing ancillary data packets. Data insertion terminates when all provided
data words have been inserted or at the start of the TRS EAV code, whichever occurs
first. If termination occurs before all words have been inserted, the PACKET_MISSED bit
will be set in the host interface.
NOTE: When ancillary data is inserted into the active region of the video raster using the
VANC feature, if the ILLEGAL_REMAP in the IOPROC_DISABLE register bit is set to 0,
then the ADFs are remapped to '004 | 3FB | 3FB' and the downstream devices will not
detect the ancillary data packets.
4.9 Additional Processing Functions
The GS1582 incorporates additional data processing which is available in SMPTE mode
only, see SMPTE Mode on page 29.
4.9.1 ANC Data Blanking
The horizontal and vertical ancillary spaces of the input video may be 'blanked' by the
GS1582. In this mode, the TRS words and active video will be preserved. Any additional
processing functions including audio embedding, including ancillary data insertion,
occur after blanking and will be present in the output video stream.
This function is enabled by setting the ANC_BLANK pin LOW.
4.9.2 Automatic Video Standard Detection
The GS1582 can detect the input video standard by using the timing parameters
extracted from the received TRS ID words, the supplied H_Blanking, V_Blanking, and
F_Digital timing signals, or the CEA 861 timing signals, see HVF Timing on page 29 and
CEA 861 Timing on page 31. This information is presented in the VIDEO_STANDARD
register (Table 4-32).
Total samples per line, active samples per line, total lines per field/frame and active lines
per field/frame are also calculated and available via the RASTER_STRUCTURE registers
(Table 4-33). These line and sample count registers are updated once per frame at the
end of line 12.
After device reset, the four RASTER_STRUCTURE registers default to zero.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
67 of 115
4.9.3 Video Standard Indication
The value reported in the VD_STD[4:0] bits of the VIDEO_STANDARD register
corresponds to the SMPTE standards as shown in Table 4-34.
In addition to the 5-bit video standard code word, the VIDEO_STANDARD register also
contains two status bits. The STD_LOCK bit will be set HIGH whenever the device has
achieved full synchronization. The INT_PROG bit will be set LOW if the detected video
standard is progressive and HIGH if the detected video standard is interlaced.
The VD_STD[4:0], STD_LOCK and INT_PROG bits of the VIDEO_STANDARD register
will default to zero after device reset. The VD_STD[4:0] and INT_PROG bits will also
default to zero if the SMPTE_BYPASS pin is asserted LOW. The STD_LOCK bit will retain
its previous value if the PCLK is removed.
Table 4-32: Host Interface Description for Video Standard Register
Register Name Bit Name Description R/W Default
VIDEO_STANDARD
Address: 004h
15 Not Used.
14-10 VD_STD[4:0] Video Data Standard (see Table 4-34). R 0
9INT_PROG
Interlace/Progressive: Set LOW if detected video
standard is PROGRESSIVE and is set HIGH if it is
INTERLACED.
R0
8 STD_LOCK Standard Lock: Set HIGH when the device has
achieved full synchronization.
R0
7-0 Not Used.
Table 4-33: Host Interface Description for Raster Structure Registers
Register Name Bit Name Description R/W Default
RASTER_STRUCTURE1
Address: 00Eh
15-12 Not Used.
11-0 RASTER_STRUCTURE_1[11:0] Words Per Active Line R 0
RASTER_STRUCTURE2
Address: 00Fh
15-13 Not Used.
12-0 RASTER_STRUCTURE_2[12:0] Words Per Total Line. R 0
RASTER_STRUCTURE3
Address: 010h
15-11 Not Used.
10-0 RASTER_STRUCTURE_3[10:0] Total Lines Per Frame R 0
RASTER_STRUCTURE4
Address: 011h
15-11 Not Used.
10-0 RASTER_STRUCTURE_4[10:0] Active Lines Per Field R 0
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
68 of 115
Table 4-34: Supported Video Standards
VD_STD[4:0] SMPTE
Standard
Video Format Length of
HANC
Length of
Active Video
Total
Samples
SMPTE352M
Lines
00h 296M (HD) 1280x720/60 (1:1) 358 1280 1650 13
01h 296M (HD) 1280x720/60 (1:1) - EM 198 1440 1650 13
02h 296M (HD) 1280x720/30 (1:1) 2008 1280 3300 13
03h 296M (HD) 1280x720/30 (1:1) - EM 408 2880 3300 13
04h 296M (HD) 1280x720/50 (1:1) 688 1280 1980 13
05h 296M (HD) 1280x720/50 (1:1) - EM 240 1728 1980 13
06h 296M (HD) 1280x720/25 (1:1) 2668 1280 3960 13
07h 296M (HD) 1280x720/25 (1:1) - EM 492 3456 3960 13
08h 296M (HD) 1280x720/24 (1:1) 2833 1280 4125 13
09h 296M (HD) 1280x720/24 (1:1) - EM 513 3600 4125 13
0Ah 274M (HD) 1920x1080/60 (2:1) or
1920x1080/30 (PsF)
268 1920 2200 10, 572
0Bh 274M (HD) 1920x1080/30 (1:1) 268 1920 2200 18
0Ch 274M (HD) 1920x1080/50 (2:1) or
1920x1080/25 (PsF)
708 1920 2640 10, 572
0Dh 274M (HD) 1920x1080/25 (1:1) 708 1920 2640 18
0Eh 274M (HD) 1920x1080/25 (1:1) - EM 324 2304 2640 18
0Fh 274M (HD) 1920x1080/25 (PsF) - EM 324 2304 2640 10, 572
10h 274M (HD) 1920x1080/24 (1:1) 818 1920 2750 18
11h 274M (HD) 1920x1080/24 (PsF) 818 1920 2750 10, 572
12h 274M (HD) 1920x1080/24 (1:1) - EM 338 2400 2750 18
13h 274M (HD) 1920x1080/24 (PsF) - EM 338 2400 2750 10, 572
14h 295M (HD) 1920x1080/50 (2:1) 444 1920 2376 10, 572
15h 260M (HD) 1920x1035/60 (2:1) 268 1920 2200 10, 572
16h 125M (SD) 1440x487/60 (2:1)
(Or dual link
progressive)
268 1440 1716 13, 276
17h 125M (SD) 1440x507/60 (2:1) 268 1440 1716 13, 276
19h 125M (SD) 525-line 487 generic 1716 13, 276
1Bh 125M (SD) 525-line 507 generic 1716 13, 276
18h ITU-R BT.656
(SD)
1440x576/50 (2:1)
(Or dual link
progressive)
280 1440 1728 9, 322
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
69 of 115
4.9.4 Packet Generation and Insertion
The GS1582 can also calculate, assemble and insert TRS ID words, and various types of
ancillary data packets.
These features are only available when the IOPROC_EN/DIS pin is set HIGH. Individual
insertion features may be enabled or disabled via the IOPROC_DISABLE register
(Table 4-35).
All of the IOPROC_DISABLE register bits default to '0' after device reset, enabling all of
the processing features. To disable any individual error correction feature, set the
corresponding bit HIGH in this register.
1Ah ITU-R BT.656
(SD)
625-line generic (EM) 1728 9, 322
1Dh Unknown HD
1Eh Unknown SD
1Ch, 1Fh Reserved
NOTE: Though the GS1582 will work correctly on and serialize both 59.94Hz and 60Hz formats, it will not distinguish between them.
Table 4-34: Supported Video Standards (Continued)
VD_STD[4:0] SMPTE
Standard
Video Format Length of
HANC
Length of
Active Video
Total
Samples
SMPTE352M
Lines
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
70 of 115
4.9.4.1 SMPTE 352M Payload Identifier Packet Insertion
The GS1582 can generate and insert SMPTE 352M payload identifier ancillary data
packets.
Table 4-35: Host Interface Description for Internal Processing Disable Register
Register Name Bit Name Description R/W Default
IOPROC_DISABLE
Address: 000h
15-13 Not Used. Set to zero. 0
12 TIM_861_PIN_EN Setting this bit LOW allows the timing mode to
be selectable through the CEA_861bit. Setting
this bit HIGH allows the timing mode to be
selectable through the CEA_861 bit, regardless of
the pin setting.
R/W 0
11 ANC_INS Enable or disable ancillary data insertion. Set
LOW for enable. Set HIGH for disable.
R/W 0
10 AUDIO_EMBED Disable audio embedding. R/W 0
9 CEA_861 CEA_861 pin override bit. Active when
TIM_861_PIN_EN bit is set HIGH. Set CEA_861 bit
LOW to enable CEA 861 timing. Set this bit HIGH
to disable CEA 861 timing.
R/W 0
8 H_CONFIG Horizontal blanking timing configuration. Set
LOW when the H/HSYNC input timing is based on
active line blanking (default). Set HIGH when the
H input timing is based on the H bit of the TRS
words. See Figure 4-2.
R/W 0
7 Not Used. Set to zero. 0
6 352M_INS SMPTE352M packet insertion. In HD mode, 352M
packets are inserted in the luma channel only
when one of the bytes in the VIDEO_FORMAT_A
or VIDEO_FORMAT_B registers are programmed
with non-zero values. Set HIGH to disable.
R/W 0
5 ILLEGAL_REMAP Illegal Code Remapping. Detection and
correction of illegal code words within the active
picture area (AP). Set HIGH to disable.
R/W 0
4 EDH_CRC_INS Error Detection & Handling (EDH) Cyclical
Redundancy Check (CRC) error correction. In SD
mode the GS1582 will generate and insert EDH
packets. Set HIGH to disable.
R/W 0
3 ANC_CSUM_INS Ancillary Data Checksum insertion. Set HIGH to
disable.
R/W 0
2 CRC_INS Luma and chroma line-based CRC insertion. In
HD mode, line-based CRC words are inserted in
both the luma and chroma channels. Set HIGH to
disable
R/W 0
1 LNUM_INS Luma and chroma line number insertion - HD
mode only. Set HIGH to disable.
R/W 0
0 TRS_INS Timing Reference Signal Insertion. Set HIGH to
disable.
R/W 0
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
71 of 115
When this feature is enabled, the device will automatically generate the ancillary data
preambles, (DID, SDID, DBN, DC), and calculate the checksum. The SMPTE 352M packet
will be inserted into the data stream according to the line numbers programmed in the
LINE_352M_f1 and LINE_352M_f2 registers (Table 4-36).
Packet insertion will only take place if at least one of the bytes in the
VIDEO_FORMAT_A or VIDEO_FORMAT_B registers are programmed with a non-zero
value (Table 4-37). In addition, the 352M_INS bit must be set LOW (Table 4-35).
NOTE: If there are existing 352M packets in the input stream, and ANC_BLANK is set
HIGH (disabled), then the existing data is preserved and new 352M is inserted. The
GS1582 does not overwrite existing 352M data.
The GS1582 will differentiate between PsF and interlaced formats based on bits 14 and
15 of the VIDEO_FORMAT_A register.
The packets will be inserted immediately after the EAV word in SD video streams and
immediately after the line-based CRC word in the luma channel of HD video streams. If
other ancillary packets exist in the horizontal ancillary space 352M packets will be
inserted immediately following these packets. SMPTE 352M packets will not be inserted
if there is insufficient room in the HANC space.
Table 4-36: Host Interface Description for SMPTE 352M Packet Line Number Insertion Registers
Register Name Bit Name Description R/W Default
LINE_0_352M
Address: 01Bh
15-11 Not Used.
10-0 LINE_0_352M[10:0] Line number where SMPTE352M packet is
inserted in field 1.
R/W 0
LINE_1_352M
Address: 01Ch
15-11 Not Used.
10-0 LINE_1_352M[10:0] Line number where SMPTE352M packet is
inserted in field 2.
R/W 0
Table 4-37: Host Interface Description for SMPTE 352M Payload Identifier Registers
Register Name Bit Name Description R/W Default
VIDEO_FORMAT_B
Address: 00Bh
15-8 Video_Format[2]
[7:0]
SMPTE352M Byte 4 information must be
programmed in this register when 352M_INS =
LOW.
R/W 0
7-0 Video_Format[1]
[7:0]
SMPTE352M Byte 3information must be
programmed in this register when 352M_INS =
LOW.
R/W 0
VIDEO_FORMAT_A
Address: 00Ah
15-8 Video_Format[4]
[7:0]
SMPTE352M Byte 2information must be
programmed in this register when 352M_INS =
LOW.
R/W 0
7-0 Video_Format[3]
[7:0]
SMPTE352M Byte 1information must be
programmed in this register when 352M_INS =
LOW.
R/W 0
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
72 of 115
4.9.4.2 Illegal Code Remapping
If the ILLEGAL_REMAP bit of the IOPROC_DISABLE register is set LOW, the GS1582 will
remap all codes within the active picture between the values of 3FCh and 3FFh to 3FBh.
All codes within the active picture area between the values of 000h and 003h will be
remapped to 004h.
In addition, 8-bit TRS and ancillary data preambles will be remapped to 10-bit values.
4.9.4.3 EDH Generation and Insertion
When operating in SD mode, (SD/HD = HIGH), the GS1582 will generate and insert
complete EDH packets. Packet generation and insertion will only take place if the
EDH_CRC_INS bit of the IOPROC_DISABLE register is set LOW.
The GS1582 will generate all of the required EDH packet data including all ancillary
data preambles DID, DBN, DC, reserved code words, and the checksum. Calculation of
both full field (FF) and active picture (AP) CRC's will be carried out by the device.
SMPTE RP165 specifies the calculation ranges and scope of EDH data for standard 525
and 625 component digital interfaces. The GS1582 uses these standard ranges by
default.
If the received video format does not correspond to 525 or 625 digital component video
standards, then the ranges will be determined from the received TRS ID words or
supplied H_Blanking, V_Blanking, and F_Digital timing signals; or HSYNC, VSYNC and
DE CEA 861 timing signals. See HVF Timing on page 29, and CEA 861 Timing on page 31.
The first active and full field pixel will always be the first pixel after the SAV TRS code
word. The last active and full field pixel will always be the last pixel before the start of
the EAV TRS code words.
EDH error flags (EDH, EDA, IDH, IDA and UES) for ancillary data, full field and active
picture will also be inserted when the corresponding bit of the EDH_FLAG register is set
HIGH. (Table 4-38).
NOTE 1: The EDH flag registers must be updated once per field. The prepared EDH
packet will be inserted at the appropriate line according to SMPTE RP165. The start pixel
position of the inserted packet will be based on the SAV position of that line such that
the last byte of the EDH packet (the checksum) will be placed in the sample immediately
preceding the start of the SAV TRS word.
NOTE 2: EDH packets will not be inserted if there is insufficient room in the HANC space.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
73 of 115
Table 4-38: Host Interface Description for EDH Flag Register (SD Mode Only)
Register Name Bit Name Description R/W Default
EDH_FLAG
Address: 002h
15 Not Used.
14 ANC-UES Ancillary Unknown Error Status flag will be
generated and inserted.
R/W 0
13 ANC-IDA Ancillary Internal device error Detected
Already flag will be generated and inserted.
R/W 0
12 ANC-IDH Ancillary Internal device error Detected Here
flag will be generated and inserted.
R/W 0
11 ANC-EDA Ancillary Error Detected Already flag will be
generated and inserted.
R/W 0
10 ANC-EDH Ancillary Error Detected Here flag will be
generated and inserted.
R/W 0
9 FF-UES Full Field Unknown Error flag will be
generated and inserted.
R/W 0
8 FF-IDA Full Field Internal device error Detected
Already flag will be generated and inserted.
R/W 0
7 FF-IDH Full Field Internal device error Detected flag
will be generated and inserted.
R/W 0
6 FF-EDA Full Field Error Detected Already flag will be
generated and inserted.
R/W 0
5 FF-EDH Full Field Error Detected Here flag will be
generated and inserted.
R/W 0
4 AP-UES Active Picture Unknown Error Status flag will
be generated and inserted.
R/W 0
3 AP-IDA Active Picture Internal device error Detected
Already flag will be generated and inserted.
R/W 0
2 AP-IDH Active Picture Internal device error Detected
Here flag will be generated and inserted.
R/W 0
1 AP-EDA Active Picture Error Detected Already flag
will be generated and inserted.
R/W 0
0 AP-EDH Active Picture Error Detected Here flag will
be generated and inserted.
R/W 0
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
74 of 115
4.9.4.4 Ancillary Data Checksum Generation and Insertion
The GS1582 will calculate checksums for all detected ancillary data packets presented
to the device. These calculated checksum values are inserted into the data stream prior
to serialization.
Ancillary data checksum generation and insertion will only take place if the
ANC_CSUM_INS bit of the IOPROC_DISABLE register is set LOW.
NOTE: The GS1582 will recalculate the checksum and, if incorrect, will re-insert the
correct value. However, the GS1582 does not check the correctness of the parity bit. That
is, if all the bits from 0 to 8 in the checksum word are correct and only bit 9 (the parity
bit, which is the inverse of bit 8) is incorrect, then the checksum word is not
re-calculated. If even one of bit 0 to bit 8 has an incorrect value, then the checksum word
is re-calculated and re-inserted.
4.9.4.5 Line Based CRC Generation and Insertion
The GS1582 will generate and insert line based CRC words into both the luma and
chroma channels of the data stream. This feature is only available in HD mode and is
enabled by setting the CRC_INS bit of the IOPROC_DISABLE register LOW.
4.9.4.6 HD Line Number Generation and Insertion
In HD mode, the GS1582 will calculate and insert line numbers into the luma and
chroma channels of the output data stream.
Line number generation is in accordance with the relevant HD video standard as
determined by the device, see Automatic Video Standard Detection on page 66.
This feature is enabled when SD/HD = LOW, and the LNUM_INS bit of the
IOPROC_DISABLE register is set LOW.
4.9.4.7 TRS Generation and Insertion
The GS1582 can generate and insert 10-bit TRS code words into the data stream as
required. This feature is enabled by setting the TRS_INS bit of the IOPROC_DISABLE
register LOW.
TRS word generation will be performed in accordance with the timing parameters
generated by the device which will be locked either to the received TRS ID words, the
supplied H_Blanking, V_Blanking, and F_Digital timing signals, or the CEA 861 timing
signals, see HVF Timing on page 29 and CEA 861 Timing on page 31.
4.10 Parallel to Serial Conversion
The GS1582 can accept either 10-bit or 20-bit parallel data in both SD and HD modes.
The supplied PCLK rate must correspond to the settings of the SD/HD and 20bit/10bit
pins as shown in Table 4-39.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
75 of 115
4.11 Internal ClockCleanerTM PLL
To obtain a clean clock signal for serialization and transmission, an external VCO signal
is locked to the input PCLK via the GS1582's integrated phase-locked loop. This high
quality analog PLL has a bang-bang implementation, which automatically narrows the
loop bandwidth in the presence of jitter, allowing the GS1582 to significantly attenuate
jitter on the incoming PCLK.
4.11.1 External VCO
The GS1582 requires the GO1555 external voltage controlled oscillator as part of its
internal PLL.
Power for the external VCO is generated by the GS1582 from an integrated voltage
regulator. The internal regulator uses +3.3V supplied on the CP_VDD / CP_GND pins to
provide +2.5V on the VCO_VCC / VCO_GND pins.
The external VCO produces a 1.485GHz signal for the PLL, input on the VCO pin of the
device. See Typical Application Circuit (Part A) on page 109.
NOTE: The VCO_VCC output voltage is guaranteed to be 2.5V only when supplying
power to the GO1555. The VCO_VCC pin should not be shorted to GND under any
circumstances.
4.11.2 Loop Filter
The GS1582 PLL loop filter is an external first order filter formed by a series RC
connection as shown in the Typical Application Circuit (Part A) on page 109. The loop
filter resistor value sets the bandwidth of the PLL and the capacitor value controls its
stability and lock time. A loop filter resistor value between 1Ω to 20Ω and a loop filter
capacitor value between 1μF to 33μF are recommended.
The GS1582 uses a non-linear, bang-bang, PLL, therefore its bandwidth scales with the
input jitter amplitude - greater input jitter results in a smaller loop bandwidth causing
more of the input jitter to be rejected. For a given input jitter amplitude, a smaller loop
filter resistor produces a narrower loop bandwidth. With an input jitter amplitude of
300ps, for example, the PLL bandwidth can be adjusted from 2KHz to 40KHz by varying
Table 4-39: Serial Digital Output Rates
Supplied PCLK Rate Serial Digital
Output Rate
Pin Settings
SD/HD 20bit/10bit
74.25 or
74.25/1.001 MHz
1.485 or
1.485/1.001Gb/s
LOW HIGH
148.5 or
148.5/1.001MHz
1.485 or
1.485/1.001Gb/s
LOW LOW
13.5MHz 270Mb/s HIGH HIGH
27MHz 270Mb/s HIGH LOW
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
76 of 115
the loop filter resistor, as shown in Table 4-40: Loop Filter Component Values. For use
with the GEN-ClocksTM timing generators, a narrow loop bandwidth is recommended.
Increasing the loop filter capacitor value increases the stability of the PLL, but results in
a longer lock time. For loop filter resistors smaller than 7Ω, a capacitor value of 33μF is
recommended, while larger resistor values can accommodate smaller capacitors.
Sample combinations of the loop filter resistor and capacitor values are shown in Table
4-40: Loop Filter Component Values, along with the resulting loop bandwidth.
Additional loop bandwidths can be achieved by using different loop filter resistor
values.
4.11.3 Lock Detect Output
The LOCKED output will be asserted HIGH when the internal PLL has locked to the input
PCLK signal. In the absence of the PCLK, when frequency lock has not been achieved,
and during device reset, the LOCKED output will be LOW.
Lock time, the time it takes for the internal PLL to frequency-lock to the reference PCLK
following power-up or standby, is determined by the loop filter capacitor value chosen.
A 1μF loop filter capacitor, for example, will result in lock times of less than 500μs. A
33μF loop filter capacitor, on the other hand, will result in a lock time of greater than 5s.
NOTE 1: When the PLL is in the process of locking to the reference PCLK, the LOCKED
pin may generate LOW and HIGH pulses. The durations of these pulses are dependent
on the loop filter capacitor value, but do not exceed 30ms. Once the PLL has achieved
frequency lock, the LOCKED pin will remain HIGH and not change state.
NOTE 2: When the GS1582 is placed in standby mode, the value of LOCKED is
maintained although the PLL does lose lock to the reference PCLK. When STANDBY is
released, the PLL will re-lock. During this time, if the LOCKED pin was previously HIGH,
it will de-assert approximately 6μs later, and re-assert once the PLL has re-locked to the
input PCLK.
Table 4-40: Loop Filter Component Values
Loop Filter
Resistor Value
Typical Loop
Bandwidth*
Recommended
Loop Filter
Capacitor Value
Comments
1Ω2kHz 33μF Narrow bandwidth - provides
maximum jitter reduction. Long
lock-time.
7Ω8kHz 10μF
20Ω40kHz 1μF Wide bandwidth. Fast lock-time.
* Measured with 300ps pk-pk input jitter on PCLK
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
77 of 115
4.12 Serial Digital Output
The GS1582 includes a SMPTE compliant current mode differential serial digital cable
driver with automatic slew rate control. The serial output has improved eye quality,
exceptional ORL performance, and reduced duty cycle distortion.
The cable driver uses a separate +3.3V DC power supply provided via the CD_VDD and
CD_GND pins.
To enable the output, SDO_EN/DIS must be set HIGH. Setting the SDO_EN/DIS signal
LOW will set the SDO and SDO output pins to high impedance, resulting in reduced
device power consumption.
4.12.1 Output Swing
Nominally, the voltage swing of the serial digital output is 800mVp-p single-ended into
a 75Ω load. This is set externally by connecting the RSET pin to CD_VDD through 750Ω
±1% resistor.
4.13 GSPI Host Interface
The GS1582 host interface, also called the Gennum Serial Peripheral Interface (GSPI),
provides access to configuration/status registers for the video processing and SD and
HD audio processing functions of the chip.
By default, the device will be “live at power up” with all major functional blocks active
in the defined default operating conditions described below.
Dedicated configuration pins are provided for basic configuration of the device.
The host interface is provided to allow optional configuration of some of the more
advanced functions and operating modes of the device.
To simplify host interface access to the configuration and status registers, a single
contiguous register map is provided for the video and audio functions.
Registers are grouped by like function and wherever possible functional configuration
will not be spread across multiple registers.
The GSPI is comprised of a serial data input signal (SDIN), serial data output signal
(SDOUT), an active low chip select (CS), and a burst clock (SCLK). The burst clock must
have a duty cycle between 40% and 60% while active.
Because these pins are shared with the JTAG interface port, an additional control signal
pin JTAG/HOST is provided. When JTAG/HOST is LOW, the GSPI interface is enabled.
When operating in GSPI mode, the SCLK, SDIN, and CS are inputs to the device. The
SDOUT loops the SDIN back out when GSPI is in write mode, or when CS is HIGH,
allowing multiple devices to be connected in series. During reset, SDOUT is held in
high-impedance mode. The interface is illustrated in the Figure 4-26.
Each GSPI access begins with a 16-bit command word on SDIN indicating the address of
the register of interest. This is followed by a 16-bit data word on SDIN in write mode, or
a 16-bit data word on SDOUT in read mode.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
78 of 115
NOTE 1: When operating in SD mode, SD/HD is set HIGH, only the SD video and audio
registers are accessible for read or write. Similarly, when operating in HD mode, SD/HD
is set LOW, only the HD video and audio registers are accessible for read or write.
NOTE 2: When the device is in standby mode (STANDBY = HIGH) no host interface
register can be read back or written to. Attempting a read or write will not damage the
device. However, all reads will return a value of 0, and no writes will take effect.
NOTE 3: In the Configuration and Status Registers, there are several registers that have
been designated as Reserved. If possible, writing to these registers should be avoided. If
writing a value to these registers is not avoidable, then only a value of 0 should be
written to these registers. Writing a value of 1 may alter the functional behaviour of
GS1582 but will not permanently damage the device.
Figure 4-26: Gennum Serial Peripheral Interface (GSPI)
Application Host
SCLK SCLK
SCLK
CS1
SDOUT SDIN
SDOUT
SDOUT
CS
SDIN
SDIN
CS2
GS1582
GS1582
CS
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
79 of 115
4.13.1 Command Word Description
The command word consists of a 16-bit word transmitted MSB first and contains a
read/write bit, an Auto-Increment bit and a 12-bit address. Figure 4-27 shows the
command word format and bit configurations.
Command words are clocked into the GS1582 on the rising edge of the serial clock SCLK,
which operates in a burst fashion.
When the Auto-Increment bit is set LOW, each command word must be followed by
only one data word to ensure proper operation. If the Auto-Increment bit is set HIGH,
the following data word will be written into the address specified in the command word,
and subsequent data words will be written into incremental addresses from the
previous data word. This facilitates multiple address writes without sending a command
word for each data word.
NOTE: All registers can be written to through single address access or through the
auto-increment feature. However, the LSB of the video registers cannot be read through
single address read-back. Single address read-back will return a 0 value for the LSB. If
auto-increment is used to read back the values from at least two registers, the LSB value
read will always be correct. Therefore, for register read-back, it is recommended that
auto-increment be used and that at least two registers be read back at a time.
Figure 4-27: Command Word
MSBLSB
D4D5
D6
D8 D7D9 D3 D2 D1 D0
D10
D11
D12
D13
D14
D15
Figure 4-28: Data Word
4.13.2 Data Read and Write Timing
Read and write mode timing for the GSPI interface is shown in Figure 4-29 and
Figure 4-30 respectively. The timing parameters are defined in Table 4-41.
When several devices are connected to the GSPI chain, only one CS must be set LOW
during a read sequence.
During the write sequence, all command and subsequent data words are looped through
from SDIN to SDOUT. When several devices are connected to the GSPI chain, data can
be written simultaneously to all the devices that have CS set LOW.
MSBLSB
A4A5
A6
A8 A7A9 A3 A2 A1 A0
A10
A11
AutoInc
RSVRSV
R/W
RSV = Reserved. Must be set to zero. R/W: Read command when R/W = 1
Write command when R/W = 0
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
80 of 115
Figure 4-29: GSPI Read Mode Timing
Figure 4-30: GSPI Write Mode Timing
Table 4-41: GSPI Timing Parameters
Parameter Definition Specification
t0The minimum duration of time chip select, CS, must be
LOW before the first SCLK rising edge.
1.5 ns
t1The minimum SCLK period. 100 ns
t2Duty cycle tolerated by SCLK. 40% to 60%
t3Minimum input setup time. 1.5 ns
t4Write Cycle: the minimum duration of time between
the last SCLK command (or data word if the
Auto-Increment bit is HIGH) and the first SCLK of the
data word.
37.1 ns
t5Read Cycle: the minimum duration of time between
the last SCLK command (or data word if the
Auto-Increment bit is HIGH) and the first SCLK of the
data word.
148.4 ns
t6Minimum output hold time. 1.5 ns
t7The minimum duration of time between the last SCLK
of the GSPI transaction and when CS can be set HIGH.
37.1 ns
t8Minimum input hold time. 1.5 ns
SCLK
CS
SDIN
SDOUT
t5
t6
R/W RSVRSVAutoIncA11 A10 A9 A8 A7 A6A5 A4 A3 A2 A1 A0
R/W RSVRSVAutoIncA11 A10 A9 A8 A7 A6A5 A4 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6D5 D4 D3 D2 D1 D0
R/W RSVRSVAuto
_IncA0A1A2A3A4A5A6A7A8A9A11 A10 D15 D14 D13 D12 D0D1D2D3D4D5D6D7D8D9D11 D10
SCLK
CS
SDIN
SDOUT
t
0
t
3
t
1
t
2
R/W RSVRSVAuto
_IncA0A1A2A3A4A5A6A7A8A9A11 A10 D15 D14 D13 D12 D0D1D2D3D4D5D6D7D8D9D11 D10
t
8
t
4
t
7
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
81 of 115
4.13.3 Configuration and Status Registers
Table 4-42 summarizes the GS1582's internal status and configuration registers.
Table 4-43 summarizes the video status and configuration registers. Table 4-44 and
Table 4-45 summarizes the SD and HD audio status and configuration registers.
All bits are available to the host via the GSPI.
Table 4-42: GS1582 Internal Registers
Address Register Name See Section
000h IOPROC_DISABLE Section 4.9.4
002h EDH_FLAG Section 4.9.4.3
004h VIDEO_STANDARD Section 4.9.2
005h - 009h ANC_DATA_TYPE
00Ah - 00Bh VIDEO_FORMAT Section 4.9.4.1
00Eh - 011h RASTER_STRUCTURE Section 4.9.2
01Ah GLOBAL_ERROR_MASK_VECTOR
01Bh - 01Ch LINE_352M Section 4.9.4.1
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
82 of 115
4.13.3.1 Video Registers
Table 4-43: Video Configuration and Status Registers
Address Register Name Bit Description R/W Default
000h Reserved 15-13 Reserved. R 000b
TIM_861_PIN_EN 12 Selects pin for control for 861 timing converter.
Reference: Section 4.3.2 on page 31.
R/W 0
ANC_INS 11 Disable for ancillary data insertion feature.
Reference: Section 4.8 on page 63.
R/W 0
AUDIO_EMBED 10 Disable audio embedding.
Reference: Section 4.7 on page 37.
R/W 0
CEA_861 9 Disable 861 timing converter.
Reference: Section 4.3.2 on page 31.
R/W 0
H_CONFIG 8 Horizontal sync timing input configuration. Set LOW
when the H input timing is based on active line
blanking (default). Set HIGH when the H input timing
is based on the H bit of the TRS words.
Reference: Section 4.3.1 on page 29.
R/W 0
Reserved 7 Reserved. R 0
352M_INS 6 SMPTE352M packet insertion. In HD mode, 352M
packets are inserted in the luma channel only when
one of the bytes in the VIDEO_FORMAT_A or
VIDEO_FORMAT_B registers are programmed with
non-zero values. Set HIGH to disable.
Reference: Section 4.9.4.1 on page 70.
R/W 0
ILLEGAL_REMAP 5 Illegal Code Remapping. Detection and correction of
illegal code words within the active picture area (AP).
Set HIGH to disable.
Reference: Section 4.9.4.2 on page 72.
R/W 0
EDH_CRC_INS 4 Error Detection & Handling (EDH) Cyclical Redundancy
Check (CRC) error correction. In SD mode the GS1582
will generate and insert EDH packets. Set HIGH to
disable.
Reference: Section 4.9.4.3 on page 72.
R/W 0
ANC_CSUM_INS 3 Ancillary Data Checksum insertion. Set HIGH to
disable.
Reference: Section 4.9.4.4 on page 74.
R/W 0
CRC_INS 2 Luma and chroma line-based CRC insertion. In HD
mode, line-based CRC words are inserted in both the
luma and chroma channels. Set HIGH to disable
Reference: Section 4.9.4.5 on page 74.
R/W 0
LNUM_INS 1 Luma and chroma line number insertion - HD mode
only. Set HIGH to disable.
Reference: Section 4.9.4.6 on page 74.
R/W 0
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
83 of 115
000h TRS_INS 0 Timing Reference Signal Insertion. Set HIGH to disable.
Reference: Section 4.9.4.7 on page 74.
R/W 0
001h Reserved 15-0 Reserved. R N/A
002h Reserved 15 Reserved. R/W 0
ANC-UES 14 Ancillary Unknown Error Status flag will be generated
and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
ANC-IDA 13 Ancillary Internal device error Detected Already flag
will be generated and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W
ANC-IDH 12 Ancillary Internal device error Detected Here flag will
be generated and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
ANC-EDA 11 Ancillary Error Detected Already flag will be
generated and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
ANC-EDH 10 Ancillary Error Detected Here flag will be generated
and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
FF-UES 9 Full Field Unknown Error flag will be generated and
inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
FF-IDA 8 Full Field Internal device error Detected Already flag
will be generated and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
FF-IDH 7 Full Field Internal device error Detected flag will be
generated and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
FF-EDA 6 Full Field Error Detected Already flag will be
generated and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
FF-EDH 5 Full Field Error Detected Here flag will be generated
and inserted. SD mode only.
Reference: Section 4.9.4.3 on page 72.
R/W 0
AP-UES 4 Active Picture Unknown Error Status flag will be
generated and inserted. SD mode only.
R/W 0
AP-IDA 3 Active Picture Internal device error Detected Already
flag will be generated and inserted. SD mode only.
R/W 0
AP-IDH 2 Active Picture Internal device error Detected Here flag
will be generated and inserted. SD mode only.
R/W 0
Table 4-43: Video Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
84 of 115
002h AP-EDA 1 Active Picture Error Detected Already flag will be
generated and inserted. SD mode only.
R/W 0
AP-EDH 0 Active Picture Error Detected Here flag will be
generated and inserted. SD mode only.
R/W 0
003h Reserved 15-0 Reserved. R N/A
004h Reserved 15 Reserved R 0
VID_STD[4:0] 14-10 Reports the detected video standard.
Reference: Section 4.9.3 on page 67.
R 00000b
INT_PROG 9 Interlace/Progressive: Set LOW if detected video
standard is PROGRESSIVE and is set HIGH if it is
INTERLACED.
Reference: Section 4.9.3 on page 67.
R0
STD_LOCK 8 Standard Lock: Set HIGH when the device has achieved
full synchronization.
Reference: Section 4.9.3 on page 67.
R0
Reserved 7-0 Reserved. R N/A
005h-009h Reserved 15-0 Reserved. R N/A
00Ah Video_Format_A[15:8] 15-8 SMPTE 352M Byte 2 information must be programmed
in this register when 352M_INS = LOW.
Reference: Section 4.9.4.1 on page 70.
R/W 0
Video_Format_A[7:0] 7-0 SMPTE 352M Byte 1 information must be programmed
in this register when 352M_INS = LOW.
Reference: Section 4.9.4.1 on page 70.
R/W 0
00Bh Video_Format_B[15:8] 15-8 SMPTE 352M Byte 4 information must be programmed
in this register when 352M_INS = LOW.
Reference: Section 4.9.4.1 on page 70.
R/W 0
Video_Format_B[7:0] 7-0 SMPTE 352M Byte 3 information must be programmed
in this register when 352M_INS = LOW.
Reference: Section 4.9.4.1 on page 70.
R/W 0
00Ch-00Dh Reserved 15-0 Reserved. R N/A
00Eh Reserved 15-12 Reserved.
RASTER_STRUCTURE_1 11-0 Words Per Active Line
Reference: Section 4.9.2 on page 66.
R0
00Fh Reserved 15-13 Reserved.
RASTER_STRUCTURE_2 12-0 Words Per Total Line.
Reference: Section 4.9.2 on page 66.
R0
010h Reserved 15-11 Reserved.
RASTER_STRUCTURE_3 10-0 Total Lines Per Frame
Reference: Section 4.9.2 on page 66.
R0
Table 4-43: Video Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
85 of 115
011h Reserved 15-11 Reserved.
RASTER_STRUCTURE_4 10-0 Active Lines Per Field
Reference: Section 4.9.2 on page 66.
R0
012h Reserved 15-10 Not Used. Set to zero. 0
AP_LINE_START_F0[9:0] 9-0 Field 0 Active Picture start line data used to set EDH
calculation range outside of RP 165 values.
R/W 0
013h Reserved 15-10 Reserved.
AP_LINE_END_F0[9:0] 9-0 Field 0 Active Picture end line data used to set EDH
calculation range outside of RP 165 values.
R/W 0
014h Reserved 15-10 Reserved.
AP_LINE_START_F1[9:0] 9-0 Field 1 Active Picture start line data used to set EDH
calculation range outside of RP 165 values.
R/W 0
015h Reserved 15-10 Reserved.
AP_LINE_END_F1[9:0] 9-0 Field 1 Active Picture end line data used to set EDH
calculation range outside of RP 165 values.
R/W 0
016h Reserved 15-10 Reserved.
FF_LINE_START_F0[9:0] 9-0 Field 0 Full Field start line data used to set EDH
calculation range outside of RP 165 values.
R/W 0
017h Reserved 15-10 Reserved.
FF_LINE_END_F0[9:0] 9-0 Field 0 Full Field end line data used to set EDH
calculation range outside of RP 165 values.
R/W 0
018h Reserved 15-10 Reserved.
FF_LINE_START_F1[9:0] 9-0 Field 1 Full Field start line data used to set EDH
calculation range outside of RP-165 values.
R/W 0
019h Reserved 15-10 Reserved.
FF_LINE_END_F1[9:0] 9-0 Field 1 Full Field end line data used to set EDH
calculation range outside of RP-165 values.
R/W 0
01Ah Reserved 15-0 Reserved. R N/A
01Bh Reserved 15-11 Reserved.
LINE_0_352M[10:0] 10-0 Line number where SMPTE352M packet is inserted in
field 1.
Reference: Section 4.9.4.1 on page 70.
R/W 0
01Ch Reserved 15-11 Reserved.
LINE_1_352M[10:0] 10-0 Line number where SMPTE352M packet is inserted in
field 2.
Reference: Section 4.9.4.1 on page 70.
R/W 0
01Dh-01Eh Reserved 15-0 Reserved. R N/A
Table 4-43: Video Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
86 of 115
01Fh FORMAT_ERR 15 861 timing format error flag. R 0
Reserved 14-9 Reserved. R 0
LINE_OFFSET 8-6 Shifts the timing of the output 861 timing signal by up
to +/-3 lines.
R/W 0
PIXEL_OFFSET 5-3 Shifts the timing of the output 861 timing signal by up
to +/-3 pixels.
R/W 0
Reserved 2-1 Reserved. R 0
FSYNC_INVERT 0 Inverts the polarity of the detected field. R/W 0
020h ANC_INS_MODE 15 Selects the ANC data insertion operating mode.
0 Separate line mode
1 Concatenated mode
Reference: Section 4.8.1 on page 64.
R/W 0
PACKET_MISSED 14 Flag to indicate ancillary data packet could not be
inserted in its entirety.
Reference: Section 4.8 on page 63.
R0
RW_CONFLICT 13 Flag to indicate the same RAM address was read and
written at the same time.
R0
Reserved 12-11 Reserved R/W 0000b
FIRST_LINE_NUMBER 10-0 Defines the line number for the first line in separate
line mode or the single line for concatenated mode.
R/W 0
021h ANC_TYPE 15 Selects the ANC data type as HANC or VANC.
0 HANC
1 VANC
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
STREAM_TYPE 14 Selects the luma or chroma stream for ANC insertion.
0 Luma stream
1 Chroma stream
This field is ignored in SD mode.
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
Reserved 13-10 Reserved R/W 0000b
FIRST_LINE_NUMBER_OF_
WORDS
9-0 Defines the total number of data words to insert on
the first line in separate line mode or single line in the
concatenated mode.
R/W 0
022h Reserved 15-11 Reserved R/W 00000b
SECOND_LINE_NUMBER 10-0 Defines the line number for ANC data insertion for the
2nd line in separate line mode.
R/W 0
Table 4-43: Video Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
87 of 115
023h ANC_TYPE 15 Selects the ANC data type as HANC or VANC.
0 HANC
1 VANC
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
STREAM_TYPE 14 Selects the luma or chroma stream for ANC insertion.
0 Luma stream
1 Chroma stream
This field is ignored in SD mode.
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
Reserved 13-10 Reserved R/W 0000b
SECOND_LINE_NUMBER_O
F_WORDS
9-0 Defines the total number of data words to insert on
the 2nd line in separate line mode.
R/W 0
024h Reserved 15-11 Reserved R/W 00000b
THIRD_LINE_NUMBER 10-0 Defines the line number for ANC data insertion for the
3rd line in separate line mode.
R/W 0
025h ANC_TYPE 15 Selects the ANC data type as HANC or VANC.
0 HANC
1 VANC
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
STREAM_TYPE 14 Selects the luma or chroma stream for ANC insertion.
0 Luma stream
1 Chroma stream
This field is ignored in SD mode.
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
Reserved 13-10 Reserved. R/W 0000b
THIRD_LINE_NUMBER_OF_
WORDS
9-0 Defines the total number of data words to insert on
the 3rd line in separate line mode.
R/W 0
026 Reserved 15-11 Reserved R/W 00000b
FOURTH_LINE_NUMBER 10-0 Defines the line number for ANC data insertion for the
4th line in separate line mode.
R/W 0
027h ANC_TYPE 15 Selects the ANC data type as HANC or VANC.
0 HANC
1 VANC
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
STREAM_TYPE 14 Selects the luma or chroma stream for ANC insertion.
0 Luma stream
1 Chroma stream
This field is ignored in SD mode.
Reference: Section 4.8.2 & Section 4.8.3
R/W 0
Reserved 13-10 Reserved R/W 0000b
FOURTH_LINE_NUMBER_O
F_WORDS
9-0 Defines the total number of data words to insert on
the 4th line in separate line mode.
R/W 0
Table 4-43: Video Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
88 of 115
040h-07Fh ANC_DATA_BANK1 15-0 First bank of user defined 8 bit words.
15-8: High order byte
7-0: Low order byte
W0
080h-0BFh ANC_DATA_BANK2 15-0 Second bank of user defined 8 bit words.
15-8: High order byte
7-0: Low order byte
W0
0C0h-0FFh ANC_DATA_BANK3 15-0 Third bank of user defined 8 bit words.
15-8: High order byte
7-0: Low order byte
W0
100h-13Fh ANC_DATA_BANK4 15-0 Fourth bank of user defined 8 bit words.
15-8: High order byte
7-0: Low order byte
W0
Table 4-43: Video Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
89 of 115
4.13.3.2 SD Audio Registers
Table 4-44: SD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
400h CTR_AGR 15 Selects replacement of audio control packets.
0: Do not replace audio control packets.
1: Replace all audio control packets.
Reference: Section 4.7.11 on page 49.
R/W 0
AGR 14 Selects Audio Group Replacement operating mode.
Reference: Section 4.7.11 on page 49.
R/W 0
ONE_AGR 13 Specifies the replacement of just the group 1 audio.
0: Do not replace only Group 1.
1: Replace only Group 1.
Reference: Section 4.7.11 on page 49.
R/W 0
CTRB_ON 12 Specifies the embedding of group 2 audio control
packets.
Reference: Section 4.7.9 on page 46.
R/W 1
CLEAR_AUDIO 11 Clears all audio FIFO buffers and puts them in start-up
state
Reference: Section 4.7.21 on page 59.
R/W 0
AFNB_AUTO 10 Group 2 audio frame number generation.
Reference: Section 4.7.9 on page 46.
R/W 1
CTRA_ON 9 Specifies the embedding of group 1 audio control
packets.
Reference: Section 4.7.9 on page 46.
R/W 1
24BIT 8 Specifies the sample size for embedded audio.
Reference: Section 4.7.10 on page 48.
R/W 0
AFNA_AUTO 7 Enables group 1 audio frame number generation.
Reference: Section 4.7.9 on page 46.
R/W 1
AFN_OFS[2:0] 6-4 Offset to add to generated Audio Frame Number.
Must be in the range of 0 to 4. The resulting audio
frame number will wrap around so as to always be in
the 1-5 range.
Reference: Section 4.7.16 on page 52.
R/W 000b
IDB[1:0] 3-2 Specifies the group 2 audio to embed.
NOTE: Should IDA and IDB be set to the same value,
they automatically revert to their default values.
Reference: Section 4.7.10 on page 48.
R/W 01b
(normal
mode)
11b
(cascade
mode)
IDA[1:0] 1-0 Specifies the group 1 audio to embed.
NOTE: Should IDA and IDB be set to the same value,
they automatically revert to their default values.
Reference: Section 4.7.10 on page 48.
R/W 00b
(normal
mode)
10b
(cascade
mode)
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
90 of 115
401h Reserved 15-11 Reserved R 00000b
AES_ERRD 10 Stereo Pair D audio input parity error when using AES
format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
AES_ERRC 9 Stereo Pair C audio input parity error when using AES
format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
AES_ERRB 8 Stereo Pair B audio input parity error when using AES
format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
AES_ERRA 7 Stereo Pair A audio input parity error when using AES
format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
Reserved 6-3 Reserved R 0
OFFSET_DISABLE 2 Set to disable staggering of group 2 audio sample
distribution by one line.
Reference: Section 4.7.20 on page 59.
R/W 0
OS_SEL[1:0] 1-0 Specifies the audio FIFO buffer size.
00: 52 samples deep, 26 sample start-up count
01: 24 samples deep, 12 sample start-up count
10: 12 samples deep, 6 sample start-up count
11: Reserved.
Reference: Section 4.7.21 on page 59.
R/W 00b
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
91 of 115
402h Reserved 15 Reserved. R 0
AXPG4_DET 14 Set while Group 4 audio extended packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
AXPG3_DET 13 Set while Group 3 audio extended packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
AXPG2_DET 12 Set while Group 2 audio extended packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
AXPG1_DET 11 Set while Group 1 audio extended packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
ACPG4_DET 10 Set while Group 4 audio control packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ACPG3_DET 9 Set while Group 3 audio control packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ACPG2_DET 8 Set while Group 2 audio control packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ACPG1_DET 7 Set while Group 1 audio control packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG4_DET 6 Set while Group 4 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG3_DET 5 Set while Group 3 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG2_DET 4 Set while Group 2 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG1_DET 3 Set while Group 1 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ACS_APPLY_WAITB 2 Set while the multiplexer is waiting for a status
boundary in the Group B group before applying the
ACSR[183:0] data to that group.
Reference: Section 4.7.18 on page 56.
R0
ACS_APPLY /
ACS_APPLY_WAITA
1 ACS_APPLY: Cause channel status data in ACSR[183:0]
to be transferred to the channel status replacement
mechanism. The transfer shall not occur until the next
status boundary.
ACS_APPLY_WAITA: Set while the multiplexer is
waiting for a status boundary in Group 1 before
applying the ACSR[183:0] data.
Reference: Section 4.7.18 on page 56.
R/W 0
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
92 of 115
402h ACS_REGEN 0 Specifies that Audio Channel Status of all channels
should be replaced with ACSR[183:0] field.
0: Do not replace Channel Status
1: Replace Channel Status of all channels
Reference: Section 4.7.18 on page 56.
R/W 0
403h Reserved 15-10 Reserved. R N/A
EN_CASCADE 9 Cascade. R/W
Reserved 8-0 Reserved. R N/A
404h-407h Reserved 15-0 Reserved. R N/A
408h AMD[1:0] 15-14 Audio input format selector for Stereo Pair D input
channels 7 and 8.
Reference: Section 4.7.17 on page 53.
R/W 11b
AMC[1:0] 13-12 Audio input format selector for Stereo Pair C input
channels 5 and 6.
Reference: Section 4.7.17 on page 53.
R/W 11b
AMB[1:0] 11-10 Audio input format selector for Stereo Pair B input
channels 3 and 4.
Reference: Section 4.7.17 on page 53.
R/W 11b
AMA[1:0] 9-8 Audio input format selector for Stereo Pair A input
channels 1 and 2.
Reference: Section 4.7.4 on page 40.
R/W 11b
MUTE8 7 Audio input channel 8 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE7 6 Audio input channel 7 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE6 5 Audio input channel 6 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE5 4 Audio input channel 5 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE4 3 Audio input channel 4 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE3 2 Audio input channel 3 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE2 1 Audio input channel 2 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE1 0 Audio input channel 1 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
93 of 115
409h Reserved 15, 12 Reserved R/W 0
GP1_WCLK_SRC[2:0] 14-13 Audio group 1 word clock source selector.
Reference: Section 4.7.20 on page 59.
R/W 0
GP1_CH4_SRC[2:0] 11-9 Audio group 1 channel 4 source selector.
Reference: Section 4.7.19 on page 58.
R/W 011b
GP1_CH3_SRC[2:0] 8-6 Audio group 1 channel 3 source selector.
Reference: Section 4.7.19 on page 58.
R/W 010b
GP1_CH2_SRC[2:0] 5-3 Audio group 1 channel 2 source selector.
Reference: Section 4.7.19 on page 58.
R/W 001b
GP1_CH1_SRC[2:0] 2-0 Audio group 1 channel 1 source selector.
Reference: Section 4.7.19 on page 58.
R/W 000b
40Ah Reserved 15, 12 Reserved R/W 0
GP2_WCLK_SRC[1:0] 14-13 Audio group 2 word clock source selector.
Reference: Section 4.7.20 on page 59.
R/W 10
GP2_CH4_SRC[1:0] 11-9 Audio group 2 channel 4 source selector.
Reference: Section 4.7.19 on page 58.
R/W 111b
GP2_CH3_SRC[2:0] 8-6 Audio group 2 channel 3 source selector.
Reference: Section 4.7.19 on page 58.
R/W 110b
GP2_CH2_SRC[2:0] 5-3 Audio group 2 channel 2 source selector.
Reference: Section 4.7.19 on page 58.
R/W 101b
GP2_CH1_SRC[2:0] 2-0 Audio group 2 channel 1 source selector.
Reference: Section 4.7.19 on page 58.
R/W 100b
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
94 of 115
40Bh EN_NOT_LOCKED 15 Asserts AUDIO_INT
when LOCKED is not asserted.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_NO_VIDEO 14 Asserts AUDIO_INT when the video format is
unknown.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_MUX_ERRB 13 Asserts AUDIO_INT when the MUX_ERRB flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_MUX_ERRA 12 Asserts AUDIO_INT when the MUX_ERRA flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRD 11 Asserts AUDIO_INT when the AES_ERRD flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRC 10 Asserts AUDIO_INT when the AES_ERRC flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRB 9 Asserts AUDIO_INT when the AES_ERRB flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRA 8 Asserts AUDIO_INT when the AES_ERRA flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG4_DET 7 Asserts AUDIO_INT when the ACPG4_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG3_DET 6 Asserts AUDIO_INT when the ACPG3_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG2_DET 5 Asserts AUDIO_INT when the ACPG2_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG1_DET 4 Asserts AUDIO_INT when the ACPG1_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG4_DET 3 Asserts AUDIO_INT when the ADPG4_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG3_DET 2 Asserts AUDIO_INT when the ADPG3_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG2_DET 1 Asserts AUDIO_INT when the ADPG2_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG1_DET 0 Asserts AUDIO_INT when the ADPG1_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
40Ch MUX_ERRB 15 Set in Cascade mode when the incoming video
contains packets with the same group number as
Group 2.
Reference: Section 4.7.3 on page 38.
R0
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
95 of 115
40Ch MUX_ERRA 14 Set in Cascade mode when the incoming video
contains packets with the same group number as
Group 1.
Reference: Section 4.7.3 on page 38.
R0
XPOINT_ERROR 13 Set when the crosspoint switch is configured to put
the same audio channel in both Group 1 and Group 2.
Reference: Section 4.7.19 on page 58.
R0
MUTE_ALL 12 Mutes all input audio channels.
Reference: Section 4.7.23 on page 63.
R/W 0
LSB_FIRSTD 11 Causes the fourth stereo pair serial input formats to
use LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
LSB_FIRSTC 10 Causes the third stereo pair serial input formats to use
LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
LSB_FIRSTB 9 Causes the second stereo pair serial input formats to
use LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
LSB_FIRSTA 8 Causes the first stereo pair serial input formats to use
LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
ACT8 7 Specifies embedding of audio group 2 channel 4.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT7 6 Specifies embedding of audio group 2 channel 3.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT6 5 Specifies embedding of audio group 2 channel 2.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT5 4 Specifies embedding of audio group 2 channel 1.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT4 3 Specifies embedding of audio group 1 channel 4.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT3 2 Specifies embedding of audio group 1 channel 3.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT2 1 Specifies embedding of audio group 1 channel 2.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT1 0 Specifies embedding of audio group 1 channel 1.
Reference: Section 4.7.12 on page 51.
R/W 1
40Dh-41Fh Reserved 15-0 Reserved. W N/A
420h-436h Reserved 15-8 Reserved W N/A
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
96 of 115
420h ACSR[7:0] 7-0 Audio status block byte 0.
Reference: Section 4.7.18 on page 56.
W85h
421h ACSR[15:8] 7-0 Audio status block byte 1.
Reference: Section 4.7.18 on page 56.
W08h
422h ACSR[23:16] 7-0 Audio status block byte 2.
Reference: Section 4.7.18 on page 56.
W28h
423h-436h ACSR[183:24] 7-0 Remaining audio status.
Reference: Section 4.7.18 on page 56.
W0
440h Reserved 15-9 Reserved W 0000000b
DEL1A[7:0] 8-1 Audio group 1 delay data for channel 1.
Reference: Section 4.7.9 on page 46.
W0
EBIT1A 0 Audio group 1 delay data valid flag for channel 1.
Reference: Section 4.7.9 on page 46.
W0
441h Reserved 15-9 Reserved W 0000000b
DEL1A[16:8] 8-0 Audio group 1 delay data for channel 1.
Reference: Section 4.7.9 on page 46.
W0
442h Reserved 15-9 Reserved W 0000000b
DEL1A[25:17] 8-0 Audio group 1 delay data for channel 1.
Reference: Section 4.7.9 on page 46.
W0
443h Reserved 15-9 Reserved W 0000000b
DEL2A[7:0] 8-1 Audio group 1 delay data for channel 2.
Reference: Section 4.7.9 on page 46.
W0
EBIT2A 0 Audio group 1 delay data valid flag for channel 2.
Reference: Section 4.7.9 on page 46.
W0
444h Reserved 15-9 Reserved W 0000000b
DEL2A[16:8] 8-0 Audio group 1 delay data for channel 2.
Reference: Section 4.7.9 on page 46.
W0
445h Reserved 15-9 Reserved W 0000000b
DEL2A[25:17] 8-0 Audio group 1 delay data for channel 2.
Reference: Section 4.7.9 on page 46.
W0
446h Reserved 15-9 Reserved W 0000000b
DEL3A[7:0] 8-1 Audio group 1 delay data for channel 3.
Reference: Section 4.7.9 on page 46.
W0
EBIT1A 0 Audio group 1 delay data valid flag for channel3.
Reference: Section 4.7.9 on page 46.
W0
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
97 of 115
447h Reserved 15-9 Reserved W 0000000b
DEL3A[16:8] 8-0 Audio group 1 delay data for channel 3.
Reference: Section 4.7.9 on page 46.
W0
448h Reserved 15-9 Reserved W 0000000b
DEL3A[25:17] 8-0 Audio group 1 delay data for channel 3.
Reference: Section 4.7.9 on page 46.
W0
449h Reserved 15-9 Reserved W 0000000b
DEL4A[7:0] 8-1 Audio group 1 delay data for channel 4.
Reference: Section 4.7.9 on page 46.
W0
EBIT4A 0 Audio group 1 delay data valid flag for channel 4.
Reference: Section 4.7.9 on page 46.
W0
44Ah Reserved 15-9 Reserved W 0000000b
DEL4A[16:8] 8-0 Audio group 1 delay data for channel 4.
Reference: Section 4.7.9 on page 46.
W0
44Bh Reserved 15-9 Reserved W 0000000b
DEL4A[25:17] 8-0 Audio group 1 delay data for channel 4.
Reference: Section 4.7.9 on page 46.
W0
450h Reserved 15-9 Reserved W 0000000b
DEL1B[7:0] 8-1 Audio group 2 delay data for channel 1.
Reference: Section 4.7.9 on page 46.
W0
EBIT1B 0 Audio group 2 delay data valid flag for channel 1.
Reference: Section 4.7.9 on page 46.
W0
451h Reserved 15-9 Reserved W 0000000b
DEL1B[16:8] 8-0 Audio group 2 delay data for channel 1.
Reference: Section 4.7.9 on page 46.
W0
452h Reserved 15-9 Reserved W 0000000b
DEL1B[25:17] 8-0 Audio group 2 delay data for channel 1.
Reference: Section 4.7.9 on page 46.
W0
453h Reserved 15-9 Reserved W 0000000b
DEL2B[7:0] 8-1 Audio group 2 delay data for channel 2.
Reference: Section 4.7.9 on page 46.
W0
EBIT2B 0 Audio group 2 delay data valid flag for channel 2.
Reference: Section 4.7.9 on page 46.
W0
454h Reserved 15-9 Reserved W 0000000b
DEL2B[16:8] 8-0 Audio group 2 delay data for channel 2.
Reference: Section 4.7.9 on page 46.
W0
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
98 of 115
455h Reserved 15-9 Reserved W 0000000b
DEL2B[25:17] 8-0 Audio group 2 delay data for channel 2.
Reference: Section 4.7.9 on page 46.
W0
456h Reserved 15-9 Reserved W 0000000b
DEL3B[7:0] 8-1 Audio group 2 delay data for channel 3.
Reference: Section 4.7.9 on page 46.
W0
EBIT1B 0 Audio group 2 delay data valid flag for channel3.
Reference: Section 4.7.9 on page 46.
W0
457h Reserved 15-9 Reserved W 0000000b
DEL3B[16:8] 8-0 Audio group 2 delay data for channel 3.
Reference: Section 4.7.9 on page 46.
W0
458h Reserved 15-9 Reserved W 0000000b
DEL3B[25:17] 8-0 Audio group 2 delay data for channel 3.
Reference: Section 4.7.9 on page 46.
W0
459h Reserved 15-9 Reserved W 0000000b
DEL4B[7:0] 8-1 Audio group 2 delay data for channel 4.
Reference: Section 4.7.9 on page 46.
W0
EBIT4B 0 Audio group 2 delay data valid flag for channel 4.
Reference: Section 4.7.9 on page 46.
W0
45Ah Reserved 15-9 Reserved W 0000000b
DEL4B[16:8] 8-0 Audio group 2 delay data for channel 4.
Reference: Section 4.7.9 on page 46.
W0
45Bh Reserved 15-9 Reserved W 0000000b
DEL4B[25:17] 8-0 Audio group 2 delay data for channel 4.
Reference: Section 4.7.9 on page 46.
W0
Table 4-44: SD Audio Configuration and Status Registers (Continued)
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
99 of 115
4.13.3.3 HD Audio Registers
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
800h CTR_AGR 15 Selects replacement of audio control packets.
0: Do not replace audio control packets.
1: Replace all audio control packets.
Reference: Section 4.7.11 on page 49.
R/W 0
AGR 14 Selects Audio Group Replacement operating mode.
Reference: Section 4.7.11 on page 49.
R/W 0
ONE_AGR 13 Specifies the replacement of just the group 1 audio.
0: Do not replace only Group 1.
1: Replace only Group 1.
Reference: Section 4.7.11 on page 49.
R/W 0
CTRB_ON 12 Specifies the embedding of group B audio control
packets.
Reference: Section 4.7.9 on page 46.
R/W 1
ASXB 11 Group 2 asynchronous mode.
Reference: Section 4.7.9 on page 46.
R/W 0
AFNB_AUTO 10 Group 2 audio frame number generation.
Reference: Section 4.7.9 on page 46.
R/W 1
CTRA_ON 9 Specifies the embedding of group 1 audio control
packets.
Reference: Section 4.7.9 on page 46.
R/W 1
ASXA 8 Group 1 asynchronous mode.
Reference: Section 4.7.9 on page 46.
R/W 0
AFNA_AUTO 7 Enables group 1 audio frame number generation.
Reference: Section 4.7.9 on page 46.
R/W 1
AFN_OFS[2:0] 6-4 Offset to add to generated Audio Frame Number.
Must be in the range of 0 to 4. The resulting audio
frame number will wrap around so as to always be in
the 1-5 range.
Reference: Section 4.7.16 on page 52.
R/W 000b
IDB[1:0] 3-2 Specifies the group 2 audio to embed.
NOTE: Should IDA and IDB be set to the same value,
they automatically revert to their default values.
Reference: Section 4.7.10 on page 48.
R/W 01b
(normal
mode)
11b
(cascade
mode)
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
100 of 115
800h IDA[1:0] 1-0 Specifies the group 1 audio to embed.
NOTE: Should IDA and IDB be set to the same value,
they automatically revert to their default values.
Reference: Section 4.7.10 on page 48.
R/W 00b
(normal
mode)
10b
(cascade
mode)
801h Reserved 15-0 Reserved. W N/A
802h Reserved 15 Reserved R 0
AES_ERRD 14 Stereo Pair D audio input parity error when using
AES format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
AES_ERRC 13 Stereo Pair C audio input parity error when using
AES format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
AES_ERRB 12 Stereo Pair B audio input parity error when using
AES format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
AES_ERRA 11 Stereo Pair A audio input parity error when using
AES format. Automatically cleared when read.
Reference: Section 4.7.17.1 on page 54.
R0
ACPG4_DET 10 Set while Group 4 audio control packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
ACPG3_DET 9 Set while Group 3 audio control packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
ACPG2_DET 8 Set while Group 2 audio control packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
ACPG1_DET 7 Set while Group 1 audio control packets are
detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG4_DET 6 Set while Group 4 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG3_DET 5 Set while Group 3 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG2_DET 4 Set while Group 2 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
ADPG1_DET 3 Set while Group 1 audio data packets are detected.
Reference: Section 4.7.2 on page 38.
R0
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
101 of 115
802h ACS_APPLY_WAITB 2 Set while the GS1582 is waiting for a status
boundary in the Group B group before applying the
ACSR[183:0] data to that group.
Reference: Section 4.7.18 on page 56.
R0
ACS_APPLY /
ACS_APPLY_WAITA
1 Set while the GS1582 is waiting for a status
boundary in Group A before applying the
ACSR[183:0] data.
Reference: Section 4.7.18 on page 56.
R/W 0
ACS_REGEN 0 Specifies that Audio Channel Status of all channels
should be replaced with ACSR[183:0] field.
0: Do not replace Channel Status
1: Replace Channel Status of all channels
Reference: Section 4.7.18 on page 56.
R/W 0
803h Reserved 15-10 Reserved. R N/A
EN_CASCADE 9 Cascade. R/W
Reserved 8-0 Reserved. R N/A
804h-807h Reserved 15-0 Reserved. R N/A
808h AMD[1:0] 15-14 Audio input format selector for Stereo Pair D
channels 7 and 8.
Reference: Section 4.7.17 on page 53.
R/W 11b
AMC[1:0] 13-12 Audio input format selector for Stereo Pair C
channels 5 and 6.
Reference: Section 4.7.17 on page 53.
R/W 11b
AMB[1:0] 11-10 Audio input format selector for Stereo Pair B
channels 3 and 4.
Reference: Section 4.7.17 on page 53.
R/W 11b
AMA[1:0] 9-8 Audio input format selector for Stereo Pair A
channels 1 and 2.
Reference: Section 4.7.17 on page 53.
R/W 11b
MUTE8 7 Audio input channel 8 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE7 6 Audio input channel 7 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE6 5 Audio input channel 6 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE5 4 Audio input channel 5 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
102 of 115
808h MUTE4 3 Audio input channel 4 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE3 2 Audio input channel 3 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE2 1 Audio input channel 2 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
MUTE1 0 Audio input channel 1 mute enable.
Reference: Section 4.7.23 on page 63.
R/W 0
809h Reserved 15, 12 Reserved R/W 0
GP1_WCLK_SRC[1:0] 14-13 Audio group 1 word clock source selector.
Reference: Section 4.7.20 on page 59.
R/W 0
GP1_CH4_SRC[2:0] 11-9 Audio group 1 channel 4 source selector.
Reference: Section 4.7.19 on page 58.
R/W 011b
GP1_CH3_SRC[2:0] 8-6 Audio group 1 channel 3 source selector.
Reference: Section 4.7.19 on page 58.
R/W 010b
GP1_CH2_SRC[2:0] 5-3 Audio group 1 channel 2 source selector.
Reference: Section 4.7.19 on page 58.
R/W 001b
GP1_CH1_SRC[2:0] 2-0 Audio group 1 channel 1 source selector.
Reference: Section 4.7.19 on page 58.
R/W 000b
80Ah Reserved 15, 12 Reserved R/W 0
GP2_WCLK_SRC[1:0] 14-13 Audio group 2 word clock source selector.
Reference: Section 4.7.20 on page 59.
R/W 10
GP2_CH4_SRC[2:0] 11-9 Audio group 2 channel 4 source selector.
Reference: Section 4.7.19 on page 58.
R/W 111b
GP2_CH3_SRC[2:0] 8-6 Audio group 2 channel 3 source selector.
Reference: Section 4.7.19 on page 58.
R/W 110b
GP2_CH2_SRC[2:0] 5-3 Audio group 2 channel 2 source selector.
Reference: Section 4.7.19 on page 58.
R/W 101b
GP2_CH1_SRC[2:0] 2-0 Audio group 2 channel 1 source selector.
Reference: Section 4.7.19 on page 58.
R/W 100b
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
103 of 115
80Bh EN_NOT_LOCKED 15 Asserts AUDIO_INT when LOCKED is not asserted.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_NO_VIDEO 14 Asserts AUDIO_INT when the video format is
unknown.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_MUX_ERRB 13 Asserts AUDIO_INT when the MUX_ERRB flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_MUX_ERRA 12 Asserts AUDIO_INT when the MUX_ERRA flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRD 11 Asserts AUDIO_INT when the AES_ERRD flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRC 10 Asserts AUDIO_INT when the AES_ERRC flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRB 9 Asserts AUDIO_INT when the AES_ERRB flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_AES_ERRA 8 Asserts AUDIO_INT when the AES_ERRA flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG4_DET 7 Asserts AUDIO_INT when the ACPG4_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG3_DET 6 Asserts AUDIO_INT when the ACPG3_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG2_DET 5 Asserts AUDIO_INT when the ACPG2_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ACPG1_DET 4 Asserts AUDIO_INT when the ACPG1_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG4_DET 3 Asserts AUDIO_INT when the ADPG4_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG3_DET 2 Asserts AUDIO_INT when the ADPG3_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG2_DET 1 Asserts AUDIO_INT when the ADPG2_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
EN_ADPG1_DET 0 Asserts AUDIO_INT when the ADPG1_DET flag is set.
Reference: Section 4.7.14 on page 51.
R/W 0
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
104 of 115
80Ch MUX_ERRB 15 Set in Cascade mode when the incoming video
contains packets with the same group number as
Group 2.
Reference: Section 4.7.3 on page 38.
R0
MUX_ERRA 14 Set in Cascade mode when the incoming video
contains packets with the same group number as
Group 1.
Reference: Section 4.7.3 on page 38.
R0
XPOINT_ERROR 13 Set when the crosspoint switch is configured to put
the same audio channel in both Group 1 and Group
2.
Reference: Section 4.7.19 on page 58.
R0
MUTE_ALL 12 Mutes all input audio channels.
Reference: Section 4.7.23 on page 63.
R/W 0
LSB_FIRSTD 11 Causes the fourth stereo pair serial input formats to
use LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
LSB_FIRSTC 10 Causes the third stereo pair serial input formats to
use LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
LSB_FIRSTB 9 Causes the second stereo pair serial input formats to
use LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
LSB_FIRSTA 8 Causes the first stereo pair serial input formats to
use LSB first.
Reference: Section 4.7.17 on page 53.
R/W 0
ACT8 7 Specifies embedding of audio group 2 channel 4.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT7 6 Specifies embedding of audio group 2 channel 3.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT6 5 Specifies embedding of audio group 2 channel 2.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT5 4 Specifies embedding of audio group 2 channel 1.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT4 3 Specifies embedding of audio group 1 channel 4.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT3 2 Specifies embedding of audio group 1 channel 3.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT2 1 Specifies embedding of audio group 1 channel 2.
Reference: Section 4.7.12 on page 51.
R/W 1
ACT1 0 Specifies embedding of audio group 1 channel 1.
Reference: Section 4.7.12 on page 51.
R/W 1
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
105 of 115
80Dh Reserved 15-0 Reserved. W N/A
820h-836h Reserved 15-8 Reserved. W N/A
820h ACSR[7:0] 7-0 Audio status block byte 0.
Reference: Section 4.7.18 on page 56.
W 85h
821h ACSR[15:8] 7-0 Audio status block byte 1.
Reference: Section 4.7.18 on page 56.
W 08h
822h ACSR[23:16] 7-0 Audio status block byte 2.
Reference: Section 4.7.18 on page 56.
W2Ch
823h-836h ACSR[183:24] 7-0 Remaining audio status.
Reference: Section 4.7.18 on page 56.
W0
840h Reserved 15-9 Reserved W 0000000b
DEL1_2A[7:0] 8-1 Audio group 1 delay data for channels 1 and 2.
Reference: Section 4.7.9 on page 46.
W0
EBIT1_2A 0 Audio group 1 delay data valid flag for channels 1
and 2.
Reference: Section 4.7.9 on page 46.
W0
841h Reserved 15-9 Reserved W 0000000b
DEL1_2A[16:8] 8-0 Audio group 1 delay data for channels 1 and 2.
Reference: Section 4.7.9 on page 46.
W0
842h Reserved 15-9 Reserved W 0000000b
DEL1_2A[25:17] 8-0 Audio group 1 delay data for channels 1 and 2.
Reference: Section 4.7.9 on page 46.
W0
843h Reserved 15-9 Reserved W 0000000b
DEL3_4A[7:0] 8-1 Audio group 1 delay data for channels 3 and 4.
Reference: Section 4.7.9 on page 46.
W0
EBIT3_4A 0 Audio group 1 delay data valid flag for channels 3
and 4.
Reference: Section 4.7.9 on page 46.
W0
844h Reserved 15-9 Reserved W 0000000b
DEL3_4A[16:8] 8-0 Audio group A delay data for channels 3 and 4.
Reference: Section 4.7.9 on page 46.
W0
845h Reserved 15-9 Reserved W 0000000b
DEL3_4A[25:17] 8-0 Audio group 1 delay data for channels 3 and 4.
Reference: Section 4.7.9 on page 46.
W0
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
106 of 115
4.14 JTAG Test Operation
When the JTAG/HOST input pin of the GS1582 is set HIGH, the host interface port will
be configured for JTAG test operation. In this mode, pins J9, J10, K9, and K10 become
TDO, TCK, TMS, and TDI. In addition, the RESET_TRST pin will operate as the test reset
pin.
Boundary scan testing using the JTAG interface will be enabled in this mode.
There are two ways in which JTAG can be used on the GS1582:
1. As a stand-alone JTAG interface to be used at in-circuit ATE (Automatic Test
Equipment) during PCB assembly; or
2. Under control of a host processor for applications such as system power on self
tests.
846h Reserved 15-9 Reserved W 0000000b
DEL1_2B[7:0] 8-1 Audio group 2 delay data for channels 1 and 2.
Reference: Section 4.7.9 on page 46.
W0
EBIT1_2B 0 Audio group 2 delay data valid flag for channels 1
and 2.
Reference: Section 4.7.9 on page 46.
W0
847h Reserved 15-9 Reserved W 0000000b
DEL1_2B[16:8] 8-0 Audio group 2 delay data for channels 1 and 2.
Reference: Section 4.7.9 on page 46.
W0
848h Reserved 15-9 Reserved W 0000000b
DEL1_2B[25:17] 8-0 Audio group 2 delay data for channels 1 and 2.
Reference: Section 4.7.9 on page 46.
W0
849h Reserved 15-9 Reserved W 0000000b
DEL3_4B[7:0] 8-1 Audio group 2 delay data for channels 3 and 4.
Reference: Section 4.7.9 on page 46.
W0
EBIT3_4B 0 Audio group 2 delay data valid flag for channels 3
and 4.
Reference: Section 4.7.9 on page 46.
W0
84Ah Reserved 15-9 Reserved W 0000000b
DEL3_4B[16:8] 8-0 Audio group 2 delay data for channels 3 and 4.
Reference: Section 4.7.9 on page 46.
W0
84Bh Reserved 15-9 Reserved W 0000000b
DEL3_4B[25:17] 8-0 Audio group 2 delay data for channels 3 and 4.
Reference: Section 4.7.9 on page 46.
W0
Table 4-45: HD Audio Configuration and Status Registers
Address Register Name Bit Description R/W Default
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
107 of 115
When the JTAG tests are applied by ATE, care must be taken to disable any other devices
driving the digital I/O pins. If the tests are to be applied only at ATE, this can be
accomplished with tri-state buffers used in conjunction with the JTAG/HOST input
signal. This is shown in Figure 4-31.
Figure 4-31: In-Circuit JTAG
Alternatively, if the test capabilities are to be used in the system, the host processor may
still control the JTAG/HOST input signal, but some means for tri-stating the host must
exist in order to use the interface at ATE. This is represented in Figure 4-32.
Figure 4-32: System JTAG
NOTE: Scan coverage is limited to digital pins only. There is no scan coverage for analog
pins VCO, SDO/SDO, RSET, LF, and CP_RES.
NOTE: The SD/HD pin must be held LOW during scan and therefore has no scan
coverage.
Please contact your Gennum representative to obtain the BSDL model for the GS1582.
Application HOSTGS1582
CS_TMS
SCLK_TCK
SDIN_TDI
SDOUT_TDO
JTAG_HOST
In-circuit ATE probe
Application HOSTGS1582
CS_TMS
SCLK_TCK
SDIN_TDI
SDOUT_TDO
JTAG_HOST
In-circuit ATE probe
Tri-State
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
108 of 115
4.15 Device Reset
In order to initialize all internal operating conditions to their default states, hold the
RESET_TRST signal LOW for a minimum of treset = 10ms after all power supplies are
stable. There are no requirements for power supply sequencing.
When held in reset, all device outputs will be driven to a high-impedance state.
Figure 4-33: Reset Pulse
Supply Voltage
RESET_TRST
treset
95% of Nominal Level
Nominal Level
Reset Reset
treset
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
109 of 115
5. Application Reference Design
5.1 Typical Application Circuit (Part A)
AUDIO INTERRUPT
STANDBY
TIMI NG_SELEC T
AUDIO CHANNELS 7 & 8
AUDIO CHANNELS 5 & 6
JTAG/HOST
PCLK INPUT (f rom GS4911B)
LOCKED
GND_A
BNC
CONTROL SIGNALS
GND_A
BNC
BLANK
PRIMARY GROUP AUDIO CLOCK
PRIMARY AUDIO GROUP ENABLE
IOPROC_EN/DIS
20bit/10bit
FVH INPUT[2:0] (f rom GS4911B)
SDO_EN/DIS
AUDIO CHANNELS 1 & 2
AUDIO SIGNALS
AUDIO CHANNELS 3 & 4
SECONDARY GROUP WORD CLOCK
AIN7_8
A_INT
EN_GRP1
WCLK_2
ACLK_1
EN_GRP2
AIN3_4
AIN1_2
AIN5_6
ACLK_2
WCLK_1 PRIMARY GROUP WORD CLOCK
DVB_ASI
STANDBY
RESETn
SDO_EN/DISn
BLANKn
JTAG/HOSTn
SMPTE_BYPASSn
DETECT_TRS
20bit/10bitn
IOPROC_EN/DISn
TIMING_SEL
DETECT_TRS
+3.3V_CD
SD/HD
SD/HDn
DVB-ASI
10n
+3.3V
1u
+1.8V_A
0R
1u
0R
10n
10n
+1.8V
DATA_IN14
10n
GSPI[3:0]
10KR
GND_A
DATA_IN15
A_INT
75R
5n6
75R
5n6
SDIN
SCLK 4u7
4u7
+3.3V
22k
R and L form the Output Return
Loss compensation Network.
SUBJECT TO CHANGE
H/HSY NC_GS4911B
DATA_IN16
EN_GRP1
75R
10n
75R
DATA_IN17
ACLK_1
IO_VDD
+1.8V
PCLK_1582
1 2
1u
1 2
1u
10n
10n
0R
SMPTE_BYPASS
+3.3V
0R
DATA_IN18
NP
NP
WCLK_1
DATA_IN19
RESETn
AIN1_2
10n
VCO_VCC
AIN3_4
C*
EN_GRP2
SDO_EN/DISn
DVB_ASI
STANDBY
SD/HDn
VCO_GND
ACLK_2
3R3
WCLK_2
AIN5_6
DATA_IN0
R*
AIN7_8
DATA_IN1
SDOUT
SECONDARY AUDIO GROUP ENABLE
VCO_GND
DATA_IN2
DATA_IN3
CSn
RESET
CP_RES
B7
VCO_VCC
A8
VCO_GND
B8
CORE_GND
E7
VCO
A9
TIM_861 G3
PCLK
B4
IO_VDD G1
DIN18
A2 DIN19
B3
LF
A7
CP_VDD A10
CP_GND B10
DIN17
A1
CORE_VDD K8
GRP1_EN/DIS
H6
DETECT_TRS F3
CORE_GND
E6
VCO_GND
B9
DIN16
B2
CORE_VDD G10
PD_VDD A6
PD_VDD B6
CORE_GND
D5
STANDBY D3
ACLK_1
K7
WCLK_1
J7
AIN_1/2
J6
DIN14
C2 DIN15
B1
CORE_GND
C5 CORE_GND
B5
NC D6
NC D7
DVB_ASI G5
LOCKED H4
GRP2_EN/DIS
H5
AIN_3/4
K6
DIN12
C3 DIN13
C1
NC D8
NC E8
NC F8
SD/HD E3
CORE_GND
E5
CORE_VDD E1
ACLK_2
K5
IO_VDD H10
DIN10
D2 DIN11
D1
RSV F4
CORE_GND
J8 CORE_GND
G9
20BIT/10BIT G4
CORE_GND
F5
CORE_VDD A5
WCLK_2
J5
IO_GND
G2
DIN8
F2 DIN9
F1
CORE_GND
F7
CD_GND
F9 CD_GND
E9
IOPROC_EN/DIS G7
SMPTE_BYPASS G6
RESET G8
AIN_5/6
J4
BLANK H3
DIN6
H2 DIN7
H1
CD_GND
D9
CORE_GND
E2
AUDIO_INT
H7
CS_TMS K9
SCLK_TCK J10
SDOUT_TDO J9
AIN_7/8
K4
H/HSYNC
A4
DIN4
J2 DIN5
J1
CORE_GND
F6
PD_GND
C8 PD_GND
C7 PD_GND
C6
SDO_EN/DIS D4
SDIN_TDI K10
V/VSY NC
C4
IO_GND
H9
DIN2
K2 DIN3
K1
RSET F10
CD_VDD E10
SDO C10
SDO D10
CD_GND
C9
JTAG/HOST H8
F/DE
A3
NC E4
DIN0
K3 DIN1
J3
GS1582
PLACE AS CLOSE AS
POSSIBLE TO THE PINS
OF THE GS1582.
CONNECT DIRECTLY
TO PINS OF GS1582.
DATA_IN4
ANALOG POWER FILTERING
GND_A
DATA_IN5
+1.8V_A
GND_A
SMPTE_BYPASSn
DATA_IN6
PARALLEL DATA INPUT[19:0]
DATA_IN7
GND_A
JTAG/HOSTn
+3.3V_CD
ANC_BLANKn
IOPROC_EN/DISn
GND_A
20bit/10bitn
DATA_IN8
DETECT_TRS
GND_A
TIMI NG_SEL
DATA_IN9
DATA_IN10
VCO_GND
VCO_GND
VCO_GND
DATA_IN11
VCO_GND
VCO_GND
VCO_VCC
VCO_GND
2.5V INTERNAL ISOLATED POWER
VCTR
5
GND 4
GND
8
GND 2
VCC
7O/P 1
NC 3
GND
6
GO1555
10n
12
33uF
+3.3V_CD
750R +/- 1%
DATA_IN12
V/VSY NC_GS4911B
F/DE_GS4911B
+3.3V_CD
1u
SECONDARY GROUP AUDIO CLOCK
1u
DATA_IN13
0R
10n
(ACLK and WCLK may be supplied by
GS4911B audio clock outputs.)
*R & C:
Refer to Section 4.11.2 for
Loop Filter Component Values.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
110 of 115
5.2 Typical Application Circuit (Part B)
(To GS1582 and audio
sy nchronization dev ices.)
GS4911B AUDIO CLOCKS[2:0]
VDD_IO_A
IO_VDD
VIDEO STANDARD SELECT[5:0]
1V8_PCLK_A
GND_Bridge/PhS_A
GND_VPLL/ALL_A
+1.8V
+3.3V
10k
VDD_Core_A
H_IN
VDD_Core_A
V_IN
ACLK_GS4911B
WCLK_GS4911B
MCLK_GS4911B
F_IN
1V8_PCLK_A
GND_VPLL/ALL_A
GND_XTAL_A
F/DE_GS4911B
H/HSY NC_GS4911B
V/VSY NC_GS4911B
22R
22R
22R
GND_XTAL_A
+1.8V
+1.8V
VDD_XTAL_A
0R
0R
VID_STD2
VID_STD3
VDD_IO_A
VID_STD4
VID_STD5
(NP)(NP)
22R
22R
22R
VDD_IO_A
GND_Bridge/PhS_A
GND_Bridge/PhS_A
GND_XTAL_A
GND_VPLL/APLL_A
JTAG/HOSTn
VDD_IO_A
REF_LOST_A
1V8_Bridge/PhS_A
1V8_PCLK_A
1V8_PCLK_A
GND_VPLL/APLL_A
VDD_Core_A
GND_VPLL/APLL_A
1V8_Bridge/PhS_A
GND_Bridge/PhS_A
VDD_IO_A
1V8_Bridge/PhS_A
GND_Bridge/PhS_A
VDD_Core_AVDD_XTAL_A
1V8_PCLK_A
VDD_IO_A
VDD_IO_A
LOCK_LOST_A
GENLOCKn
VID_STD1
VID_STD0
VID_PLL_GND
4VID_PLL_VDD
3
XTA L _V D D
5
X1
6
X2
7
XTA L _G N D
8
CORE_GND
9
PHS_GND 55
PHS_VDD 54
ANALOG_VDD
10
NC
11
ANALOG_GND
12
AUD_PLL_GND
13
AUD_PLL_VDD
14
10FID
15
HSYNC
16
VSYNC
17
IO_VDD
18
FSYNC
19
NC
20
VID_STD0
21
VID_STD1
22
VID_STD2
23
VID_STD3
24
VID_STD4
25
VID_STD5
27
ACLK1
28
ACLK2
29
ACLK3
30
IO_VDD
31
CORE_VDD
26
ASR_SEL2
32
ASR_SEL1 33
ASR_SEL0 34
TIMI NG_OU T1 35
TIMI NG_OU T2 36
IO_VDD 38
TIMI NG_OU T4 39
TIMI NG_OU T3 37
TIMI NG_OU T5 40
LVDS/PCLK3_VDD 45
PCLK3 46
LVDS/PCLK3_GND 48
PCLK3 47
PCLK2 49
PCLK1&2_GND 52
PCLK1 51
IO_VDD 50
TIMI NG_OU T6 41
TIMI NG_OU T7 42
TIMI NG_OU T8 43
PCLK1&2_VDD 53
LOCK_LOST
1
REF_LOST
2
GENLOCK 64
CORE_VDD 44
JTAG/HOST 56
SCLK_TCLK 57
SDIN_TDI 58
SDOUT_TDO 59
CS_TMS 60
RESET 61
IO_VDD 62
NC 63
GND_PAD
65
GS4911B
1M
27.000MHZ
24pF
38pF
VDD_XTAL_A
RESETn
VDD_XTAL_A
GND_VPLL/APLL_A
1V8_PCLK_A
GND_XTAL_A
1V8_Bridge/PhS_A
+3.3V
DECOUPLING @ PINS 18,31,38,50,62
100nF
100nF
10uF
0R
0R
100nF
100nF
DECOUPLING
@ PIN 45
10uF
10uF 10nF 10nF
0R
10nF
100nF
10uF
0R
10uF
100nF
10uF
0R
10nF
VDD_Core_A
10nF
10nF
0R
100nF
10uF
10nF
100nF
10nF
10uF
DECOUPLING
@ PIN 54
DECOUPLING
@ PIN 5
GND_Bridge/PhS_A
1V8_Bridge/PhS_A
10uF
CONTROL SIGNALS
JTAG/HOST
100nF
0R
10uF
GENLOCKn
RESETn
100nF
JTAG/HOSTn
RESET
GENLOCK CONTROL
10nF10nF
DECOUPLING @
PINS 26,44
1V8_Bridge/PhS_A
0R
SDIN_GS4911B
CSn_GS4911B
SCLK_GS4911B
SDOUT_GS4911B
GSPI_GS4911B[3:0]
FVH TIMING INPUT[2:0]
PCLK OUTPUT (To GS1582)
ANALOG POWER FILTERING
FVH OUTPUT[2:0] (To GS1582)
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
111 of 115
6. References & Relevant Standards
SMPTE 125M Component video signal 4:2:2 – bit parallel interface
SMPTE 259M 10-bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital
Interface
SMPTE 260M 1125 / 60 high definition production system – digital representation and
bit parallel interface
SMPTE 267M Bit parallel digital interface – component video signal 4:2:2 16 x 9 aspect
ratio
SMPTE 272M Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary
Space
SMPTE 274M 1920 x 1080 scanning analog and parallel digital interfaces for multiple
picture rates
SMPTE 291M Ancillary Data Packet and Space Formatting
SMPTE 292M Bit-Serial Digital Interface for High-Definition Television Systems
SMPTE 293M 720 x 483 active line at 59.94 Hz progressive scan production – digital
representation
SMPTE 296M 1280 x 720 scanning, analog and digital representation and analog
interface
SMPTE 299M 24-Bit Digital Audio Format for HDTV Bit-Serial Interface
SMPTE 352M Video Payload Identification for Digital Television Interfaces
SMPTE RP165 Error Detection Checkwords and Status Flags for Use in Bit-Serial Digital
Interfaces for Television
SMPTE RP168 Definition of Vertical Interval Switching Point for Synchronous Video
Switching
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
112 of 115
7. Package & Ordering Information
7.1 Package Dimensions
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
113 of 115
7.2 Packaging Data
7.3 Marking Diagram
Table 7-1: Packaging Data
Parameter Value
Package Type 11mm x 11mm 100-ball LBGA
Package Drawing Reference JEDEC M0192 (with exceptions noted
in Package Dimensions on page 112).
Moisture Sensitivity Level 3
Junction to Case Thermal Resistance, θj-c 15.4°C/W
Junction to Air Thermal Resistance, θj-a (at zero
airflow)
37.1°C/W
Junction to Board Thermal Resistance, θj-b 26.4°C/W
Psi, ψ0.4°C/W
Pb-free and RoHS Compliant Yes
Pin 1 ID
GS1582
XXXXE3
YYWW
YYWW - Date Code
YY - 2-digit year
WW - 2-digit week number
XXXX - Lot/Work Order ID
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
114 of 115
7.4 Solder Reflow Profile
The GS1582 is available in a Pb-free package. It is recommended that the Pb-free
package be soldered with Pb-free paste using the reflow profile shown in Figure 7-1.
Figure 7-1: Pb-free Solder Reflow Profile
7.5 Ordering Information
25°C
150°C
200°C
217°C
26C
250°C
Time
Temperature
8 min. max
60-180 sec. max
60-150 sec.
20-40 sec.
C/sec max
6°C/sec max
Part Number Package Pb-free Temperature Range
GS1582-IBE3 100-ball BGA Yes -20°C to 85°C
CAUTION
ELECTROSTATIC SENSITIVE DEVICES
DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A
STATIC-FREE WORKSTATION
OTTAWA DESIGN CENTRE
232 Herzberg Road, Suite 101
Kanata, Ontario K2K 2A1
Canada
Phone: +1 (613) 270-0458
Fax: +1 (613) 270-0429
UNITED KINGDOM DESIGN CENTRE
North Building, Walden Court
Parsonage Lane,
Bishop’s Stortford Hertfordshire, CM23 6DB
Great Britain
Phone: +44 (1279) 714170
Fax: +44 (1279) 714171
JAPAN KK
Shinjuku Green Tower Building 27F
6-14-1, Nishi Shinjuku
Shinjuku-ku, Tokyo, 160-0023
Japan
Phone: +81 (03) 3349 5501
Fax: +81 (03) 3349 5505
Email: gennum-japan@gennum.com
Web Site: http://www.gennum.co.jp
SNOWBUSH IP - A DIVISION OF GENNUM
439 University Ave. Suite 1700
Toronto, Ontario M5G 1Y8
Canada
Phone: +1 (416) 925-5643
Fax: +1 (416) 925-0581
Web Site: http://www.snowbush.com
AGUASCALLIENTES PHYSICAL DESIGN
CENTER
Venustiano Carranza 122 Int. 1
Centro, Aguascalientes
Mexico CP 20000
Phone: +1 (416) 848-0328
GERMANY
Niederlassung Deutschland
Stefan-George-Ring 29
81929 München, Germany
Phone: +49 89 309040 290
Fax: +49 89 309040 293
Email: gennum-germany@gennum.com
UNITED STATES - WESTERN REGION
Bayshore Plaza
2107 N 1st Street, Suite #300
San Jose, CA 95131
United States
Phone: +1 (408) 392-9430
Fax: +1 (408) 392-9404
UNITED STATES - EASTERN REGION
4281 Harvester Road
Burlington, Ontario L7L 5M4
Canada
Phone: +1 (905) 632-2996
Fax: +1 (905) 632-2055
TAIW AN
6F-4, No.51, Sec.2, Keelung Rd.
Sinyi District, Taipei City 11502
Taiwan R.O.C.
Phone: (886) 2-8732-8879
Fax: (886) 2-8732-8870
KOREA
8F, Jinnex Lakeview Bldg.
65-2, Bangidong, Songpagu
Seoul, Korea 138-828
Phone: +82-2-414-2991
Fax: +82-2-414-2998
DOCUMENT IDENTIFICATION
DATA SHEET
The product is in production. Gennum reserves the right to make changes to
the product at any time without notice to improve reliability, function or
design, in order to provide the best product possible.
GS1582 Multi-Rate Serializer with Cable Driver, Audio
Multiplexer and ClockCleanerTM
Data Sheet
40117 - 4 December 2011
115 of 115
115
Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of
the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent
infringement.
All other trademarks mentioned are the properties of their respective owners.
GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.
© Copyright 2006 Gennum Corporation. All rights reserved. Printed in Canada.
www.gennum.com
GENNUM CORPORATION
Mailing Address: P.O. Box 489, Station A, Burlington, Ontario L7R 3Y3 Canada
Street Addresses: 4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada
Phone: +1 (905) 632-2996 Fax: +1 (905) 632-2055
Email: corporate@gennum.com www.gennum.com