Rugged Power MOSFETs File Number 2022 Avalanche Energy Rated N-Channel Power MOSFETs 3.0A and 3.5A, 60V-100V ps(on) = 0.60 and 0.80 Features: @ Single pulse avalanche energy rated @ SOA is power-dissipation limited lB Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance The IRFF110R, IRFF111R, IRFF112R and IRFF113R are ad- vanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are n-channel en- hancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Absolute Maximum Ratings IRFF110R, IRFF111R ,IRFF112R, IRFF113R N-CHANNEL ENHANCEMENT MODE oO 9208-42658 TERMINAL DIAGRAM TERMINAL DESIGNATION GATE SOURCE DRAIN (CASE) JEDEC TO-205AF Parameter IRFFI10R | IRFFI11R | IRFF112R | IRFF113R Units Vos Drain - Source Voltage 100 60 100 60 Vv Vosa Drain - Gate Voltage (Res = 20 KQ) @ 100 60 100 60 Vv Ip @ Te = 25C Continuous Drain Current 3.5 3.5 3.0 3.0 A lom Pulsed Drain Current @ 14 14 12 12 A Vas Gate - Source Voltage +20 Vv Po @ Te = 25C Max. Power Dissipation 15 (See Fig. 14) Ww Linear Derating Factor 0.12 (See Fig. 14) w/ec Eas Single Puise Avalanche Energy Rating @ 19 mj Te ey ae 510 160 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 6-209Rugged Power MOSFETs IRFF110R, IRFF111R, IRFF112R, IRFF113R Electrical Characteristics @ T, = 25C (Unless Otherwise Specified) Par: ti Type Min. Typ. Max. {| Units Test Conditions BVoss Drain - Source Breakdown Voltage | IRFF110R = IRFF112R 100 - _ Vv Ves = OV IRFF111R _ RFF1i3R| 8 | ~ | Ip = 250UA Vestn _Gate Threshold Voltage ALL 2.0 _ 40 Vv Vos = Ves, lo = 2504 A less Gate-Source Leakage Forward ALL = = 100 nA Ves = 20V lass Gate-Source Leakage Reverse ALL i ~ -100 nA Ves = -20V loss Zero Gate Voltage Drain Current = 250 HA Vos = Max. Rating, Ves = 0V ALL = | 1000 | wA | Vos = Max. Rating x 0.8, Vas = OV, To = 125C lnm On-State Drain Current @ IRFFI10R | gg _ _ A On Vos > loton X Reston) max, Vas = 10V 1 iRFFi13R | 29 | | A Rosin Static Drain-Source On-State (RFFI1OR | 05 06 Q Resistance @ IRFF111R : = = Ves = 10V, In = 1.5A IRFF112R _ 06 08 2 IRFF113R : : Qts Forward Transconductance @ ALL 1.0 1.5 = S(Q) | Vos > loin X Rostonmex., Ip = 1.54 Cies Input Capacitance ALL = 135 = pF Ves = OV, Vos == 25V, f == 1.0 MHz Coss Output Capacitance ALL = 80 _ pF See Fig. 10 Cras Reverse Transfer Capacitance ALL = 20 = pF tatond Turn-On Delay Time ALL _ 10 20 ns Voo = 0.5BVpss, fp = 1.5A, Zo = 50 t, Rise Time ALL = 15 25 ns See Fig. 17 toot Turn-Off Delay Time ALL 15 25 ns (MOSFET switching times are essentially tt Fall Time ALL _ 10 20 ns independent of operating temperature.) Q, Total Gate Charge ALL _ 5.0 1 nc Ves = 10V, lo = 8.0A, Vos = 0.8V Max. Rating. (Gate-Source Plus Gate-Drain) _ : See Fig. 18 for test circuit. (Gate charge is ys Gate-Source Charge ALL = 20 nc essentially independent of operating Qya___ Gate-Drain (Miller) Charge ALL ~ {30 | | ac | temperature.) Lo Internal Drain Inductance ALL - 5.0 _ nH Measured from the Modified MOSFET drain lead, 5 mm symbol showing the (0.2 in.) from header internal device to center of die. inductances Lo Ls Internal Source Inductance ALL ad 15 > nH Measured from the 1 source lead, 5 mm s us (0.2 in.) from header to source $ bonding pad. sacs sees Thermal Resistance RinJC _ Junction-to-Case ALL = = 8.33 | C/W. RJA Junction-to-Ambient ALL _ _ 175 C/W | Free Air Operation Source-Drain Diode Ratings and Characteristics rts Continuous Source Current IRFFI10R | _ 35 A Modified MOSFET symbol (Body Diode) IRFFI11R " showing the integrat o IRFF112R 30 reverse P-N junction rectifier. IRFF1I3R | ~~ | A Ism Pulse Source Current WRFFIIOR | _ 14 A s (Body Diode) @ IRFF111R IRFF112R wigs IRFFII3SR | i 12 A Vsp Diode Forward Voltage @ IRFF1IOR _ _ IRFF1H1R - _ 2.5 v Tc = 28C, Is = 3.5A, Vas = OV IRFFI12R = _ a= IRFF113R _ 2.0 Vv Te = 25C, Is = 3.0A, Vas = OV te Reverse Recovery Time ALL. = 200 = ns Ty = 180C, Ie = 3.5A, die/dt = 100A/us Qar Reverse Recovered Charge ALL = 1.0 = C Ty = 150C, lp = 3.5A, die/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controiled by Ls + Lp. @ Ts = 25C to 180C. @ Puise Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). @ Voo = 5V, starting Ts = 25C, L = 2.3MH, Ags = 250, Ipeax = 3.5A. See figs. 15, 16. 6-210Znaclt Binge. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEOANCE (PER UNIT} ip, ORANG CURMENT (AMPERES) Ip, DRAIN CURRENT AMPERES 0.05 nz 001 105 Rugged Power MOSFETs IRFF110R, IRFF111R, IRFF112R, IRFF113R 80 12 f : Vos > 'p(on) Rosion) max, Tyo 1280 2 $6 Ty = 25C 5 as Ty 2 -85C = = = 40 2 3 z 322 < = a 2 Ss 16 os 0 0 10 2 x a 0 0 2 s 8 10 Vos, ORAIN.TO-SOURCE VOLTAGE (VOLTS) Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typicat Output Characteristics Fig. 2 Typical Transfer Characteristics GPERATION IN THIS AREA IS LIMITED BY Rosion) IRFFI12A, 1p, DRAIN CURRENT [AMPERES) Te = 25C Ty = 150C MAX Renu = 8.33 C/W IRFFII1A, OC - o OS 10 15 20 25 30 35 40 45 50 1a 2 5 10 20 so 100 200 = S00 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. DRAIN-TO-SQUACE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area t bon, | 1 QUTY FACTOR. D = + SINGLE PULSE (TRANSIENT 2. PER UNIT BASE = Ainge = 833 0EG C/W THERMAL IMPEDANCE) 3. Tym Te = Pom Znactt) 2 5 4 2 5 32 $ 2 2 5 ol 2 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maxi Effective Transient Thermal | d: a ion-to-Case Vs. Pulse Duration 6-211Rugged Power MOSFETs IRFF110R, IRFF117R, IRFF112R, IRFFI13R 40 36 _ Vos > !oion) * Roston} max. ~ s oe Ww ~ = is, TRANSCONDUCTANCE (SIEMENS) 58 8 e - 0 0 08 #16 24 32 40 48 56 64 72 80 |p, DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.25 w 120 oe = Bos $ =z 10 a 2 ss 1.05 as wz 1.00 22 Sz Bz oss e =z = 090 = a Bm 085 a & 0.80 07 Ty, JUNCTION TEMPERATURE (C} Fig. 8 Breakdown Voltage Vs. Temperature =Q fa 1 MMe Cm * Cy + Cog, Coy SHORTED Gayg * Cog Coan * Coy * = Cie t Coy C, CAPACITANCE (pf) o 19 2 x a * Vpg. ORAIN-TO-SOUACE VOLTAGE (VOLTS) S 66 40 -20 9 4 80 80 100 1200 140 jor. REVERSE DRAIN CURRENT (AMPERES) o1 0 02 04 O06 O8 10 #12 14 #16 #18 20 Vog. SOURCE TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage 2.00 178 1.50 1.25 1.00 0.75 aso Rosion). DRAIN-TO-SOURCE ON STATE RESISTANCE (NORMALIZED) 0.25 o 60 40 -20 0 2 40 660) 680) 100120 140 T, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Vos = Vos * 80V, IRFF110A, 112 Vgg, GATE-TO-SOUACE VOLTAGE (VOLTS) Ig = BA FOR TEST CIRCUIT SEE FIGURE 18 0 2 4 6 8 10 Qg, TOTAL GATE CHARGE inl) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 6-212Rugged Power MOSFETs IRFF110R, IRFFI11R, IRFF112R, IRFF113R n eo Rosin WITH CURRENT PULSE OF 2 RS eBURATION. INITIAL T+ 25C. (HEATING EFFECT OF 2.0 us IS MINIMAL} IREFTI0R, IRFF112A, Ip. DRAIN CURRENT (AMPERES) Apsion). DRAIN-TO-SOURCE ON RESISTANCE (OHMS) 2 aw a 9 5 10 15 20 5 50 15 190 126 150 Ip. DRAIN CURRENT (AMPERES) Te, CASE TEMPERATURE (C) Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature 20 Pp, POWER DISSIPATION (WATTS) a 20 a 60 a0 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve Vos VARY tp TO OBTAIN REQUIRED PEAK I, out Res Yoo Vgg5*tOv I Fr] 92CS- 42660 0.012 Fig. 16 Unclamped Energy Waveforms 9208-42659 Vos Fig. 15 Unclamped Energy Test Circuit CURRENT HSOLATED REGULATOR SUPPLY) SAME TYPE 12v ATTERY ADIUST RL OE) BATTERY | TO OBTAIN 7] SPECIFIEO Ip vy, GENERATOR Dw.T. r----- TO SCOPE 0.012 1 HIGH FREQUENCY | { Sma SHUNT 0 WoO Vos = _ +O . ; CURRENT = CURRENT Fig. 17 Switching Time Test Circuit SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 6-213