Typical Connection
3-PHASE BRIDGE DRIVER
Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage - dV/dt immune
Gate drive supply range from 10 to 20V (IR2136/IR21368),
11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/
IR21366/IR21367)
Undervoltage lockout for all channels
Over-current shutdown turns off all six drivers
Independent 3 half-bridge drivers
Matched propagation delay for all channels
Cross-conduction prevention logic
Lowside outputs out of phase with inputs. High side
outputs out of phase (IR2136/IR21363/IR21365/
IR21366/IR21367/IR21368) or in phase
(IR21362) with inputs.
3.3V logic compatible
Lower di/dt gate driver for
better noise immunity
Externally programmable
delay for automatic fault
clear
Description
Data Sheet No. PD60166_Q
IR2136/IR21362/IR21363/IR21365/
IR21366/IR21367/IR21368 (J&S)
www.irf.com 1
(Refer to Lead Assign-
ments for correct pin con-
figuration). This/These
diagram(s) show electri-
cal connections only.
Please refer to our Appli-
cation Notes and
DesignTips for proper cir-
cuit board layout.
Packages
28-Lead PDIP
28-Lead SOIC
44-Lead PLCC w/o 12 leads
The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFET
and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications.
Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS
or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from
an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An
open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred.
Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network
connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum
driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The
floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which
operates up to 600 volts.
VCC
HIN1,2,3 / HIN1,2,3
LIN1,2,3
FAULT
ITRIP
RCIN
EN
VSS COM
LO1,2,3
VS1,2,3
HO1,2,3
VB1,2,3
IR2136(2)(3)(5)(6)(7)(8)
TO
LOAD
VCC
HIN1,2,3 / HIN1,2,3
LIN1,2,3
FAULT
EN
GND
up to 600V
Part
Input Logic
Ton (typ.)
Toff (typ.)
VIH (typ.)
VIL (typ.)
Vitrip+
UV CC/BS+
UV CC/BS-
IR2136
HIN, LIN
400ns
380ns
2.7V
1.7V
0.46V
8.9V
8.2V
IR21362
HIN/LIN
400ns
380ns
2.7V
1.7V
0.46V
10.4V
9.4V
IR21363
HIN, LIN
400ns
380ns
2.7V
1.7V
0.46V
11.2V
11.0V
IR21365
HIN, LIN
400ns
380ns
2.7V
1.7V
4.3V
11.2V
11.0V
IR21366
HIN, LIN
250ns
180ns
2.0V
1.3V
0.46V
11.2V
11.0V
IR21367
HIN, LIN
250ns
180ns
2.0V
1.3V
4.3V
11.2V
11.0V
IR21368
HIN,LIN
400ns
380ns
2.0V
1.3V
4.3V
8.9V
8.2V
Feature Comparison: IR2136/IR21362/IR21363/
IR21365/IR21366/IR21367/IR21368
IR2136(2)(3)(5)(6)(7)(8)(J&S)
2www.irf.com
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-
mended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies
biased at 15V differential.
VB1,2,3 High side floating supply voltage IR2136(8) VS1,2,3 +10 VS1,2,3 +20
IR21362 VS1,2,3 +11.5 VS1,2,3 +20
IR2136(3)(5)(6)(7) VS1,2,3 +12 VS1,2,3 +20
VS1,2,3 High side floating supply offset voltage Note 1 600
VHO1,2,3 High side output voltage VS1,2,3 VB1,2,3
VLO1,2,3 Low side output voltage 0 VCC
VCC Low side and logic fixed supply voltage IR2136(8) 10 20
IR21362 11.5 20
IR2136(3)(5)(6)(7) 12 20
VSS Logic ground -5 5
VFLT FAULT output voltage VSS VCC
VRCIN RCIN input voltage VSS VCC
Symbol Definition Min. Max. Units
V
Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS.
(Please refer to the Design Tip DT97-3 for more details).
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
Symbol Definition Min. Max. Units
VSHigh side offset voltage VB1,2,3 - 25 VB1,2,3 + 0.3
VBS High side floating supply voltage -0.3 625
VHO High side floating output voltage VS1,2,3 - 0.3 VB1,2,3 + 0.3
VCC Low side and logic fixed supply voltage -0.3 25
VSS Logic ground VCC - 25 VCC + 0.3
VLO1,2,3 Low side output voltage -0.3 VCC + 0.3
VIN Input voltage LIN,HIN,ITRIP, EN, RCIN VSS - 0.3 lower of
(VSS + 15) or
VCC + 0.3)
VFLT F AULT output voltage VSS - 0.3 VCC + 0.3
dV/dt Allowable offset voltage slew rate 50 V/ns
PDPackage power dissipation @ TA +25°C (28 lead PDIP) 1.5
(28 lead SOIC) 1.6
(44leadPLCC) 2.0
RthJA Thermal resistance, junction to ambient (28 lead PDIP) 83
(28 lead SOIC) 78
(44 lead PLCC) 63
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
V
°C/W
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur . All voltage parameters
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board
mounted and still air conditions.
W
°C
www.irf.com 3
IR2136(2)(3)(5)(6)(7)(8)(J&S)
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
Recommended Operating Conditions cont.
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-
mended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies
biased at 15V differential.
VITRIP ITRIP input voltage VSS VSS +5
VIN Logic input voltage LIN, HIN (IR2136,IR21363(5)(6)(7)(8)),
HIN(IR21362), EN VSS VSS +5
TAAmbient temperature -40 125 oC
Symbol Definition Min. Max. Units
V
Static Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and
are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3
and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR2136(3)(5) 3.0
Logic “1” input voltage HIN1,2,3 IR21362
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR21366(7)(8) 2.5
VIL Logic “1” input voltage LIN1,2,3, HIN1,2,3
IR2136(3)(5) 0.8
Logic “0” input voltage HIN1,2,3 IR21362
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR21366(7)(8) 0.8
VEN,TH+ EN positive going threshold 3
VEN,TH- EN negative going threshold 0.8
VIT,TH+ ITRIP positive going threshold
IR2136(2)(3)(6) 0.37 0.46 0.55
IR21365(7)(8) 3.85 4.30 4.75
VIT,HYS ITRIP input hysteresis
IR2136(2)(3)(6) 0.07
IR21365(7)(8) .15
VRCIN,TH+ RCIN positive going threshold 8
VRCIN,HYS RCIN input hysteresis 3
VOH High level output voltage, VBIAS - VO 0.9 1.4 IO = 20 mA
VOL Low level output voltage, VO 0.4 0.6 IO = 20 mA
VCCUV+ VCC and VBS supply undervoltage IR2136(8) 8.0 8.9 9.8
VBSUV+ positive going threshold IR21362 9.6 10.4 11.2
IR21363(5)(6)(7) 10.6 11.1 11.6
V
IR2136(2)(3)(5)(6)(7)(8)(J&S)
4www.irf.com
Static Electrical Characteristics cont.
VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, V TH and I IN parameters are referenced to VSS and
are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3
and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.
Symbol Definition Min. Typ. Max. Units Test Conditions
VCCUV- VCC and VBS supply undervoltage IR2136(8) 7.4 8.2 9.0
VBSUV- negative going threshold IR21362 8.6 9.4 10.2
IR21363(5)(6)(7) 10.4 10.9 11.4
VCCUVH VCC and VBS supply undervoltage IR2136 0.3 0.7
VBSUVH lockout hysteresis IR21362 0.5 1.0
IR21363(5) 0.2
ILK Offset supply leakage current 50 VB1,2,3=VS1,2,3=600V
IQBS Quiescent VBS supply current 70 120
IQCC Quiescent VCC supply current 1.6 2.3 m A
VIN, CLAMP Input clamp voltage (HIN, LIN, ITRIP and EN) 4.9 5.2 5.5 V IIN =100µA
ILIN+ Input bias current (LOUT = HI) IR2136(2)(3)(5) 200 300 VLIN = 5V
IR21366(7)(8) —01
ILIN- Input bias current (LOUT = LO) IR2136(2)(3)(5) 100 220 VLIN = 0V
IR21366(7)(8) —01
IHIN+ Input bias current (HOUT = HI) IR2136(3)(5) 200 300 V HIN = 5V
IR21362 30 100
IR21366(7)(8) —01
IHIN- Input bias current (HOUT = LO) IR2136(3)(5) 100 220 VHIN = 0V
IR21362(6)(7)(8) —01
IITRIP+ “high” ITRIP input bias current 30 100 VITRIP = 5V
IITRIP- “low” ITRIP input bias current 0 1 VITRIP = 0V
IEN+ “high” ENABLE input bias current 30 100 VENABLE= 5V
IEN- “low” ENABLE input bias current 0 1 VENABLE = 0V
IRCIN RCIN input bias current 0 1 VRCIN = 0V or 15V
IO+ Output high short circuit pulsed current 120 200 VO=0V, PW10 µs
IO- Output low short circuit pulsed current 250 350 VO=15V, PW10 µs
RON,RCIN RCIN low on resistance 50 100
RON,FLT FAULT low on resistance 50 100
VIN = 0V or 5V
V
µA
µA
mA
www.irf.com 5
IR2136(2)(3)(5)(6)(7)(8)(J&S)
VCC VBS ITRIP ENABLE FAULT LO1,2,3 HO1,2,3
<UVCC X X X 0 (note 1) 0 0
15V <UVBS 0V 5V high imp LIN1,2,3 0
15V 15V 0V 5V high imp LIN1,2,3 HIN1,2,3
15V 15V >VITRIP 5V 0 (note 2) 0 0
15V 15V 0V 0V high imp 0 0
Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.
Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.
Note 2: When ITRIP <VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)
NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec
Dynamic Electrical Characteristics
VCC = VBS = VBIAS = 15V, VS1,2,3 = VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified.
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-on propagation delay IR2136(2)(3)(5)(8) 300 425 550
IR21366(7) 250
toff Turn-off propagation delay IR2136(2)(3)(5)(8) 250 400 550
IR21366(7) 180
trTurn-on rise time 125 190
tfTurn-off fall time 50 75
tEN ENABLE low to output IR2136(2)(3)(5)(8) 300 450 600 VIN, VEN = 0V or 5V
shutdown propagation delay IR21366(7) 100 250 400
tITRIP ITRIP to output shutdown propagation delay 500 750 1000 VITRIP = 5V
tbl ITRIP blanking time 100 150 VIN = 0V or 5V
VITRIP = 5V
tFLT ITRIP to FAULT propagation delay 400 600 800 VIN = 0V or 5V
VITRIP = 5V
tFILIN Input filter time (HIN, LIN, EN) 100 200 V IN = 0 & 5V
(IR2136(2)(3)(5)(8) only)
tFLTCLR FAULT clear time RCIN: R=2meg, C=1nF 1.3 1.65 2 mS VIN = 0V or 5V
VITRIP = 0V
DT Deadtime 220 290 360 VIN = 0 & 5V
MT Matching delay ON and OFF 40 75
MDT Matching delay, max (ton,toff) - min (ton,toff), 25 70
(ton,toff are applicable to all 3 channels)
PM Output pulse width matching, PWin -PWout (fig.2) 40 75
nS
VIN = 0 & 5V
nS External dead
time
>400nsec
IR2136(2)(3)(5)(6)(7)(8)(J&S)
6www.irf.com
Functional Block Diagram
IR2136/21363/21365
COM
VCC
LO1
LO2
LO3
DELAY
VSS/COM
LEVEL
SHIFTER
DELAY
VSS/COM
LEVEL
SHIFTER
DELAY
VSS/COM
LEVEL
SHIFTER
LIN1
HIN1
LIN2
HIN2
LIN3
HIN3
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
VS1
HO1
VB1
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
VS2
HO2
VB2
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
VS3
HO3
VB3
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
DRIVER
DRIVER
DRIVER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
UV
DETECT
EN
ITRIP +
-
0.5V
RCIN
S
R
Q
FAULT
INPUT
NOISE
FILTER
VSS
INPUT
NOISE
FILTER
SET
DOMINANT
LATCH
www.irf.com 7
IR2136(2)(3)(5)(6)(7)(8)(J&S)
IR21362
COM
VCC
LO1
LO2
LO3
DELAY
VSS/COM
LEVEL
SHIFTER
DELAY
VSS/COM
LEVEL
SHIFTER
DELAY
VSS/COM
LEVEL
SHIFTER
LIN1
HIN1
LIN2
HIN2
LIN3
HIN3
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
VS1
HO1
VB1
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
VS2
HO2
VB2
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
VS3
HO3
VB3
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
DRIVER
DRIVER
DRIVER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
UV
DETECT
EN
ITRIP
+
-
0.5V
RCIN
S
R
Q
FAULT
INPUT
NOISE
FILTER
VSS
INPUT
NOISE
FILTER
SET
DOMINANT
LATCH
Functional Block Diagram
IR2136(2)(3)(5)(6)(7)(8)(J&S)
8www.irf.com
Functional Black Diagram
IR21366/IR21367/IR21368
COM
VCC
LO1
LO2
LO3
DELAY
VSS/COM
LEVEL
SHIFTER
DELAY
VSS/COM
LEVEL
SHIFTER
DELAY
VSS/COM
LEVEL
SHIFTER
LIN1
HIN1
LIN2
HIN2
LIN3
HIN3
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
VS1
HO1
VB1
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
VS2
HO2
VB2
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
VS3
HO3
VB3
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
LATCH
UV
DETECT
SET
RESET DRIVER
DRIVER
DRIVER
DRIVER
UV
DETECT
EN
ITRIP +
-
RCIN
S
R
Q
FAULT
INPUT
NOISE
FILTER
VSS
INPUT
NOISE
FILTER
SET
DOMINANT
LATCH
www.irf.com 9
IR2136(2)(3)(5)(6)(7)(8)(J&S)
Lead Definitions
Symbol Description
VCC Low side and logic fixed supply
VSS Logic Ground
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase (IR2136/IR21363(5)(6)(7)(8)
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362)
LIN1,2,3 Logic inputs for low side gate driver outputs (LO1,2,3), out of phase
FAULT Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic,
open-drain output
EN Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is
high. No effect on FAULT and not latched
ITRIP Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates
FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally
set time TFLTCLR, then automatically becomes inactive (open-drain high impedance).
RCIN External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal
to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance
COM Low side gate driver return
VB1,2,3 High side floating supply
HO1,2,3 High side gate driver outputs
VS1,2,3 High voltage floating supply returns
LO1,2,3 Low side gate driver output
IR2136(2)(3)(5)(6)(7)(8)(J&S)
10 www.irf.com
28 Lead PDIP 44 Lead PLCC w/o 12 leads 28 lead SOIC (wide body)
IR2136/IR21363(5)(6)(7)(8) IR2136/IR21363(5)(6)(7)(8) (J) IR2136/IR21363(5)(6)(7)(8) (S)
1
VCC
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
8
FAULT
9
ITRIP
10
EN
11
RCIN
12
VSS
13
COM
14
LO3
28
VB1
27
HO1
26
VS1
25
24
VB2
23
HO2
22
VS2
21
20
VB3
19
HO3
18
VS3
17
16
LO1
15
LO2
IR2136
FAULT
8
9
10
11
LIN1
12
LIN2
13
LIN3
14
15
ITRIP
16
EN
17
7
VSS
LO1
18
LO3
VS3
HO3
VB3
29
41
VS1
LO2
COM
30
31
VS2
HO2
VB2
35
36
37
19 20 21 22 23 24 25
HO1
VB1
VCC
HIN1
HIN2
HIN3
42433456
IR2136
44 LEAD PLCC w/o 12 LEADS
RCIN
1
VCC
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
8
FAULT
9
ITRIP
10
EN
11
RCIN
12
VSS
13
COM
14
LO3
28
VB1
27
HO1
26
VS1
25
24
VB2
23
HO2
22
VS2
21
20
VB3
19
HO3
18
VS3
17
16
LO1
15
LO2
IR2136
Lead Assignments
28 Lead PDIP 44 Lead PLCC w/o 12 leads 28 lead SOIC (wide body)
IR21362 IR21362J IR21362S
1
VCC
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
8
FAULT
9
ITRIP
10
EN
11
RCIN
12
VSS
13
COM
14
LO3
28
VB1
27
HO1
26
VS1
25
24
VB2
23
HO2
22
VS2
21
20
VB3
19
HO3
18
VS3
17
16
LO1
15
LO2
1
VCC
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
8
FAULT
9
ITRIP
10
EN
11
RCIN
12
VSS
13
COM
14
LO3
28
VB1
27
HO1
26
VS1
25
24
VB2
23
HO2
22
VS2
21
20
VB3
19
HO3
18
VS3
17
16
LO1
15
LO2
FAULT
8
9
10
11
LIN1
12
LIN2
13
LIN3
14
15
ITRIP
16
EN
17
7
VSS
LO1
18
LO3
VS3
HO3
VB3
29
41
VS1
LO2
COM
30
31
VS2
HO2
VB2
35
36
37
19 20 21 22 23 24 25
HO1
VB1
VCC
HIN1
HIN2
HIN3
42433456
RCIN
www.irf.com 11
IR2136(2)(3)(5)(6)(7)(8)(J&S)
Figure 3. Output Enable Timing Waveform
EN
HO1,2,3
LO1,2,3
50%
90%
ten
Figure 1. Input/Output Timing Diagram
HIN1,2,3
LIN1,2,3
EN
ITRIP
FAULT
RCIN
HO1,2,3
LO1,2,3
HIN1,2,3
Figure 2. Switching Time W aveforms
LIN1,2,3
HIN1,2,3
HO1,2,3
LO1,2,3
50% 50%
90%
10%10%
90%
ton tr tftoff
LIN1,2,3
HIN1,2,3
50% 50%
PW
IN
PW
OUT
IR2136(2)(3)(5)(6)(7)(8)(J&S)
12 www.irf.com
Figure 4. Internal Deadtime Timing Waveforms
LIN1,2,3
HIN1,2,3
HO1,2,3
LO1,2,3
50% 50%
LIN1,2,3
HIN1,2,3
50% 50%
50% 50%
50% 50%
DT DT
Figure 5. ITRIP/RCIN Timing Waveforms
RCIN
Any
output
tflt
ITRIP
FAULT
50%
50%
titrip
90%
50%
50%
tfltclr
Vrcin,th+
U
tin,fil tin,fil
on on on off
offoff
high
low
HIN/LIN
HO/LO
Figure 5.5 Input Filter Function
www.irf.com 13
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
200
400
600
800
1000
10 12 14 16 18 20
Suppl y V ol tage (V )
Turn-on Propagation Delay (ns)
Figure 6B. T urn-on Propagation Delay vs.
Su
pp
l
y
Volt a
g
e
Min.
Typ.
Max.
0
200
400
600
800
1000
-50 -25 0 25 50 75 100 125
Temperature (oC)
Turn-on Propagation Delay (ns)
Typ.
Max.
Figure 6A. Turn-on Propagation D elay vs.
Temperature
Min.
0
200
400
600
800
1000
3 3.5 4 4.5 5
Input Vo l tag e (V )
Turn-on Propagation Delay (ns
)
Figur e 6C. Turn-on Pro pagation Delay vs.
In
p
ut Volta
g
e
Typ.
Max.
Min.
0
200
400
600
800
1000
-50 -25 0 25 50 75 100 125
Temperature (oC)
Turn-off Propagation Delay (ns)
Typ.
Max.
Figure 7A. Turn-off Propagation Delay vs.
Temperature
Min.
IR2136(2)(3)(5)(6)(7)(8)(J&S)
14 www.irf.com
0
200
400
600
800
1000
3 3.5 4 4.5 5
Input V olt age (V)
Turn-off Propagation Delay (ns
)
Figur e 7C . Turn-off P rop agation Delay vs.
In
p
ut Volta
g
e
Typ.
Max.
Min.
0
100
200
300
400
-50-250255075100125
Temp erature (oC)
Turn-on Rise Time (ns
)
Typ.
Max.
Figure 8A. Tu rn -on R ise Time vs. Temper a ture
0
200
400
600
800
1000
10 12 14 16 18 20
S upply Volt ag e (V)
Turn-off Propagation Delay (ns)
Figure 7B. Turn-off Propagation Delay vs.
Supply Voltage
Min.
Typ.
Max.
0
100
200
300
400
10 12 14 16 18 20
Supply Voltage (V)
Turn-on Rise Time (ns
)
Figure 8B. Turn-on Rise Time vs. S upply Volt age
Typ.
Max.
www.irf.com 15
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
50
100
150
200
-50-25 0 255075100125
Temperature (oC)
Turn-off Fall Time (ns)
Typ.
Max.
Figur e 9A. Turn-off Fall Time vs. Temper atu re
0
200
400
600
800
1000
-50 -25 0 25 50 75 100 125
Temperature (oC)
EN to Output Shutdown Time (ns)
Typ.
Max.
Figur e 1 0A. E N to O u tpu t Shutdow n T ime
vs. Temperat ure
Min.
0
50
100
150
200
10 12 14 16 18 20
Suppl y V ol tage (V )
Turn-off Fall Time (ns
)
Figure 9B. Turn- o ff Fall Time vs. S upply Volt a ge
Typ.
Max.
0
200
400
600
800
1000
10 12 14 16 18 20
S upply Volt a ge (V)
EN to Output Shutdown Time (ns)
Figure 10B. EN to Output Shut down Time vs.
Su
pp
l
y
Volta
g
e
Typ.
Max.
Min.
IR2136(2)(3)(5)(6)(7)(8)(J&S)
16 www.irf.com
0
300
600
900
1200
1500
-50 -25 0 25 50 75 100 125
Temperature (oC)
ITRIP to Output Shutdown Time (ns)
Typ.
Max.
Figur e 11A. ITRIP to O utput Shu tdo w n Time vs.
Temperature
Min.
0
200
400
600
800
1000
3 3.5 4 4.5 5
E N Voltage (V )
EN to Output Shutdown Time (ns)
Figure 10C. EN to Out put Shut down Time
vs. EN Volta
g
e
Typ.
Max.
Min.
0
300
600
900
1200
1500
10 12 14 16 18 20
S upply V oltage (V)
ITRIP to Output Shutdown Time (ns
)
Figure 11B. ITRIP to Output Shutdown
Time vs. Supply Voltage
Typ.
Max.
Min.
0
200
400
600
800
1000
1200
-50-250 255075100125
Temperature (oC)
ITRIP to FAULT Indication Time (ns)
Typ.
Max.
Figure 12A. ITRIP to FAULT Indication Time vs.
Temperature
Min.
www.irf.com 17
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
200
400
600
800
1000
1200
10 12 14 16 18 20
Supply Voltage (V)
Fault Indication Time (ns)
Figure 12B. ITRIP to FAULT Indication Time vs.
Su
l
Volta
e
Typ.
Max.
Min.
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 0 25 50 75 100 125
Tem per at ure (oC)
FAULT Clear Time (ms)
Typ.
Max.
Fig13A. FAULT Clear Time vs. Temperat ur e
Min.
0.5
1.0
1.5
2.0
2.5
3.0
10 12 14 16 18 20
Supp ly Vol t age (V )
Fault Clear Time (ms)
Figure 13B. FAULT Clear Time vs. Supply Voltage
Max.
Min.
Typ.
0
100
200
300
400
500
600
-50 -25 0 25 50 75 100 125
Temp erature (oC)
Dead Time (ns)
Typ.
Max.
Figure 14A. D ead T ime v s. Te mperatu re
Min.
IR2136(2)(3)(5)(6)(7)(8)(J&S)
18 www.irf.com
0
100
200
300
400
500
600
10 12 14 16 18 20
Suppl y Vol t age (V )
Dead Time (ns)
Figure 14B. Dead Time Time vs. Supply Voltage
Typ.
Max.
Min.
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Temperature ( oC)
Logic "0" Input Threshold (V)
Figure 15A. Logic "0" Input Thresh old vs.
Temperature
Max.
0
1
2
3
4
5
6
10 12 14 16 18 20
S upply V ol t age (V )
Logic "0" Input Threshold (V)
Figur e 15B. Logic " 0" Input Thr eshold vs.
Su
pp
l
y
Volta
g
e
Max.
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Temperature (oC)
Logic "1" Input Threshold (V)
Min.
Figure 16A. Lo gic "1" Input Threshold vs.
Temperature
www.irf.com 19
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
1
2
3
4
5
6
10 12 14 16 18 20
Supply Voltage (V)
Logic "1" Input Threshold (V)
Figure 16B. Logic "1" Input Threshold vs.
Su
pp
l
y
Volt a
g
e
Min.
200
300
400
500
600
700
800
-50 -25 0 25 50 75 100 125
Temperature (oC)
ITRIP Positive Going Threshold (m
V
Typ.
Max.
Figure 17A. ITRIP Positive Going Thre shold vs.
Temp erature (IR2136/21362/21363/IR21366 Only)
Min.
200
300
400
500
600
700
800
10 12 14 16 18 2
0
Suppl y Voltage (V)
ITRIP Positive Going Threshold (m
V
Figure 17B. IT RIP Positive Go i ng Th reshol d vs.
Supply Voltage (IR2136/21362/21363/IR21366 Only)
Typ.
M ax.
Min.
3.0
3.5
4.0
4.5
5.0
5.5
-50 -25 0 25 50 75 100 125
T emperature (oC)
ITRIP Positive Going Threshold (
V
Typ.
M ax.
Fi gur e 17C. ITRIP P ositi ve Goi ng Thr eshol d vs.
Tem p er atu re (IR21365/IR21367/IR21368 On ly)
Min.
IR2136(2)(3)(5)(6)(7)(8)(J&S)
20 www.irf.com
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 0 25 50 75 100 125
Temperature (oC)
High Level Output Voltage (V)
Typ.
Max.
Figure 18A. High Level Output vs. Temperature
0.0
0.5
1.0
1.5
2.0
2.5
3.0
10 12 14 16 18 20
S upply Voltage (V )
High Level Output Voltage (V)
Figur e 18B. H igh Level O utput vs. Supply Voltag e
Typ.
Max.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
-50 -25 0 25 50 75 100 125
Temperature (oC)
Low Level Output Voltage (V)
Typ.
Max.
Figure 19A. Low Level Out put vs. Temper ature
3.0
3.5
4.0
4.5
5.0
5.5
12 14 16 18 20
Supply Voltage (V)
ITRIP Positive Going Threshold (
V
Fi gur e 17D. ITRIP Positive Going Thr eshold vs.
Suppl y Volta ge (IR21365/IR21367/IR21368 Only)
Typ.
Max.
Min.
www.irf.com 21
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
10 12 14 16 18 20
Supply Voltage (V)
Low Level Output Voltage (V)
Figu re 19B. Low Level Output vs. Supply Vol tage
Typ.
Max.
8
9
10
11
12
13
-50-250 255075100125
Temperat ure (oC)
VCC or VBS Undervoltage Lockout (+) (V)
Typ.
Max.
Figure 22. VCC or VBS Undervoltage ( + ) vs.
Temperature (IR21362 Only)
Min.
7
8
9
10
11
12
-50 -25 0 25 50 75 100 125
T emperature (oC)
VCC or VBS Undervoltage Lockout (+) (
V
Typ.
Max
.
Figure 20. VCC or VBS Und ervol tage (+)
vs. Temperature (IR2136/IR21368 Only)
Min.
6
7
8
9
10
11
-50-25 0 25 50 75100125
Temperature (oC)
VCC or VBS Undervoltage Lockout (-) (V)
Typ.
Max.
Fi gure 21. V CC or VBS Undervol ta ge (-)
vs. Temperature (IR2136/ IR21368 Only)
Min.
IR2136(2)(3)(5)(6)(7)(8)(J&S)
22 www.irf.com
7
8
9
10
11
12
-50 -25 0 25 50 75 100 125
Tem per atu re (oC)
VCC or VBS Undervoltage Lockout (-) (V
)
Typ.
Max.
Figure 23. VCC or VBS Undervoltage (-) v s.
Temperature
(
IR2136 2 On l
y)
Min.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (oC)
Offset Supply Leakage Current ( µA)
Max.
Figur e 26A. O ffset Supply Leakage Current vs.
Temperature
10
11
12
13
-50 -25 0 25 50 75 100 125
Temperature (oC)
VCC or VBS Undervoltage Lockout (+) (V)
Typ.
M ax.
Figure 24. VCC or VBS Undervo ltage (+) vs.
Temperature (IR21363/21365/IR21366/IR21367 O nly)
Min.
9
10
11
12
13
-50 -25 0 25 50 75 100 12
5
Temperature (oC)
VCC or VBS Undervoltage Lockout (-) (V)
Figure 25 . VCC or VBS Undervol t age (-) vs.
Temperature (IR21363/2136 5/IR21366/IR21367 Only)
Min.
Typ
.
Max.
www.irf.com 23
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
100
200
300
400
500
100 200 300 400 500 600
VB Boost Voltage (V)
Offset Supply Leakage Current ( A)
Figure 26B. Offset Supply Leakage Current vs.
V
B
Boost Volta
g
e
Max.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature ( oC)
VBS Supply Current (µA)
Typ.
Max.
Figure 27A. VBS Su pply Cur rent vs. Temper at u re
0
50
100
150
200
250
10 12 14 16 18 20
VBS Fl oa ting Supply V oltage (V)
VBS Supply Current ( A)
Figure 27B. VBS Supply Current vs.
VBS Floating Supply Voltage
Typ.
Max.
0
1
2
3
4
5
-50-250 255075100125
Temperature (oC)
VCC Supply Current (mA)
Typ.
Max.
Figure 28A. VCC Supply Current vs. Temperature
IR2136(2)(3)(5)(6)(7)(8)(J&S)
24 www.irf.com
0
1
2
3
4
5
10 12 14 16 18 20
Supply V olt age (V)
VCC Supply Current (mA)
Figure 28B. VCC Supply Current vs.
VCC Supply Voltage
Typ.
Max.
0
200
400
600
800
-50 -25 0 25 50 75 100 125
Temperature (oC)
Logic "1" Input Current ( µA)
Typ.
Max.
Figure 29A. Lo gic " 1" Input Cu rrent vs. Temper ature
( IR 2136 /21363/21 365 and IR21362 L ow S ide On ly)
0
50
100
150
200
250
300
-50 -25 0 25 50 75 100 125
Temperature (oC)
Logic "1" Input Current (µA)
Typ.
Max.
Figur e 29C . Logic "1" Input C urr en t vs.
Temperat u re (IR21362 High Side Only)
0
200
400
600
800
10 12 14 16 18 20
Supply Voltage (V )
Logic "1" Input Current ( A)
Typ.
Max.
Figure 29B. Lo gic " 1" Input Curr e nt vs. Sup ply Voltage
( IR2136/21363/21365 and IR21362 Low Side Only)
www.irf.com 25
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
50
100
150
200
250
300
10 12 14 16 18 20
S uppl y Vo l t a ge (V )
Logic "1" Input Current ( A)
Figure 29D. Logic "1" Input Current vs.
Sup p ly Voltag e (IR 2 13 62 High Si de On ly)
Typ.
Max.
0
100
200
300
400
500
600
-50 -25 0 25 50 75 100 125
Temperatur e ( oC)
Logic "0" Input Current (µA)
Typ.
Max.
Figure 30A. Logic "0" Input C ur r ent vs. Temper at ur e
( IR2136/ 21363/ 21365 an d IR21362 Low Side Only)
0
1
2
3
4
-50 -25 0 25 50 75 100 125
Temperature (oC)
Logic "0" Input Current ( µA)
Typ.
Max.
Figur e 30C. Log ic "0" Input C urr ent vs.
Temperatur e ( IR21362 High Side Only)
0
100
200
300
400
500
600
10 12 14 16 18 20
S uppl y Vol tage (V )
Logic "0" Input Current ( A)
Figure 30B. Logi c "0" Input Curre nt vs. S uppl y
V o l tage (I R2136 / 21363/21365 an d I R21362 Low Sid e
Typ.
Max.
Only)
IR2136(2)(3)(5)(6)(7)(8)(J&S)
26 www.irf.com
0
1
2
3
4
10 12 14 16 18 20
Supply V oltage (V)
Logic "0" Input Current ( A)
Figure 30D. Logic "0" Input Current vs.
Su
pp
l
y
Volta
g
e
(
IR21362 H i
g
h Side Onl
y)
Typ.
Max.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (oC)
"High" ITRIP Current (µA)
Typ.
Max.
Figur e 31A. " High" ITRIP Current vs. Temper ature
0
50
100
150
200
250
10 12 14 16 18 20
S upp ly V o ltag e (V )
"High" ITRIP Current ( A)
Figur e 31B. "High" ITRIP Cur r ent vs. Supply Volt age
Typ.
Max.
0
1
2
3
4
-50 -25 0 25 50 75 100 125
Temperature (oC)
"Low" ITRIP Current (µA)
Max.
Figur e 32A. "L ow " ITRIP Current vs. Temperatur e
Typ.
www.irf.com 27
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
1
2
3
4
10 12 14 16 18 20
Supply Volt age (V)
"Low" ITRIP Current ( A)
Figure 32B. "Low " ITRIP Current vs. Suppl y Vol ta ge
Typ.
Max.
0
50
100
150
200
-50 -25 0 25 50 75 100 125
Temperature (oC)
"High" IEN Current (µA)
Max.
Figure 33A. "H igh" IEN C ur rent vs. Temper at u r e
Typ.
0
50
100
150
200
250
10 12 14 16 18 20
S upply V ol t age (V)
"High" IEN Current ( A)
Figure 33B. "H igh" IEN Current vs. Supply Voltage
Typ.
Max.
0
1
2
3
4
-50 -25 0 25 50 75 100 125
Temperature (oC)
"Low" IEN Current (
µA)
Typ.
Max.
Figur e 34A. " Low " IEN Cu rren t vs. Temperature
IR2136(2)(3)(5)(6)(7)(8)(J&S)
28 www.irf.com
0
1
2
3
4
-50 -25 0 25 50 75 100 125
Tem perature (oC)
RCIN Input Bias Current ( A)
Max.
Figure 35A. RCIN Input Bias C ur r ent
vs. Temperat ure
Typ.
0
1
2
3
4
10 12 14 16 18 20
Supply V olt age (V)
RCIN Input Bias Current ( A)
Figure 35B. R CIN Input Bias Current vs.
Su
pp
l
y
Volta
g
e
Typ.
Max.
0
100
200
300
400
-50 -25 0 25 50 75 100 125
Temperature (oC)
Output Source Current (mA)
Typ.
Figure 36A. Output Source Current vs.
Temperature
Min.
Figure 34B. “Low” IEN Current vs. Supply Voltage
0
1
2
3
4
10 12 14 16 18 20
Supply Voltage (V)
"Low" IEN Current ( A)
Fi gu re 34B. "Low" I EN Curre n t vs. S upp ly V oltage
Typ.
M ax.
www.irf.com 29
IR2136(2)(3)(5)(6)(7)(8)(J&S)
0
100
200
300
400
500
10 12 14 16 18 20
Supply Voltage (V)
Output Source Current (mA)
Figur e 36B. Ou tput Source Curr ent vs.
Su
pp
l
y
Volta
g
e
Typ.
Min.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Tem perature (oC)
Output Sink Current (mA)
Typ.
Figure 37A. O u tp ut Sink C urrent vs.
Temperature
Min.
0
100
200
300
400
500
600
10 12 14 16 18 20
Supply Voltage (V)
Output Sink Current (mA)
Figure 37B. Output Sink Current vs.
Su
pp
l
y
Volta
g
e
Typ.
Min.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (oC)
RCIN Low On-resistance ( )
Typ.
Max.
Figure 38A. RCIN Low O n-resistance vs.
Temperature
IR2136(2)(3)(5)(6)(7)(8)(J&S)
30 www.irf.com
0
50
100
150
200
250
10 12 14 16 18 20
S upp l y V o l tage (V )
RCIN Low On-resistance ( )
Figure 38B. RCIN Low On- resist ance vs.
Su
pp
l
y
Volta
g
e
Typ.
Max.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (oC)
FAULT Low On-resistance ()
Typ.
Max.
Figure 39A. FAULT Lo w O n-resistance vs.
Temperature
0
50
100
150
200
250
10 12 14 16 18 20
Supply Voltage (V)
FAULT Low On-resistance ( )
Figure 39B . FAULT Lo w On-res ista nc e vs.
Su
pp
l
y
Volta
g
e
Typ.
Max.
-15
-12
-9
-6
-3
0
10 12 14 16 18 20
S uppl y Volt a ge (V )
VS Offset Supply Voltage (V)
Figure 40. Maximum VS Negat ive Offset vs. VBS
Su
pp
l
y
Volt a
g
e
Typ.
www.irf.com 31
IR2136(2)(3)(5)(6)(7)(8)(J&S)
20
40
60
80
100
120
0.1 1 10 100
F requency (K Hz)
Junction Temperature (
oC)
100V
200V
300V
0V
20
40
60
80
100
120
0.1 1 10 100
Frequenc y (K Hz )
Junction Temperature (
oC)
100
V
200V
300V
0V
20
40
60
80
100
120
0.1 1 10 100
Frequenc y (K Hz )
Junction Temperature (
oC)
100
V
200V
300V
0V
20
40
60
80
100
120
0.1110100
Frequenc y (KHz )
Junction Temperature (oC)
100
V
200V
300V
0V
Figure 42. IR2136/IR21362(3)(5)(6)(7)(8)
vs. Frequency (IRG4BC30W), Rgate=15
, Vcc=15V
Figure 41. IR2136/IR21362(3)(5)(6)(7)(8)
vs. Frequency (IRG4BC20W), Rgate=33
, Vcc=15V
Figure 44. IR2136/IR21362(3)(5)(6)(7)(8)
vs. Frequency (IRG4PC50W), Rgate=5
, Vcc=15V
Figure 43. IR2136/IR21362(3)(5)(6)(7)(8)
vs. Frequency (IRG4BC40W), Rgate=10
, Vcc=15V
IR2136(2)(3)(5)(6)(7)(8)(J&S)
32 www.irf.com
20
40
60
80
100
120
0.1 1 10 100
Frequenc y (K Hz )
Junction Temperature (
oC)
100V
200V
300V
0V
20
40
60
80
100
120
0.1110100
Frequenc y (K Hz )
Junction Temperature (
oC)
100V
200V
300V
0V
20
40
60
80
100
120
0.1110100
Fre que ncy (KHz)
Junction Temperature (oC)
100V
200V
300V
0V
20
40
60
80
100
120
0.1 1 10 100
Frequenc y (KHz )
Junction Temperature (
oC)
100V
200V
300V
0V
Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J)
vs. Frequency (IRG4BC30W), Rgate=15
, Vcc=15V
Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J)
vs. Frequency (IRG4BC20W), Rgate=33
, Vcc=15V
Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J)
vs. Frequency (IRG4PC50W), Rgate=5
, Vcc=15V
Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J)
vs. Frequency (IRG4BC40W), Rgate=10
, Vcc=15V
www.irf.com 33
IR2136(2)(3)(5)(6)(7)(8)(J&S)
20
40
60
80
100
120
0.1 1 10 100
Frequenc y (K Hz)
Junction Temperature (
oC)
100
V
200V
300V
0V
20
40
60
80
100
120
0.1 1 10 100
Fre quency (K Hz)
Junction Temperature (oC)
100
V
200V
300V
0V
20
40
60
80
100
120
0.1 1 10 100
Frequenc y (K Hz )
Junction Temperature (oC)
100
V
200V
300V
0V
20
40
60
80
100
120
0.1110100
Frequenc y (K Hz )
Junction Temperature (oC)
100
V
200V
300V
0V
Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S)
vs. Frequency (IRG4BC30W), Rgate=15
, Vcc=15V
Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S)
vs. Frequency (IRG4BC20W), Rgate=33
, Vcc=15V
Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S)
vs. Frequency (IRG4PC50W), Rgate=5
, Vcc=15V
Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S)
vs. Frequency (IRG4BC40W), Rgate=10
, Vcc=15V
IR2136(2)(3)(5)(6)(7)(8)(J&S)
34 www.irf.com
28-Lead PDIP (wide body) 01-6011
01-3024 02 (MS-011AB)
Case outlines
01-6013
01-3040 02 (MS-013AE)28-Lead SOIC (wide body)
www.irf.com 35
IR2136(2)(3)(5)(6)(7)(8)(J&S)
01-6009 00
01-3004 02(mod.) (MS-018AC)
44-Lead PLCC w/o 12 leads
NOTES
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105
http://www.irf.com/ Data and specifications subject to change without notice. 5/22/2003