May 2009
1
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
PM200RL1A060
FEATURE
Inverter + Brake + Drive & Protection IC
a) Adopting new 5th generation Full-Gate CSTBTTM chip
b) The over-temperature protection which detects the chip sur-
face temperature of CSTBTTM is adopted.
c) Error output signal is possible from all each protection up-
per and lower arm of IPM.
d) Compatible L-series package.
•3φ 200A, 600V Current-sense and temperature sense
IGBT type inverter
Monolithic gate drive & protection logic
Detection, protection & status indication circuits for, short-
circuit, over-temperature & under-voltage (P-FO available
from upper arm devices)
UL Recognized
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES Dimensions in mm
10.5
6-M5 Nuts
110±0.5
78±0.5
+1
-0.5
135
122.1
6.05
11.7
26 26 40.5
18
11
71.5
66.5
6-2 3-2
10
19 13
LABEL
9 5 1
10 10
3.25
2-φ2.5
4-φ5.5
Mounting Holes 19- 0.5
3-2 3-2
33.6
34.7
24.1
20 20 21.5
18.7
P
WV U
NB
30.15 11
(13)
(Screwing Depth)
13
110
90.1
6.05
4
1. VUPC
2. UFO
3. UP
4. VUP1
5. VVPC
6. VFO
7. VP
8. VVP1
9. VWPC
10. WFO
11. WP
12. VWP1
13. VNC
14. VN1
15. Br
16. UN
17. VN
18. WN
19. Fo
Te rminal code
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
2
VCES
±IC
±ICP
PC
Tj
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C(Note-1)
TC = 25°C
TC = 25°C(Note-1)
V
A
A
W
°C
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol Parameter Condition Ratings Unit
600
200
400
625
–20 ~ +150
INTERNAL FUNCTIONS BLOCK DIAGRAM
VCES
IC
ICP
PC
IF
VR(DC)
Tj
BRAKE PART
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
FWDi Forward Current
FWDi Rated DC Reverse Voltage
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C(Note-1)
TC = 25°C
TC = 25°C(Note-1)
TC = 25°C
TC = 25°C
V
A
A
W
A
V
°C
Symbol Parameter Condition Ratings Unit
600
100
200
390
100
600
–20 ~ +150
VFO
IFO
CONTROL PART
V
mA
20
20
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Symbol Parameter Condition Ratings Unit
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
20
20
VD
VCIN
V
V
V
N
U
N
W
P
V
WP1
WF
O
V
WPC
V
P
V
VP1
VF
O
V
VPC
U
P
V
UP1
UF
O
V
UPC
Br
BNWVUP
Fo
1.5k
1.5k 1.5k 1.5k
V
NC
V
N1
W
N
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
*: Tc measurement point is just under the chip.
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
3
Parameter
Symbol
Supply Voltage Protected by
SC
Supply Voltage (Surge)
Storage Temperature
Isolation Voltage
Condition
VCC(surge)
Tstg
Viso
Ratings
VCC(PROT) 400
500
–40 ~ +125
2500
Unit
V
°C
Vrms
V
VD = 13.5 ~ 16.5V
Inverter Part, Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
2.35
2.35
2.8
2.0
0.8
1.0
2.3
1.0
1
10
Min. Typ. Max.
Collector-Emitter Saturation
Voltage
Collector-Emitter Cutoff
Current
–IC = 200A, VD = 15V, VCIN = 15V (Fig. 2)
Tj = 25°C
Tj = 125°C
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Parameter
Symbol Condition
VCE(sat)
ICES
VEC
ton
trr
tc(on)
toff
tc(off)
Limits
0.3
1.75
1.75
1.7
0.8
0.4
0.4
1.0
0.3
Tj = 25°C
Tj = 125°C
FWDi Forward Voltage
Switching Time
VD = 15V, VCIN = 0V15V
VCC = 300V, IC = 200A
Tj = 125°C
Inductive Load (Fig. 3,4)
V
CE
= V
CES
, V
D
= 15V
(Fig. 5)
VD = 15V, IC = 200A
VCIN = 0V, Pulsed (Fig. 1)
TOTAL SYSTEM
V
mA
V
µs
Unit
0.20
0.30
0.32
0.53
0.023
°C/W
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Rth(c-f)
Inverter IGBT part (per 1 element) (Note-1)
Inverter FWDi part (per 1 element) (Note-1)
Brake IGBT part (Note-1)
Brake FWDi upper part (Note-1)
Case to fin, (per 1 module)
Thermal grease applied (Note-1)
Symbol Condition Unit
Min.
Junction to case Thermal
Resistances
THERMAL RESISTANCES
Contact Thermal Resistance
* If you use this value, Rth(f-a) should be measured just under the chips.
(Note-1) Tc (under the chip) measurement point is below.
Parameter Limits
Typ. Max.
UP
IGBT
24.5
57.4
VP WP UN VN WN BR
FWDi
24.5
46.6
IGBT
58.0
57.4
FWDi
58.0
46.6
IGBT
88.0
57.4
FWDi
88.0
46.6
IGBT
39.0
28.2
FWDi
39.0
38.8
IGBT
72.5
28.2
FWDi
72.5
38.8
IGBT
102.5
28.2
FWDi
102.5
38.8
IGBT
12.2
27.0
Di
6.8
61.4
arm
axis
X
Y
(unit : mm)
Y
X
Bottom view
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
4
±
5V/µs
2V
GND
15V
3.5
3.5
Mounting part screw : M5
Main terminal part screw : M5
Symbol Parameter
Mounting torque
Mounting torque
Weight
Condition Unit
N • m
N • m
g
Limits
Min. Typ. Max.
2.5
2.5
3.0
3.0
800
MECHANICAL RATINGS AND CHARACTERISTICS
VCE(sat)
ICES
VEC
V
mA
Min. Typ. Max.
V
Collector-Emitter Saturation
Voltage
FWDi Forward Voltage
Collector-Emitter Cutoff
Current
–IC = 100A, VCIN = 15V, VD = 15V (Fig. 2)
Tj = 25°C
Tj = 125°C
Unit
Parameter
Symbol Condition Limits
2.35
2.35
2.8
1
10
1.75
1.75
1.7
Tj = 25°C
Tj = 125°C
BRAKE PART
VD = 15V, IC = 100A
VCIN = 0V, Pulsed (Fig. 1)
V
CE
= V
CES
, V
D
= 15V
(Fig. 5)
VD = 15V, VCIN = 15V
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
ID
°C
V
mA
ms
16
4
1.8
2.3
12.5
0.01
15
mA
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Over Temperature Protection
Supply Circuit Under-Voltage
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
Vth(ON)
Vth(OFF)
SC
toff(SC)
OT
OT(hys)
UV
UVr
IFO(H)
IFO(L)
tFO
Trip level
Hysteresis
Trip level
Reset level
CONTROL PART
1.2
1.7
400
200
135
11.5
1.0
Parameter
Symbol Condition Max.
Min. Typ. Unit
Limits
8
2
1.5
2.0
0.2
20
12.0
12.5
10
1.8
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
Detect Temperature of IGBT chip
–20 Tj 125°C
VD = 15V, VCIN = 15V (Note-2)
VD = 15V (Note-2)
V
µs
VN1-VNC
V*P1-V*PC
Inverter part
Brake part A
–20 Tj 125°C, VD = 15V (Fig. 3,6)
VD = 15V (Fig. 3,6)
RECOMMENDED CONDITIONS FOR USE
Recommended value Unit
Condition
Symbol Parameter
V
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC (Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Using Application Circuit of Fig. 8
Supply Voltage
Control Supply Voltage
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
400
15.0 ±1.5
0.8
9.0
20
VCC
VCIN(ON)
VCIN(OFF)
fPWM
VDV
V
kHz
(Note-3) With ripple satisfying the following conditions: dv/dt swing ±5V/µs, Variation 2V peak to peak
tdead Arm Shoot-through Blocking
Time For IPM’s each input signals (Fig. 7) 2.0 µs
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
5
PRECAUTIONS FOR TESTING
1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corre-
sponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be al-
lowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W,B)
U,V,W,B, (N) U,V,W,B, (N)
VD (all)
IN
Fo
IN
Fo
VD (all)
VCIN
(0V)
Ic
V V
P, (U,V,W,B)
VCIN
(15V)
Ic
Fig. 7 Dead time measurement point example
Fig. 1 VCE(sat) Test Fig. 2 VEC, (VFM) Test
0V 1.5V 1.5V
1.5V
2V
2V
2V
0V
t
t
tdeadtdeadtdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
IPM’ input signal VCIN
(Upper Arm)
IPM’ input signal VCIN
(Lower Arm)
10%
90%
trr
Irr
trtd(on)
tc(on) tc(off)
td(off)
VCIN
Ic
VCE
10%
10% 10%
90%
tf
(ton = td(on) + tr) (toff = td(off) + tf)
Fo
P
N
N
CS
CS
U,V,W
Vcc
Vcc
Ic
Ic
VD (all)
VD (all)
P
U,V,W
VCIN
VCIN
VCIN
(15V)
VCIN
(15V)
Fo
Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform
a) Lower Arm Switching
Signal input
(Upper Arm)
Signal input
(Lower Arm)
Signal input
(Upper Arm)
Signal input
(Lower Arm)
b) Upper Arm Switching
VCIN
Fig. 5 ICES Test
Fig. 6 SC test waveform
SC Trip
Short Circuit Current
toff(SC)
VD (all) U,V,W,B, (N)
P, (U,V,W,B) A
Pulse VCE
VCIN
(15V) Ic
Fo
IN
Fo
Constant Current
Fo
Fo
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
6
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
OUT
Si
OT
OT
OT
OT
OT
OT
OT
GNDGND
In
Vcc
U
V
W
B
N
P
M
IF +
: Interface which is the same as the U-phase
OUT
Si
GNDGND
In
Vcc
OUT
Si
GNDGND
In
Vcc
GNDGND
In
Fo
Fo
Fo
Fo
Vcc
OUT
Si
GNDGND
In
Fo
Vcc
OUT
Si
GND
GND
In
Fo
Vcc
VWP1
WP
VWPC
UN
VN
VN1
WN
VNC
1.5k
1.5k
1.5k
1.5k
Fo
VVP1
VP
VVPC
0.1µ
4.7k
1k
0.1µ
0.1µ
20k
20k
20k
10µ
10µ
10µ
20k 10µ
0.1µ
VFo
WFo
UFo
VUP1
UP
VUPC
Br
IF
IF
IF
5V
IF
OUT
Si
GND
GND
In
Fo
Vcc
VD
VD
VD
VD
Fig. 8 Application Example Circuit
Si
OUT
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
7
PERFORMANCE CURVES
(Inverter Part)
0 0.5 1.0 1.5 2.0
Tj = 25°C
13V
VD = 17V
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
15V
0
50
100
150
200
250
10
1
10
0
10
2
5
7
10
3
2
3
5
7
2
3
5
7
2
3
VD = 15V
Tj = 25°C
Tj = 125°C
COLLECTOR RECOVERY CURRENT –I
C
(A)
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
0 0.5 1.0 1.5 2.0
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat)
(V)
CONTROL VOLTAGE V
D
(V)
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
12 13 14 15 16 17 18
IC = 200A
Tj = 25°C
Tj = 125°C
10
1
23 57
10
2
23 57
10
3
23 57
10
0
10
–1
10
0
2
3
4
5
7
10
1
2
3
4
5
7
ton
toff
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
SWITCHING TIME ton, toff (µs)
SWITCHING TIME (ton, toff) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
10
–2
10
–1
2
3
4
5
7
10
0
2
3
4
5
7
10
0
10
1
23 57
10
2
23 57
10
3
23 57
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS
(TYPICAL)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR CURRENT I
C
(A)
tc(on)
tc(off)
tc(off)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 VD = 15V
Tj = 25°C
Tj = 125°C
050100 150 200 250
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
8
0 5 10 15 20 25
N-side
P-side
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
f
c
(kHz)
I
D
VS. f
c
CHARACTERISTICS
(TYPICAL)
I
D
(mA)
0
10
30
50
20
40
60
70
80
90
0
2.5
5.0
7.5
10.0
12.5
15.0
E
on
V
CC
= 300V
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
Inductive load
E
off
COLLECTOR CURRENT I
C
(A)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS E
on
, E
off
(mJ/pulse)
050100 150 200 250 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0
20
40
60
80
100
10
30
50
70
90
t
rr
V
CC
= 300V
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
Inductive load
I
rr
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
COLLECTOR REVERSE CURRENT –I
C
(A)
REVERSE RECOVERY TIME t
rr
(µs)
REVERSE RECOVERY CURRENT l
rr
(A)
50 100 150 200 2500
0
7
250
0 50 100 150 200
V
CC
= 300V
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
Inductive load
COLLECTOR REVERSE CURRENT –I
C
(A)
SWITCHING RECOVERY LOSS CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS E
rr
(mJ/pulse)
1
2
3
4
5
6
0
2
4
6
8
10
12
14
16
18
20
–50 0 50 100 150
T
j
(°C)
UV TRIP LEVEL VS. T
j
CHARACTERISTICS
(TYPICAL)
UV
t
/UV
r
(V)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 V
D
= 15V
–50 0 50 100 150
SC TRIP LEVEL VS. T
j
CHARACTERISTICS
(TYPICAL)
T
j
(°C)
UV
t
UV
r
SC
(SC of T
j
= 25°C is normalized 1)
http://store.iiic.cc/
MITSUBISHI <INTELLIGENT POWER MODULES>
PM200RL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
May 2009
9
23 57
10
–3
23 5723 57
10
–4
23 57
10
1
23 57
10
0
10
–1
23 57
10
–2
10
–5
10
–2
10
–3
10
–1
5
7
10
0
2
3
5
7
2
3
5
7
2
3
23 57
10
–3
23 5723 57
10
–4
23 57
10
1
23 57
10
0
10
–1
23 57
10
–2
10
–5
10
–2
10
–3
10
–1
5
7
10
0
2
3
5
7
2
3
5
7
2
3
0 0.5 1.0 1.5 2.0
Tj = 25°C
13V
VD = 17V
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
0
20
40
60
80
100
120
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
12 13 14 15 16 17 18
I
C
= 100A
T
j
= 25°C
T
j
= 125°C
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. V
D
) CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
CONTROL VOLTAGE V
D
(V)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 V
D
= 15V
T
j
= 25°C
T
j
= 125°C
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
020406080100 120
V
D
= 15V
T
j
= 25°C
T
j
= 125°C
COLLECTOR RECOVERY CURRENT –I
C
(A)
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
10
1
10
0
10
2
5
7
10
3
2
3
5
7
2
3
5
7
2
3
0 0.5 1.0 1.5 2.0
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(TYPICAL)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th(j-c)
TIME t
(sec)
Single Pulse
IGBT part;
Per unit base
= R
th(j-c)
Q = 0.32°C/W
FWDi part;
Per unit base
= R
th(j-c)
F = 0.53°C/W
15V
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(TYPICAL)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th(j-c)
TIME t
(sec)
Single Pulse
IGBT part;
Per unit base
= R
th(j-c)
Q = 0.2°C/W
FWDi part;
Per unit base
= R
th(j-c)
F = 0.3°C/W
(Brake Part)
http://store.iiic.cc/