Notes through are on page 8
www.irf.com 1
IRFB260NPbF
SMPS MOSFET
HEXFET® Power MOSFET
VDSS RDS(on) max ID
200V 0.04056A
PD - 95473
TO-220AB
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 56
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 40 A
IDM Pulsed Drain Current 220
PD @TC = 25°C Power Dissipation 380 W
Linear Derating Factor 2.5 W/°C
VGS Gate-to-Source Voltage ± 20 V
dv/dt Peak Diode Recovery dv/dt 10 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
Absolute Maximum Ratings
lHigh frequency DC-DC converters
Benefits
Applications
lLow Gate-to-Drain Charge to Reduce Switching Losses
lFully Characterized Capacitance Including Effective COSS to
Simplify Design, (See App. Note AN1001)
lFully Characterized Avalanche Voltage and Current
7/7/04
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.40
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
lLead-Free
IRFB260NPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 29 ––– ––– S VDS = 50V, ID = 34A
QgTotal Gate Charge –– 150 220 ID = 34A
Qgs Gate-to-Source Charge ––– 24 37 nC VDS = 160V
Qgd Gate-to-Drain ("Miller") Charge ––– 67 100 VGS = 10V
td(on) Turn-On Delay Time ––– 17 ––– VDD = 100V
trRise Time ––– 64 –– ID = 34A
td(off) Turn-Off Delay Time ––– 52 ––– RG = 1.8
tfFall Time ––– 50 ––– VGS = 10V
Ciss Input Capacitance ––– 4220 ––– VGS = 0V
Coss Output Capacitance ––– 580 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 140 ––– pF ƒ = 1.0MHz
Coss Output Capacitance ––– 5080 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 230 ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 500 ––– VGS = 0V, VDS = 0V to 160V
Dynamic @ TJ = 25°C (unless otherwise specified)
ns
Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energy––– 450 mJ
IAR Avalanche Current––– 34 A
EAR Repetitive Avalanche Energy––– 38 mJ
Avalanche Characteristics
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 34A, VGS = 0V
trr Reverse Recovery Time ––– 240 360 ns TJ = 25°C, IF = 34A
Qrr Reverse RecoveryCharge ––– 2.1 3.2 µC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Diode Characteristics
56
220
A
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 200 –– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.26 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.040 VGS = 10V, ID = 34A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
––– ––– 25 µA VDS = 200V, VGS = 0V
––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -20V
IGSS
IDSS Drain-to-Source Leakage Current
IRFB260NPbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
3.0 5.0 7.0 9.0 11.0 13.0 15.0
VGS, Gate-to-Source Voltage (V)
1.00
10.00
100.00
1000.00
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 15V
20µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
56A
IRFB260NPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
030 60 90 120 150
0
2
5
7
10
12
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D34A
V = 40V
DS
V = 100V
DS
V = 160V
DS
0.0 0.5 1.0 1.5 2.0
VSD, Source-toDrain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS , Drain-toSource Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
110 100 1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS
= 0V, f = 1 MHZ
Ciss
= C
gs + C
gd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
IRFB260NPbF
www.irf.com 5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25 50 75 100 125 150 175
0
10
20
30
40
50
60
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes :
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRFB260NPbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
170
340
510
680
850
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
14A
24A
34A
IRFB260NPbF
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFET® Power MOSFETs
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRFB260NPbF
8www.irf.com
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.7/04
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C, L = 0.78mH
RG = 25, IAS = 34A.
ISD 34, di/dt 480A/µs, VDD V(BR)DSS,
TJ 175°C
Notes:
Pulse width 300µs; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging
time as Coss while VDS is rising from 0 to 80% VDSS
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
- B -
1.32 (.052)
1.22 (.048)
3X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
4.69 (.185)
4.20 (.165)
3X 0.93 (.037)
0.69 (.027)
4.06 (.160)
3.55 (.140)
1.15 (.045)
MIN
6.47 (.255)
6.10 (.240)
3.78 (.149)
3.54 (.139)
- A -
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
3X 1.40 (.055)
1.15 (.045)
2.54 (.100)
2X
0.36 (.014) M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
HEXFET
1- GATE
2- DRAIN
3- SOURCE
4- DRAIN
LEAD ASSIGNMENTS
IGBTs, CoPACK
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-220AB Package Outline
TO-220AB Part Marking Information
EXAMPLE:
IN T H E ASS E MB L Y LINE "C"
T HIS IS AN IR F 1010
LOT CODE 1789
AS S EMBLE D ON WW 19, 1997 PART NUMBER
AS S E MB L Y
LOT CODE
DAT E CODE
YEAR 7 = 1997
LINE C
WEEK 19
LOGO
RECTIFIER
INT E R NAT IONAL
Note: "P" in assembly line
position indicates "Lead-Free"
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/