Standard Power MOSFETs File Number 1825 IRF250, IRF251, IRF252, IRF253 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors D 25 A and 30 A, 150 V - 200 V rps(on) = 0.085 Q and 0.120 Q Features: s SOA is power-dissipation limited Nanosecond switching speeds $ Linear transfer characteristics 92C8 -33741 High input impedance Majority carrier device TERMINAL DIAGRAM The IRF250, IRF251, IRF252 and IRF253 are n-channel TERMINAL DESIGNATION enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching SOURCE DRAIN regulators, switching converters, motor drivers, relay (FLANGE) drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEG TO-204AE metal 92cs-3780! package. JEDEC TO-204AE Absolute Maximum Ratings Parameter IRF250 IRF251 IRF252 iRF283 Units Vos Drain - Source Voltage 200 150 200 150 v VocR Drain - Gate Voltage (Rgg = 20 ka} @ 200 150 200 150 v ip @ Tc = 25C Continuous Drain Current 30 30 25 25 A Ip @ Tc = 100C Continuous Drain Current 19 19 16 16 A | 'OM Pulsed Drain Current @ 120 120 100 100 A VGs Gate - Source Voltage +20 Vv Pp @Tc = 25C Max. Power Dissipation 150 (See Fig. 14) Ww Linear Derating Factor 1.2 {See Fig. 14) wre 'LM Inductive Current, Clamped {See Fig. 15 and 16) L = 100ynH A 120 L 120 | 100 | 100 i Soa cD ee ae S510 150 rc Lead Temperature 300 {0.063 in. (1.6mm) from case for 10s) c 3-89Standard Power MOSFETs IRF250, IRF251, IRF252, IRF253 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF250 _ _ - IRF252 200 Vv V6s = OV IRF251 = InF283 | 15 ~ ~ v ip = 250pA Vesithy Gate Threshold Voltage ALL 2.0 _ 4.0 Vv Vos = Ves. lo = 25024 loss Gate-Source Leakage Forward ALL _ _ 100 nA Ves = 20V loss Gate-Source Leakage Reverse ALL ~ _ -100 nA Vag = -20V Ipss Zero Gate Voltage Drain Current - ~ 250 LA Vos = Max. Rating, Vgg = 0V ALL - = 1000 uA Vos = Max. Rating x 0.8, Vqg = OV, Tc = 125C Ip(on} - On-State Drain Current @ IRF250 40 _ _ A IRF251 Vos?! xR, Vag = 10V DS ? Dion) * "OS(on) max." GS ~ IRF252 | 95 _ _ A IRF253 RpS{on) Static Drain-Source On-State IRF250 ee Resistance inF251 | 7 [207 | 0.085) 8 REDED Vgg = 10V, Ip = 164 IRF253 - 0.09 | 0.120 2 dts Forward Transconductance @ ALL 8.0 14 = $0) Vos > pion) X Rpsion} max. 'p = 16A Cigs input Capacitance ALL = 2000 _ pF Vag = OV, Vpg = 25V. f = 1.0 MHz Coss Output Capacitance ALL _ 800 pF See Fig. 10 Cogs, Reverse Transfer Capacitance ALL - 300 _ pF tdion) __Turn-On Delay Time ALL _ ~ 35 ns Vpp = 95V, IF = 16A,2, = 4.72 ty Rise Time ALL _ - 100 ns See Fig. 17 tdioff) _Turn-Off Delay Time ALL _ = 125 ns (MOSFET switching times are essentialiy tr Fall Time ALL _ _ 100 ns independent of operating temperature.) Q Total Gate Charge Vv, = 10V,!, = 38A, Voc = 0.8 Max. Rating. 3 - 7 GS 0 OS (Gate-Source Pius Gate-Drain) ALL 8 120 ne See Fig. 18 for test circuit. (Gate charge is essentially i fl ing t . Ogs Gate-Source Charge ALL _ 37 56 ac independent of operating temperature.) Qga Gate-Drain (Miller) Charge ALL - 42 63 ac Lp Internal Drain Inductance ALL - 5.0 nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. 9 ls Internal Source inductance ALL - 12.5 - nH Measured from the Lp source pin, 6 mm (0.25 in.) from header L and source bonding pad. . Thermal Resistance RinJC _ Junction-to-Case ALL - = 0.83 C Rincs _Case-to-Sink ALL _ 0.1 _ C/W Mounting surface flat, smooth, and greased. RinJA _ Junction-to-Ambient ALL - = 30 Cw Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF250 _ 30 A Modified MOSFET symbol (Body Diode} IRF251 ~ showing the integral reverse P-N junction rectifier. IRF252 _ _ 25 A . IRF253 Ism Pulse Source Current IRF250 & (Body Diode) @ 1RF251 - 7 120 A / IRF252 IRF253 ~ > {tee A Vsp _ Diode Forward Voltage @) IRF250 _ _ 20 v Te = 25C, Ig = 30A, Veg = OV IRF251 IRF252 Te = 26 = = IRF253 - - 1.8 Vv To = 28C, Ig = 25A, Vag = OV ter Reverse Recovery Time ALL = 750 | ns Ty = 150C, Ip = 30A, dip/dt = 100A/zs Oar Reverse Recovered Charge ALL - 4.7 - uC Ty = 150C, tp = 30A, dip/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lo. Oty = 25C to 150C. 3-90 @Pulse Test: Pulse width < 300zs, Duty Cycle < 2%. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).Standard Power MOSFETs IRF250, IRF251, IRF252, IRF253 80 us PULSE TEST Vgs=7V 90 us PULSE TEST l | Vos > 'oion) * Roston) max. & 8 c = = 2 w = = x = bE Fb 2 2 z a a ac = & 2 D> 3 a z z = = Ty = 125C S 6 2 2 Ty = 25C { Ty = -50C v 3.5V 0 10 20 30 40 50 0 1 2 3 4 5 6 ? 8 Vps. DRAIN.TO-SOURCE-VOLTAGE (VOLTS) Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics OPERATION IN THIS AREAIS LIMITED 80 ys PULSE TEST BY Rosion) IRF250, 'p, ORAIN CURRENT (AMPERES) Ip, ORAIN CURRENT (AMPERES) Te = 260C Ty = 150C MAX. Ringe = 0.83 KIW IRF251.3 SINGLE PULSE ttt ddee IRF250, 2 0 04 08 12 16 20 6 2 5 109 20 80 100 200 500 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area 0.5 a2 0.1 pt he 0.05 THERMAL IMPEDANCE (PER UNIT) 1. OUTY FACTOR, D = . SINGLE PULSE (TRANSIENT 0.02 THERMAL IMPEDANCE} 2. PER UNIT BASE = Ryn jp = 083 DEG. COW. Zthactt/ Ringe, NORMALIZED EFFECTIVE TRANSIENT 3. Ty - To = Pom Zenit). 0.01 1052 5 wt 2 3 2 5 yy-2 2 5 agt 2 5 1.0 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-91Standard Power MOSFETs IRF250, IRF251, IRF252, IRF253 20 Ty = 50C Ty = 2500 oS ~ Ty = 250C Ty = 150C wo Ty = 1259C nN Ty = 150C N 3S 8 Vos > 'g(on) * Ros(on) max. j \ ' 80 us PULSE TEST on Gps, FRANSCONDUCTANCE (SIEMENS) lpg. REVERSE DRAIN CURRENT (AMPERES) nm 0G 1 2 3 4 0 10 20 30 40 50 Vp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Ip, DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 24 1.28 Vgs = 10V ' ' tp = 16A 22 1.15 2 an BVpgg, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) (NORMALIZED) = Rosion). ORAIN-TO-SOURCE ON RESISTANCE 0.95 10 0.85 06 0.75 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (OC) 02 . -40 6 40 80 120 160 Fig. 8 ~ Breakdown Voltage Vs. Temperature T), JUNCTION TEMPERATURE (C) 4000 Fig. 9 Normalized On-Resistance Vs. Temperature 20 Ves 70 I f= 1 MHz Ciss = Cos + Cgg, Cds SHORTED Crsg = Cog Cgs Cog Cau * Co Ce = Cast Cog 3200 15 Vos ao Vpg = 1ov.| t t Lg = 160V, IRF2S0, - 2400 Cisg 1600 C, CAPACITANCE (pF) Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) 3 800 st Y / Ip = 38A FOR TEST CIRCUIT + $4 SEE FIGURE 18 0 10 20 30 40 50 Vpg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) 8 28 56 84 Wa 140 Og, TOTAL GATE CHARGE inC) Fig. 10 Typical Capaci . Drain-to- \ . 3 ypical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-920.22 T T r Rps(an) MEASURED WITH a CURRENT PULSE OF = 2.0 us DURATION, q & INITIAL Ty = 25C, w (HEATING EFFECT OF 2.0 us 2 0.18 Vgg = 10V $4 PULSE IS MINIMAL.) 4 fe 2 a ao z oO ws S 014 DZD o a o - z a 5 9.10 ] Lf" ~ 9. a 2 YY Lvs 20v L att Le 0.06 0 40 80 120 160 Ip, ORAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 140 NY 120 IN \ 60 , \ . \ N Pp, POWER DISSIPATION (WATTS} 0 20 40 60 80 100 120 140 Tc CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve ADJUST A, TO OBTAIN SPECIFIED Ip Vos Vas T purse DUT. | GENERATOR 102 SOURCE IMPEDANCE Fig. 17 Switching Time Test Circuit Standard Power MOSFETs RF 250, IRF251, IRF252, IRF253 24 IRF256, 251 ip, DRAIN CURRENT (AMPERES) 0 25 50 75 100 125 150 Tc, CASE TEMPERATURE (C} Fig. 13 Maximum Drain Current Vs. Case Temperature VARY t, TO OBTAIN REQUIRED PEAK |, Veg = Ov by th Ey =G58Vpsg Ec = 0.75 BVog5 Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms Vos CURRENT ISOLATED REGULATOR SUPPLY) SAME TYPE AS QUT 12V T BATTERY | Oeuf Vos CURRENT = CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit 3-93