128-Macrocell MAX® EPLDs
fax id: 6107
CY7C342B
Cypress Semiconductor Corporation 3901 North First Stre et S an Jo se CA 95134 408-943-2600
October 1989 – Revised October 1995
1CY7C342B
Features
128 macrocells in 8 LAB s
8 dedicated input s, 52 bidirectional I/O pins
Programmable i nterconnect array
Advanced 0.65-micron CMOS technology to increase
performance
Available in 68-pin HLCC, PLCC, and PGA
Functio nal Description
The CY7C342B is an Erasable Programmable Logic Device
(EPLD) in which CMOS EPROM cells are used to configure
logic functions within the device. The MAX architecture is
100% user configurable, allowing the devices to accommodate
a variety of independent logic functi ons.
The 128 macrocells in the CY7C342B are divided into 8 Logic
Array Blocks (LABs), 16 per LAB. There are 256 expander
product terms, 32 per LAB, to be used and shared by the mac-
rocells within each LAB.
Each LAB is interconnected with a programmable interconnect
arr ay, allowin g all signals to be r o uted throughout th e chip.
The speed and densi ty of the CY7 C3 42B allows it to be u sed i n a
wide range of applic ations, fr om replacem ent of lar ge amounts of
7400-series TTL logic, to complex controllers and multifunction
chips. With greater than 25 tim es the functional ity of 20-pin PLDs,
the CY7C342B allows the replacement of over 50 TTL devices. By
replacing large amounts of logic, the CY7C342B reduces board
space, part count, and increases system reliability.
MAX is a registered trademark of Altera Corporation.
Warp2
and
Warp3
are registered trademarks of Cypress Semiconductor.
MACROCELL 101
MACROCELL 100
MACROCELL 99
MACROCELL 98
MACROCELL 97
LogicBlockDiagram
C342B-1
MACROCELL 85
MACROCELL 84
MACROCELL 83
MACROCELL 82
MACROCELL 81
MACROCELL 33
MACROCELL 34
MACROCELL 35
MACROCELL 36
MACROCELL 37
MACROCELL 17
MACROCELL 18
MACROCELL 19
MACROCELL 20
MACROCELL 21
MACROCELL 1
MACROCELL 2
MACROCELL 3
MACROCELL 4
MACROCELL 5
MACROCELL 6
MACROCELL 7
MACROCELL 8 MACROCELL 121-128
MACROCELL 102-112
MACROCELL 86-96MACROCELL 38-48
MACROCELL 22-32
MACROCELL 9-16
SYSTEM CLOCK
P
I
A
INPUT (A7) 68
INPUT (A8) 66
INPUT (L6) 36
INPUT (K6) 35
(B8) 65
(A9) 64
(B9) 63
(A10) 62
(B10) 61
(B11) 60
(C11) 59
(C10) 58
(D11) 57
(D10) 56
(E11) 55
(F11) 53
(F10) 52
(G11) 51
(H11) 49
(H10) 48
(J11) 47
(J10) 46
(K11) 45
(K10) 44
(L10) 43
(L9) 42
(K9) 41
(L8) 40
(K8) 39
(L7) 38
4 (A5)
5(B4)
6 (A4)
7(B3)
8 (A3)
9 (A2)
10 (B2)
11 (B1)
12 (C2)
13 (C1)
14 (D2)
15 (D1)
17(E1)
18 (F2)
19 (F1)
21(G1)
22 (H2)
23 (H1)
24 (J2)
25 (J1)
26 (K1)
27 (K2)
28(L2)
29 (K3)
30(L3)
31 (K4)
LABH
LABG
LABF
LABE
LABA
LABB
LABC
LABD
3,20,37,54(B5,G2,K7,E10)
16, 33,50, 67 (E2, K5, G10,B7)
VCC
GND
( ) PERTAIN TO 68-PIN PGA PACKAGE
1 (B6) INPUT/CLK
2 (A6) INPUT
32 (L4) INPUT
34 (L5) INPUT
MACROCELL 120
MACROCELL 119
MACROCELL 118
MACROCELL 117
MACROCELL 116
MACROCELL 115
MACROCELL 114
MACROCELL 113
MACROCELL 73-80
MACROCELL 72
MACROCELL 71
MACROCELL 70
MACROCELL 69
MACROCELL 68
MACROCELL 67
MACROCELL 66
MACROCELL 65
MACROCELL 57-64
MACROCELL 49
MACROCELL 50
MACROCELL 51
MACROCELL 52
MACROCELL 53
MACROCELL 54
MACROCELL 55
MACROCELL 56
CY7C342B
2
Selection Guide
7C342B–12 7C342B–15 7C342B–20 7C342B–25 7C342B–30 7C342B–35
Maximum Access Time (ns) 12 15 20 25 30 35
Maximum Operating
Cur rent (mA) Commercial 250 250 250 250 250 250
Military 320 320 320 320 320
Industrial 320 320 320 320 320
Maximum Static
Cur rent (mA) Commercial 225 225 225 225 225 225
Military 275 275 275 275 275
Industrial 275 275 275 275 275
Pin Configurations
I/O
Top View
PLCC
76 453
11
12
10
98
4342 44
45
46
21
22
24
23
25
13
14
4140
21
26 27
18
19
17
16
15
20
28 29 3130 32 33 3635 37 38 3934
52
51
49
50
48
47
C342B-2
53
54
55
60
58
59
57
56
66 65 6364 62
68 67 61
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
VCC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
VCC
I/O
I/O
I/O
I/O
I/O
VCC
I/O
INPUT/
CLK
INPUT
GND
I/O I/O
I/O I/O
VCC I/O
I/O I/O
GND I/O
I/O I/O
I/O I/O
I/OI/O
I/O
I/O
I/O
I/O
I/O
VCC
INPUT
INPUT
GND
INPUT
I/O
INPUT
I/O
I/O
I/O
I/O
I/OI/O
I/OI/O
VCC
I/O
I/OI/O
GNDI/O
I/O
I/O
I/O
I/O
I/O
I/O
PGA
BottomView
C342B-3
I/O
INPUT INPUT I/O I/O
I/O I/O I/O I/O
L
K
J
H
G
F
E
D
C
B
A
1234567891011
7C342B
7C342B
CY7C342B
3
Maximum Ratings
(Above which the useful life may be impaired. For user guide-
lines, not tested.)
Storage Temperat ure ......... ........................ .–65°C to+150°C
Ambient Temperature with
Power Applied............................ ........................0°C to+70°C
Maximum Junction Temperature
(under bias)........ ............................. ........................... ..150°C
Supply Volt age to Gro und Pote ntial.. ..............–3.0V to+7.0V
Maximum Power Dissipation........... ........................2500 mW
DC VCC or GND Current.. .......... ............ ............ ........500 mA
DC Output Curre nt per Pin.. ......... .............–25 mA t o+ 25 mA
DC Input Voltage[1] ..................... .. .................–3.0V to + 7.0V
DC Program Voltage ........................... ... ..... .................13.0V
Static Discharge Voltage...........................................>1100V
(pe r MIL-STD-883, Method 3015)
Operating Range
Range Ambient
Temperature VCC
Commercial 0°C to +70°C 5V ± 5%
Industrial –40°C to +85°C 5V ± 10%
Military –55°C to +125°C (Case) 5V ± 10%
Electrical Characteristics Over the Operating Range[2]
Parameter Description Test Conditions Min. Max. Unit
VOH Output HIGH Voltage VCC = Min., IOH = –4.0 mA 2.4 V
VOL Output LOW Voltage VCC = Min., IOL = 8.0 mA 0.45 V
VIH Inp u t HIGH Voltage 2.2 VCC +0.3 V
VIL Input LOW Voltage –0.3 0.8 V
IIX Input Current GND < VIN < VCC –10 +10 µA
IOZ Outp ut Leakage Current VO = VCC or GND –40 +40 µA
IOS Output Short Circuit Current VCC = Max., VOUT = 0.5V[3, 4] –30 –90 mA
ICC1 Power Supply Current (Static) VI = GND (No Load) Com’l 225 mA
Mil/Ind 275
ICC2 Power Supply Current[5] VI = VCC or GND (No Load)
f = 1.0 MHz[4] Com’l 250 mA
Mil/Ind 320
tRRecommende d Inpu t Ris e T ime 100 ns
tFRecommended Input Fall Time 100 ns
Capacitance[6]
Parameter Description Test Conditions Max. Unit
CIN Input Capacitance VIN = 2V, f = 1.0 MH z 10 pF
COUT Output Capacitance VOUT = 2V, f = 1.0 MHz 10 pF
Notes:
1. Minimum DC input is –0.3V. During transitions, the inputs may undershoot to –3.0V for periods less than 20 ns.
2. Typical values are for TA = 25°C and VCC = 5V.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT = 0.5V has been chosen to avoid
test problems caused by tester ground degradation.
4. Guaranteed but not 100% tested.
5. This parameter is measured with device programmed as a 16-b it counter in each LAB.
6. Part (a) in AC Test Load and Waveforms is used for all parameters exce pt tER and tXZ, which is used for part (b) in AC Test Load and Waveforms. All external
timing parameters are measured referenced to external pins of the device.
CY7C342B
4
Logic Array Blocks
There are 8 logic array blocks in the CY7C342B. Each LAB
consists of a macrocell array containing 16 macrocells, an ex-
pander product term array containing 32 expanders, and an
I/O block. T he LAB is fed by the programmable interconnect
array and the dedicated input bus. All macrocell feedbacks go
to the macrocell array, th e expander array, and the program-
mable interco nnect array. Expanders feed themse lves and th e
macrocell array. All I/O feedbacks go to the programmable in-
terconnect array so that they may be accessed by macrocells
in other LABs as well as the macrocells in the LAB in which
they are situated.
Externally, the CY7C342B provides eight dedicated inputs,
one of wh ich may be used as a system cloc k. There are 52 I/O
pins that may be individually configured for input, output, or
bidirectio nal data f low.
Programmable Interconnect Array
The Programmable Interconnect Arra y (PIA) solves intercon-
nect limitations by routing only the signals needed by each
logic array block. The inputs to the PIA a re the outputs of every
macro cell within the device and the I/O pin feedback of every
pin on the device.
Unlike masked or programmable gate arrays, which induce
variable delay depe ndent on routing, the PIA has a fixed delay .
This eliminates undesired skews among logic signals that may
cause glitches in internal or external logic. The fixed delay,
regardless of programma ble interconnect array configuration,
simplifies design by assuring that internal signal skews or rac-
es are avoided. T he result is ease of design implementation,
often in a signal pas s, without the multiple internal logic place-
ment and routing iterations required for a programmable gate
array to achieve design timing objectives.
Timing Delays
Timing delay s within the CY7C342B may be easily determined
using
Warp2
® or
Warp3
® software by the model sh own in
Fig-
ure 1
. The CY7C342B ha s fixed internal delays, al lowing the
user to determine the worst case timing delays for an y des ign.
For complete timing informat ion the
Warp3
software provides
a timing simulator.
Design Recommendations
Operation of the devices described herein with conditions
above those li sted under “Maximum Ratings” may cause per-
manent damage to the device. This is a stress rating only and
functional operation of the device at these or any other condi-
tions above those indicated in the operational sections of this
datasheet is not implie d. Exposure to absolute maximum rat-
in gs conditions for extended periods o f time may affect device
reliabili ty. The CY7C342B contains circuitry to protect device
pins from high static voltages or electric fields, but normal pre-
cautions should be taken to avoid application of any voltage
higher than the maximum rated voltages.
For proper operation, input and output pins must be con-
strained to the range GND < (VIN or VOUT) < VCC. Unused
inputs must always be tied to an a ppropriate logic level (ei-
ther V CC or GND). E ach set of VCC and GN D pi ns must be
connecte d together directly at the device. Power supply de-
coupling capacitors of at least 0.2 µF must be connected
between VCC and GND. For the mo st effective decoupling,
each VCC pin should be separately decoupled to GND direct-
ly at the device. Decoupling capacitors should have good
frequency response, such as monolithic ceramic types have.
AC Test Loads and Waveforms[5]
3.0V
5V
OUTPUT
R1 464
R2
250
50 pF
INCLUDING
JIG AN D
SCOPE
GND
90%
10% 90%
10%
6ns 6ns
5V
OUTPUT
R1 464
R2
250
5pF
INCLUDING
JIG AND
SCOPE
(a) (b)
OUTPUT 1.75V
E quivalen t to: THÉ VENIN EQUIVALENT (commercial/military)
ALL INPUT PULSES
C342B-4 C342B-5
163
CY7C342B
5
Figure 1. CY7C342B Internal Timing Model
LOGIC ARRAY
CONTROLDELAY
tLAC
EXPANDER
DELAY
tEXP
CLOCK
DELAY
tIC
tRD
tCOMB
tLATCH
INPUT
DELAY
tIN
REGISTER
OUTPUT
DELAY
tOD
tXZ
tZX
LOGIC ARRAY
DELAY
tLAD
FEEDBACK
DELAY
tFD
OUTPUT
INPUT
C342B-6
SYSTEM CLOCK DELAY tICS
tRH
tRSU
tPRE
tCLR
PIA
DELAY
tPIA
I/O DELAY
tIO
CY7C342B
6
Design Security
The CY7C342 B contains a programmable design se curity fea-
ture that controls th e a ccess to the data programmed into the
device. If this programmable feature is used, a proprietary de-
sign implemented in the device cannot be copied or retrieved.
This enables a high level of design control to be obtained since
programmed data within EPROM cells is invisible. The bit that
controls this function, along with all other program data, ma y
be reset simply by erasing t he entire device.
The CY7C342B is fully functionally tested and guaranteed
through complete testing of each programmable EPROM bit
and all internal lo gi c elements thus ensuring 100% pr ogram-
ming yield.
The erasable nature of th ese devices allows te st pr ograms to
be used and erased during ea rly stages of the production flow .
The devices also c ontain on- board logic te st circuit ry to allow
verification of function and AC specification once encapsulat-
ed in non-windowed packages.
Timing Considerations
Unless otherwise stated, propagation delays do not include
expanders. When using expanders, add the maximum ex-
pander delay tEXP to the o verall delay. Similarly, there is an
a ddi ti o nal t PIA delay for an input from an I/O pin whe n com -
pared to a signal from straight input pin.
When calculating synchronous frequencies, use tS1 if all in-
puts are on dedicated input pins. The parameter tS2 should
be used if data is applied at an I/O pin. If tS2 is gr eater t ha n
tCO1, 1/tS2 beco mes the lim iting frequency in th e data path
mode unless 1/(tWH + tWL) is less than 1/tS2.
When expander logic is used in t he data path, add the appro-
priate maximum expander delay , tEXP to tS1. De te rmine which
of 1/(tWH + tWL), 1/tCO1, or 1/(tEXP + tS1) is the lowest fre-
quency. The lowest of these frequencies is the maximum
data path frequency for the synchronous configuration.
When calculating external asynchronous frequencies, use
tAS1 if all inputs are on the dedicated input pins. If any data
is applied to an I/O pin, tAS2 must be used as the required
set-up time. If (tAS2 + tAH) is greate r than tACO1, 1 /(tAS2 + tAH)
becomes the limiting frequency in the data path mode unless
1/(tAWH + tAWL) is less than 1/(tAS2 + tAH).
When expander logic is used in t he data path, add the appro-
priate maximum expander delay, tEXP to tAS1. Determine
which of 1/(tAWH + tAWL), 1/tACO1, or 1/(tEXP + tAS1) is the
lowest frequency. The lowest of these frequencies is the
maximum data path frequency for the asynchronous config -
uration.
The parameter tOH indicates the system compatibility of this
device when driving other synchronous logic with positive
input hold times, which is controlled by the same synchro-
nous clock. If tOH is gre ater t han th e minimu m requ ired in put
h ol d ti me of the sub s eq u ent sy n c hro nou s logi c, then the de-
vices are guaranteed to function properly with a common
synchronous clock under worst-case environmental and
supply voltage conditions.
The parameter tAOH indicate s the syste m compatib ility of this
d evice when driving su bsequent registered logic wi th a pos -
itive hold time and using the same asynchronous clock as
the C Y7C34 2B.
In general, if tAOH is greate r than the minimum requ ired inp ut
hold time of the subsequent logic (synchronous or asynchro-
nous) then the d evices are guar anteed to function properly
under worst-case environmental and supply voltage condi-
tions, provided the clock signal source is the same. This also
applies if expand er logic is use d in the cl ock signal path of
the driving devic e, but not for th e driven dev ice. This is due
to the expander logic in the second device’s clock signal
path adding an additional delay (tEXP) causing the output
data from the preceding device to change prior to the arrival
o f t he c lo c k signa l at t h e f ol l ow i ng d e vi ce’s regist e r.
Typi c al ICC vs. fMAX
Output Drive Current
400
300
200
100
1 kHz 10 kHz 100 kHz 1 MHz
MAXIMUM FREQUENCY
10 MHz
050 MHz100 Hz
VCC=5.0V
RoomTemp.
01 2 3 4
V
O
OUTPUTVOLTAGE (V)
100
80
60
40
20
5
IOH
IOL
VCC=5.0V
RoomTemp.
0.45
CY7C342B
7
Commercial and I ndustri al External Synchronous Switching Characteristics[6] O ver Operat i ng R a n g e
7C342B–12 7C342B–15 7C342B–20
Parameter Description Min. Max. Min. Max. Min. Max. Unit
tPD1 Dedicated Input to Combinatorial Output Delay[7] 12 15 20 ns
tPD2 I/O Input to Combinatorial Output Delay[8] 20 25 32 ns
tPD3 Dedicated Input to Combinatorial Output Delay with
Expander Delay[9] 18 23 30 ns
tPD4 I/O Input to Combinatorial Output Delay with Expander
Delay[4,10] 26 33 42 ns
tEA Input to Output Enable Delay[4,7] 12 15 20 ns
tER Input to Output Di sable Delay[4,7] 12 15 20 ns
tCO1 Synchronous Clock Input to Output Delay 6 7 8 ns
tCO2 Synchronous Clock to Local Feedback to
Combinatorial Output [4,11] 14 17 20 ns
tS1 Dedicated Input or Feedback Set-Up Time to
Synchronous Clock Input[4,12] 810 13 ns
tS2 I/O Input Set-Up Time to Synchronous Clock Input[7] 16 20 24 ns
tHInput Hold Time from S ynchronous Clock Input[7] 0 0 0 ns
tWH Synchronous Clock Input HIGH Tim e 4.5 5 7 ns
tWL Synchronous Clock Input LOW Time 4.5 5 7 ns
tRW Asynchronous Clear Widt h[4,7] 12 15 20 ns
tRR Asynchronous Clear Recovery Time[4, 7] 12 15 20 ns
tRO Asyn chronous Clear to Registered Output Delay[7] 12 15 20 ns
tPW Asynchronous Preset W idth[4,7] 12 15 20 ns
tPR Asynchronous Preset Recovery Time[4,7] 12 15 20 ns
tPO Asynchronous Preset to Register ed Output Del ay[7] 12 15 20 ns
tCF Synchronous Clock to L ocal Feedback Input[4,13] 3 3 3 ns
tPExternal Synchronous Clock Period (1/(fMAX3))[4] 912 15 ns
fMAX1 External Feedback Maximum Fre quency
(1/(tCO1 + tS1))[4,14] 71.4 58.8 47.6 MHz
fMAX2 Internal Local Feedback Maximum Frequency, lesser of
(1/(tS1 + tCF)) or (1/tCO1)[4,15] 90.9 76.9 62.5 MHz
Notes:
7. This specification is a measure of the delay from input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 66, or 68) to combinatorial
output on any output pin. This delay assumes no expander terms are used to form the logic function.
When th is note is appli ed to any parameter specificati on it indicates that the signal (d ata, asynchrono us clo ck, a synchronous clear, and/or a synchronous
preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.
If an input signal is applied to an I/O pin an additional delay equal to tPIA shoul d be added to t he com para ble delay for a dedica t ed inpu t. If expan d ers are
used, add the maximum expander delay tEXP to the overall delay for the comparable delay without expanders.
8. This specification is a measure of the delay from input signal applied to an I/O macroc ell pin to any output. This delay assumes no expander terms are used
to form the logic function.
9. This specification is a measure of the delay from an input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 36, 66, or 68) to combinatorial output
on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the
expander logic.
10. This specification is a measure of the delay from an input signal applied to an I/O macroc ell pin to any output. This delay assumes expander terms are used
to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by
sampling production material.
11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic
array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same
LAB. This parameter is tested periodically by sampling production material.
12. If data is applied to an I/O input for capture by a macrocell register , the I/O pin input set-up time minimums should be observed. These parameters are tS2 for
synchronous operation and tAS2 for asynchronous operation.
13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array
input. This delay plus the register set-up time, tS1, is the minimum internal period for an internal s ynchronous state machine configuration. This delay is for feedbac k
within the same LAB. This parameter is tested periodically by sampling production material.
14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can
operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the
same LAB.
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states
must also control external points, this frequency can still be observed as long as this frequency is less than 1/tCO1.
CY7C342B
8
fMAX3 Data Path Maximum Frequenc y, lesser of ( 1/(tWL + tWH)),
(1/(tS1 + t H)) or (1/tCO1)[4,16] 111.1 100 71.4 MHz
fMAX4 Maximum Register To ggle Frequency (1/(tWL+tWH))[4,17] 111.1 100 71.4 MHz
tOH Output Data Stable Time from Synchronous Cloc k Input[4,18] 3 3 3 ns
Commercial and I ndustri al External Synchronous Switching Characteristics[6] O ver Operat i ng R a n g e
7C342B–12 7C342B–15 7C342B–20
Parameter Description Min. Max. Min. Max. Min. Max. Unit
7C342B–25 7C342B–30 7C342B–35
Parameter Description Min. Max. Min. Max. Min. Max. Unit
tPD1 Dedicated Input to Combinatorial Output Delay[7] 25 30 35 ns
tPD2 I/O Input to Combinatorial Output Delay[8] 39 46 55 ns
tPD3 Dedicated Input to Combinatorial Output Delay with
Expander Delay[9] 37 44 55 ns
tPD4 I/O Input to Combinatorial Output Delay with Expander
Delay[4,8] 51 60 75 ns
tEA Input to Output Enable Delay[4,8] 25 30 35 ns
tER Input to Output Di sable Delay[4,7] 25 30 35 ns
tCO1 Synchronous Clock Input to Output Delay 14 16 20 ns
tCO2 Synchronous Clock to Local Feedback to Combinator ial
Output[4,9] 30 35 42 ns
tS1 Dedicated Input or Feedback Set-Up Time to Synchronous
Clock Input[7,10] 15 20 25 ns
tS2 I/O Input Set-Up Time to Synchronous Clock Input[7] 29 36 45 ns
tHInput Hold Time from S ynchronous Clock Input[7] 0 0 0 ns
tWH Synchronous Clock Input HIGH Tim e 8 10 12.5 ns
tWL Synchronous Clock Input LOW Time 8 10 12.5 ns
tRW Asynchronous Clear Widt h[4,7] 25 30 35 ns
tRR Asynchronous Clear Recovery Time[4, 7] 25 30 35 ns
tRO Asyn chronous Clear to Registered Output Delay[7] 25 30 35 ns
tPW Asynchronous Preset W idth[4,7] 25 30 35 ns
tPR Asynchronous Preset Recovery Time[4,7] 25 30 35 ns
tPO Asynchronous Preset to Register ed Output Del ay[7] 25 30 35 ns
tCF Synchronous Clock to L ocal Feedback Input[4,11] 3 3 6 ns
tPExternal Synchronous Clock Period (1/(fMAX3))[4] 16 20 25 ns
fMAX1 External Feedback Maximum Fre quency
(1/(tCO1 + tS1))[4,12] 34.5 27.7 22.2 MHz
fMAX2 Internal Local Feedback Maximum Frequency, lesser of
(1/(tS1 + tCF)) or (1/tCO1)[4,13] 55.5 43.4 32.2 MHz
fMAX3 Data Path Maximum Frequenc y, lesser of ( 1/(tWL + tWH)),
(1/(tS1 + t H)) or (1/tCO1)[4,14] 62.5 50 40 MHz
fMAX4 Maximum Register To ggle Frequency (1/(tWL+tWH))[4,15] 62.5 50 40 MHz
tOH Output Data Stable Time from Synchronous Cloc k Input[4,16] 3 3 3 ns
Notes:
16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data
input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, tS2 is the appropriate tS for calculation.
17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled by a
clock signal applied to the dedicated clock input pin.
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.
CY7C342B
9
Commercial and I ndustri al External Asynchronous Switching Characteri stics[6] Over Oper at in g Ra nge
7C342B–12 7C342B–15 7C342B–20
Parameter Description Min. Max. Min. Max. Min. Max. Unit
tACO1 As ynchronous Clock Input to Output Delay[7] 12 15 20 ns
tACO2 Asy nchronou s Clock Input t o Lo cal Feedback t o Combinatori-
al Output[19] 20 25 32 ns
tAS1 Dedicate d Input or Feedback Set-Up Time to Asynchronous
Clock Input[7] 455ns
tAS2 I/O Input Set-U p Tim e to Asynchronous Clock Input[7] 12 14.5 17 ns
tAH Input H old Ti me from Asynchronous Clock Input[7] 456ns
tAWH As ynchronous Clock Input HIGH Time[7] 8 9 10 ns
tAWL Asynchronous Clock Input LOW Tim e[7 , 20 ] 678ns
tACF Asynchronous Clock to Local Feedback Input[4,21] 911 13 ns
tAP External Asynchronous Clock Period (1/(fMAXA4))[4] 14 16 18 ns
fMAXA1 External Feedback Maximum Frequency i n Asynchronous
Mode (1/(tACO1 + tAS1))[4,22] 62.5 50 40 MHz
fMAXA2 Maximum Internal Asynchronous Fr e quency[4,23] 71.4 62.5 55.5 MHz
fMAXA3 Data Path Maximum Frequency in Asynchronous Mode[4,24] 83.3 66.6 50 MHz
fMAXA4 Maximum Asynchronous Register Toggle Frequency
1/(tAWH + tAWL)[4,25] 71.4 62.5 55.5 MHz
tAOH Output Data Stable Time from Asynchronous Clock Input[4,26] 12 12 12 ns
Notes:
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB
logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input.
The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production
material.
20. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the tAWH and tAWL parameters must be swapped.
If a given input is used to clock multiple registers with both positive and negative polarity, tAWH should be used for both tAWH and tAWL.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchr onous clock to LAB logic array input. This delay
plus the asynchronous register set-up time, tAS1, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for
feedback within the same LAB, assumes no expander logic in the clock path, and assumes that the clock input signal is applied to a dedicated input pin. This parameter
is tested periodically by sampling production material.
22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can
operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the
clock signal path or data path.
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate.
This parameter is determined by the lesser of (1/(tACF + tAS1)) or (1/(t AWH + tAWL)). If register output states must also control external points, this frequency can still be
observed as long as this frequency is less than 1/tACO1.
Thi s specif icatio n as sumes no e xpander l ogic i s util ized, all data in puts and clo c k inputs a re appl ied to d edi cate d in puts, and all state feedb a ck is withi n a
sing le LAB. This parameter is t ested periodically b y sam pling produ ction m aterial.
24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined
by the lesser of 1/(tAWH + tAWL), 1/ (tAS1 + tAH) or 1/tACO1. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode
by a clock signal applied to an external dedicated input pin.
26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an async hronous register clock i nput applied
to an external dedicated input pin.
CY7C342B
10
Commercial and I ndustri al External Asynchronous Switching Characteri stics[6] Over Oper at in g Ra nge
(continued)
7C342B–25 7C342B–30 7C342B–35
Parameter Description Min. Max. Min. Max. Min. Max. Unit
tACO1 As ynchronous Clock Input to Output Delay[7] 25 30 35 ns
tACO2 Asy nchronou s Clock Input to Loc al Feed back to Combinatori-
al Output[19] 39 46 55 ns
tAS1 Dedicate d Input or Feedback Set-Up Time to Asynchronous
Clock Input[7] 568ns
tAS2 I/O Input Set-U p Tim e to Asynchronous Clock Input[7] 19 22 28 ns
tAH Input H old Ti me from Asynchronous Clock Input[7] 6 8 10 ns
tAWH As ynchronous Clock Input HIGH Time[7] 11 14 16 ns
tAWL Asynchronous Clock Input LOW Tim e[7 , 20 ] 911 14 ns
tACF Asynchronous Clock to Local Feedback Input[4,21] 15 18 22 ns
tAP External Asynchronous Clock Period (1/(fMAXA4))[4] 20 25 30 ns
fMAXA1 External Feedback Maximum Frequency i n Asynchronous
Mode (1/(tACO1 + tAS1))[4,22] 33.3 27.7 23.2 MHz
fMAXA2 Maximum Internal Asynchronous Fr e quency[4,23] 50 40 33.3 MHz
fMAXA3 Data Path Maximum Frequency in Asynchronous Mode[4,24] 40 33.3 28.5 MHz
fMAXA4 Maximum Asynchronous Register Toggle Frequency
1/(tAWH + tAWL)[4,25] 50 40 33.3 MHz
tAOH Output Data Stable Time from Asynchronous Clock Input[4,26] 15 15 15 ns
Commercial and Industri al Typical Intern al Switching C h aracte ristics Over Operating Range
7C342B–12 7C342B–15 7C342B–20
Parameter Description Min. Max. Min. Max. Min. Max. Unit
tIN Dedicated Input Pad and Buffer Delay 2.5 3 4 ns
tIO I/O Input Pad and Buffer Delay 2.5 3 4 ns
tEXP Expander Array Delay 6 8 10 ns
tLAD L ogic Arra y Data Delay 6 8 10 ns
tLAC L o gic Arr ay Co ntrol Delay 5 5 7 ns
tOD Output Buffer and Pad Delay 3 3 3 ns
tZX Output Buffer Enable Delay[27] 5 5 5 ns
tXZ Output Buffer Disable Dela y 5 5 5 ns
tRSU Register Set-Up Tim e Relati ve t o Clock Signal at Register 2 4 5 ns
tRH Register Hold Time Relative to Clock Signal at Register 4 4 5 ns
tLATCH Flow Through Latch Delay 1 1 2 ns
tRD Register Delay 0.5 1 1 ns
tCOMB Transparent Mode Delay[28] 1 1 2 ns
tCH Clock HIGH Tim e 3 4 6 ns
tCL Clock LOW Tim e 3 4 6 ns
tIC Asynchronous Clock Logic Delay 5 6 8 ns
tICS Synchronous Clock Delay 0.5 0.5 0.5 ns
tFD Feedback Delay 1 1 1 ns
tPRE Asynchronous Register Preset Time 3 3 3 ns
Notes:
27. Sample tested only for an output change of 500 mV.
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combi-
natorial operation.
CY7C342B
11
tCLR A s ynchronous Register Clear Time 3 3 3 ns
tPCW Asynchronous Preset and Cl ear Pulse Width 2 3 4 ns
tPCR Asynchronous Preset and Clear Recovery Time 2 3 4 ns
tPIA Programmable Interconnect Array Delay Time 8 10 12 ns
Commercial and Industri al Typical Intern al Switching C h aracte ristics Over Operating Range (continued)
7C342B–12 7C342B–15 7C342B–20
Parameter Description Min. Max. Min. Max. Min. Max. Unit
Commercial and Industri al Typical Intern al Switching C h aracte ristics Over Operating Range (continued)
7C342B–25 7C342B–30 7C342B–35
Parameter Description Min. Max. Min. Max. Min. Max. Unit
tIN Dedicated Input Pad and Buffer Delay 5 7 9 ns
tIO I/O Input Pad and Buffer Delay 6 6 9 ns
tEXP Expander Array Delay 12 14 20 ns
tLAD Logic Array Dat a Delay 12 14 16 ns
tLAC Logic Array Control Delay 10 12 13 ns
tOD O utp ut Buffer a nd Pad Delay 5 5 6 ns
tZX Output Buffer Enable Delay[27] 10 11 13 ns
tXZ Output Buffer Disable Delay 10 11 13 ns
tRSU Register Set-Up Time Relative to Clock Signal at Register 6 8 10 ns
tRH Register Hold Time Relative to Clock Signal at Register 6 8 10 ns
tLATCH Fl ow Through Latch Delay 3 4 4 ns
tRD R egister Delay 1 2 2 ns
tCOMB Transparent Mode Delay[28] 344ns
tCH C lock HIGH Time 8 10 12.5 ns
tCL Clock LOW Time 8 10 12.5 ns
tIC Asynchro nous Clock Logic Delay 14 16 18 ns
tICS Synchronous Clock Delay 2 2 3 ns
tFD Feedback Delay 1 1 2 ns
tPRE Asynchronous Register Preset Time 5 6 7 ns
tCLR Asynchronous Register Clear Tim e 5 6 7 ns
tPCW Asynchronous Preset and Clear Pulse Width 5 6 7 ns
tPCR Asynchronous Preset and Clear Recovery Tim e 5 6 7 ns
tPIA Programmable Interconnect Array Delay Time 14 16 20 ns
CY7C342B
12
Military External Synchronous Switching Characteristics[6] Over Operating Range
7C342B–15 7C342B–20 7C342B–25 7C342B–30 7C342B–35
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit
tPD1 Dedicated Input to Combinatori-
al Output Delay[7] 15 20 25 30 35 ns
tPD2 I/O Input to Combinator ial
Output Delay[8] 25 32 39 46 55 ns
tPD3 Dedicated Input to Combinatori-
al Output Delay with Expander
Delay[9]
23 30 37 44 55 ns
tPD4 I/O Input to Combinator ial
Output Delay with
Expander Delay[4,10]
33 42 51 60 75 ns
tEA Inp u t to Output Enable
Delay[4,7] 15 20 25 30 35 ns
tER Input to Output Disable
Delay[4,7] 15 20 25 30 35 ns
tCO1 Synchronous Clock Input to
Output Delay 7 8 14 16 20 ns
tCO2 Synchronous Clock to Local
Feedback to Combinatorial
Output[4, 1 1]
17 20 30 35 42 ns
tS1 Dedicated Input or Feedback
Set-Up Time to Synchronous
Clock I nput[7,12]
10 13 15 20 25 ns
tS2 I/O Input Set-Up Time to
Synchronous Clock Input[7] 20 24 29 36 45 ns
tHInput Hold Time from
Synchronous Clock Input[7] 00000ns
tWH Synchronous Clock Input
HIGH Time 5 7 8 10 12.5 ns
tWL Synchronous Clock Input
LOW Time 5 7 8 10 12.5 ns
tRW Asynchronous Clear Width[4, 7] 15 20 25 30 35 ns
tRR Asynchronous Clear Recovery
Time[4, 7] 15 20 25 30 35 ns
tRO Asynchronous Clear to Regis-
tered Output Delay[7] 15 20 25 30 35 ns
tPW Asynchronous Preset Width[4,7] 15 20 25 30 35 ns
tPR Asynchronous Preset
Recover y Time[4,7] 15 20 25 30 35 ns
tPO Asynchronous Preset to Regis-
tered Output Delay[7] 15 20 25 30 35 ns
tCF Synchronous Clock to Local
Feedback Input[4,13] 33336ns
tPExtern al Synchronous Clock
Period (1/(fMAX3))[4] 12 14 16 20 25 ns
fMAX1 Extern al Feedback Maximum
Frequency (1/(tCO1 + tS1))[4,14] 58.8 47.6 34.5 27.7 22.2 MHz
fMAX2 Internal Local Feedback
Maximum Frequency, lesser of
(1/(tS1 + tCF)) or (1/t CO1)[4,15]
76.9 62.5 55.5 43.4 32.2 MHz
CY7C342B
13
fMAX3 Data Path Maximum Frequency ,
lesser of ( 1/(t WL + tWH)),
(1/(tS1 + tH)) or (1/tCO1)[4,16]
100 71.4 62.5 50 40 MHz
fMAX4 M aximum Register Tog gle
Frequency (1/(tWL + tWH))[4,17] 100 71.4 62.5 50 40 MHz
tOH Output Data Stable Time from
Synchronous Clock Input[4,18] 33333ns
Military External Synchronous Switching Characteristics[6] Over Operating Range (continued)
7C342B–15 7C342B–20 7C342B–25 7C342B–30 7C342B–35
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit
Military External Asynchronous Switching Characteristics[6] Over Operating Range
7C342B–15 7C342B–20 7C342B–25 7C342B–30 7C342B–35
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit
tACO1 Asynchronous Clock Input to
Output Delay[7] 15 20 25 30 35 ns
tACO2 Asynchronous Clock Input to
Local Fe edback to Co mbina tori-
al Output[19]
25 32 39 46 55 ns
tAS1 Dedicated Input or Feedback
Set-Up Time to Asynchronous
Clock Input[7]
5 5 5 6 8 ns
tAS2 I/O Input Set-Up Time to
Asynchronous Clock Input[7] 14.5 17 19 22 28 ns
tAH Input Hold Time from
Asynchronous Clock Input[7] 5 6 6 8 10 ns
tAWH Asynchronous Clock Input
HIGH Time[7] 910 11 14 16 ns
tAWL Asynchronous Clock Input
LOW Time[7, 20] 7 8 9 11 14 ns
tACF Asynchronous Clock to Local
Feedback Input[4,21] 11 13 15 18 22 ns
tAP External Asynchronous Clock
Period (1/(fMAXA4))[4] 16 18 20 25 30 ns
fMAXA1 Ext ernal Feedback Maximum
Frequency in Asynchr onous
Mo de (1/( tACO1 + tAS1))[4,22]
50.0 40 33.3 27.7 23.2 MHz
fMAXA2 Maxi mum Internal Asynchro-
nous Frequency[4,23] 62.5 55.5 50 40 33.3 MHz
fMAXA3 Data Path Maximum Frequency
in Asynchronous Mode[4,24] 66.6 50 40 33.3 28.5 MHz
fMAXA4 Maxi mum Asynchronous
Register Toggle Fr equency
1/(tAWH + tAWL)[4,25]
62.5 55.5 50 40 33.3 MHz
tAOH Output Data Stable Time from
Asynchronous Clock Input[4,26] 12 12 15 15 15 ns
CY7C342B
14
Mil itary Typical Internal Switching Characteristics Over Operating Range
7C342B–15 7C342B–20 7C342B–25 7C342B–30 7C342B–35
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit
tIN Dedicated Input Pad and
Buffer Delay 34579ns
tIO I/O Input Pad and Buffer Delay 3 4 6 6 9 ns
tEXP Expander Array Delay 8 10 12 14 20 ns
tLAD Logic Array Data Dela y 8 10 12 14 16 ns
tLAC Logic Array Control Delay 5 7 10 12 13 ns
tOD Out put Buffer and Pad Dela y 3 3 5 5 6 ns
tZX Output Buffer Enable Delay[27] 5 5 10 11 13 ns
tXZ Output Buffer Disable Delay 5 5 10 11 13 ns
tRSU Register Set-Up Time Relative
to Clock Signal at Register 4 5 6 8 10 ns
tRH Register Hold Time R elative
to Clock Signal at Register 4 5 6 8 10 ns
tLATCH Flow T hrough Latch Dela y 1 2 3 4 4 ns
tRD Register Delay 1 1 1 2 2 ns
tCOMB Transparent Mode Delay[28] 12344ns
tCH Clock HIGH Time 4 6 8 10 12.5 ns
tCL Clock LOW Time 4 6 8 10 12.5 ns
tIC Asynchronous Clock Logic Delay 6 8 14 16 18 ns
tICS Synchronous Clock Delay 0.5 0.5 2 2 3 ns
tFD Feedback Delay 1 1 1 1 2 ns
tPRE Asynchronous Register Preset
Time 33567ns
tCLR Asynchronous Register Clear
Time 33567ns
tPCW Asynchronous Preset and
Clear Pulse Width 34567ns
tPCR Asynchronous Preset and
Clear Recovery Time 34567ns
tPIA Programmable Interconnect
Array Delay Time 10 12 14 16 20 ns
CY7C342B
15
Switching Waveforms
tACO1
External Combinatorial
External Synchronous
External Asynchronous
tER
tEA VALID OUTPUT
DEDICATED INPUT/
I/O INPUT
COMBINATORIAL
OUTPUT
COMBINATORIAL OR
REGISTERED OUTPUT
C342B-7
HIGH-IMPEDANCE
THREE-STATE
HIGH-IMPEDANC
E
THREE-STATE
tH
tS1 tWH tWL
tRR/tPR
tRW/tPW
tOH
tCO1
tRO/tPO
tCO2
C342B-8
DEDICATED INPUTS OR
REGISTERED
FEEDBACK
SYNCHRONOUS
CLOCK
ASYNCHRONOUS
CLEAR/PRESET
REGISTERED
OUTPUTS
COMBINATORIAL
REGISTERED FEEDBACK
tAH
tAS1 tAWH tAWL
tRR/tPR
tRW/tPW
tAOH
tRO/tPO
tACO2
ASYNCHRONOUS
CLOCK INPUT
ASYNCHRONOUS
OUTPUTS
DEDICATED INPUTS OR
REGISTERED FEEDBACK
ASYNCHRONOUS
CLEAR/PRESET
COMBINATORIAL
ASYNCHRONOUS
FEEDBACK C342B-9
[7]
[7]
[11]
[7]
[7]
[7]
tPD1 /tPD2[8]
OUTPUT FROM
REGISTERED
OUTPUT FROM
REGISTERED
CY7C342B
16
Switching Waveforms (continued)
Internal Combinatorial
Internal Asynchronous
InternalSynchronous
tIN
tIO tPIA
tEXP
tLAC,tLAD
C342B-10
INPUT PIN
EXPANDER
I/O PIN
LOGIC ARRAY
tIO tAWH tAWL tF
tIN
tIC
tRSU tRH
tRD,tLATCH tFD tCLR,tPRE tFD
ARRAY DELAY
OUTPUT
LOGIC ARRAY
INPUT
CLOCK PIN
LOGIC ARRAY
LOGIC ARRAY
CLOCK FROM
DATA FROM
CLOCK INTO
LOGIC ARRAY
REGISTER OU TPUT
TO ANOTHER LAB
tPIA
TO LOCAL LAB
REGISTER OU TPUT
LOGIC ARRAY
C342B-11
tR
tCH tCL
tIN tICS
tRSU tRH
C342B-12
SYSTEM CLOCK PIN
SYSTEM CLOCK
AT REGISTER
DATA FROM
LOGIC ARRAY
CY7C342B
17
Switching Waveforms (continued)
Internal Synchronous
C342B-13
tXZ tZX
tOD
HIGH IMPEDANCE
CLOCK FROM
LOGIC ARRAY
LOGIC ARRAY
DATA FROM
OUTPUT PIN
tRD
STATE
Orde rin g Inf orm a tio n
Speed
(ns) Orderi n g Cod e Package
Name Package Type Operating
Range
12 CY7C342B–12HC H81 68-Pin Windowed Leaded Chip Car rier Commercial
CY7C342B–12JC J81 68-Lead Pl a stic Leaded Chip Carrier
CY7C342B–12RC R68 68-Pin Windowed Ceramic Pin Grid Array
15 CY7C342B–15HC/HI H81 68-Pin Windowed Leaded Chip Carrier Commercial/
Industrial
CY7C342B–15JC/JI J81 68-Lead Pl a stic Leaded Chi p Carrier
CY7C342B–15RC/RI R68 68-Pin Windowed Ceramic Pin Grid Array
CY7C342B–15HMB H81 68-Pin Windowed Leaded Chip Car rier Military
CY7C342B–15RMB R68 68-Pin Windowed Ceramic Pin Grid Array
20 CY7C342B–20HC/HI H81 68-Pin Windowed Leaded Chip Carrier Commercial/
Industrial
CY7C342B–20JC/JI J81 68-Lead Pl a stic Leaded Chi p Carrier
CY7C342B–20RC/RI R68 68-Pin Windowed Ceramic Pin Grid Array
CY7C342B–20HMB H81 68-Pin Windowed Leaded Chip Car rier Military
CY7C342B–20RMB R68 68-Pin Windowed Ceramic Pin Grid Array
25 CY7C342B–25HC/HI H81 68-Pin Windowed Leaded Chip Carrier Commercial/
Industrial
CY7C342B–25JC/JI J81 68-Lead Pl a stic Leaded Chi p Carrier
CY7C342B–25RC R68 68-Pin Windowed Ceramic Pin Grid Array
CY7C342B–25HMB H81 68-Pin Windowed Leaded Chip Car rier Military
CY7C342B–25RMB R68 68-Pin Windowed Ceramic Pin Grid Array
30 CY7C342B–30HC/HI H81 68-Pin Windowed Leaded Chip Carrier Commercial/
Industrial
CY7C342B–30JC/JI J81 68-Lead Pl a stic Leaded Chi p Carrier
CY7C342B–30RC/RI R68 68-Pin Windowed Ceramic Pin Grid Array
CY7C342B–30HMB H81 68-Pin Windowed Leaded Chip Car rier Military
CY7C342B–30RMB R68 68-Pin Windowed Ceramic Pin Grid Array
35 CY7C342B–35HC/HI H81 68-Pin Windowed Leaded Chip Carrier Commercial/
Industrial
CY7C342B–35JC/JI J81 68-Lead Pl a stic Leaded Chi p Carrier
CY7C342B–35RC/RI R68 68-Pin Windowed Ceramic Pin Grid Array
CY7C342B–35HMB H81 68-Pin Windowed Leaded Chip Car rier Military
CY7C342B–35RMB R68 68-Pin Windowed Ceramic Pin Grid Array
CY7C342B
18
MIL ITARY SPECIFICATIONS
Group A Subgroup Testing
Document #: 38–00119–G
DC Characteristics
Parameter Subgroups
VOH 1, 2, 3
VOL 1, 2, 3
VIH 1, 2, 3
VIL 1, 2, 3
IIX 1, 2, 3
IOZ 1, 2, 3
ICC1 1, 2, 3
Switching Characteristics
Parameter Subgroups
tPD1 7, 8, 9, 10, 11
tPD2 7, 8, 9, 10, 11
tPD3 7, 8, 9, 10, 11
tCO1 7, 8, 9, 10, 11
tS1 7, 8, 9, 10, 11
tS2 7, 8, 9, 10, 11
tH7, 8, 9, 10, 11
tWH 7, 8, 9, 10, 11
tWL 7, 8, 9, 10, 11
tRO 7, 8, 9, 10, 11
tPO 7, 8, 9, 10, 11
tACO1 7, 8, 9, 10, 11
tAS1 7, 8, 9, 10, 11
tAH 7, 8, 9, 10, 11
tAWH 7, 8, 9, 10, 11
tAWL 7, 8, 9, 10, 11
CY7C342B
19
Package Diagrams
68-Pin WindowedLeaded Chip Carrier H81
CY7C342B
© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation a s sumes no responsibility for the use
of any circuitry othe r than circui try embodi ed in a Cy press Semi conductor p roduct. Nor does it convey o r imply any li cense under patent o r other rights. Cypress Semicondu ctor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer as sumes all risk of such use and in doing so indemnifies Cypress Semiconductor again st all charges.
Package Diagrams (continued)
68-Lead Plastic Leaded Chip Carrier J81
68-Pin Windowed PGA Ceramic R68