5STF 06T2020
TS - TR/248/07 Jul-10 1 of 15
5STF 06T2020
Old part no. TR 907FC-560-20
Medium Frequency Thyristor
Properties Key Parameters
§ Amplifying gate VDRM, VRRM
=
2 000 V
§ High operational capability ITAV
=
557 A
§ Optimized turn-on and turn-off parameters ITSM
=
8.0 kA
§ High operating frequency VTO
=
2.348 V
Applications rT
=
0.386 m
§ Power switching applications tq
=
20.0 µs
Types
VRRM, VDRM
5STF 06T2020..2025
5STF 06T1820..1825 2 000 V
1 800 V
Conditions:
Tj = -40 ÷ 125 °C,half sine waveform,
f = 50 Hz, note 1
Mechanical Data
Fm Mounting force
10 ± 2
kN
m Weight 0.20
kg
DS Surface
creepage
distance
13
mm
Da Air strike
distance 8
mm
Fig. 1 Case
ABB s.r.o.
Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
tel.: +420 261 306 250, http://www.abb.com/semiconductors
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 2 of 15
Maximum Ratings Maximum Limits Unit
VRRM
VDRM
Repetitive peak reverse
and off-state voltage
Tj = -40 ÷ 125 °C, note 1
5STF 06T2020..2025
5STF 06T1820..1825 2 000
1 800 V
ITRMS RMS on-state current
Tc = 70 °C, half sine waveform, f = 50 Hz 875 A
ITAVm Average on-state current
Tc = 70 °C, half sine waveform, f = 50 Hz 557 A
ITSM Peak non-repetitive surge
half sine pulse, VR = 0 V tp = 10 ms
tp = 8.3 ms 8 000
8 550 A
I2t Limiting load integral
half sine pulse, VR = 0 V tp = 10 ms
tp = 8.3 ms 320 000
303 000 A2s
(diT/dt)cr Critical rate of rise of on-state current
IT = ITAVm, half sine waveform, f = 50 Hz,
VD = 2/3 VDRM, tr = 0.3 µs, IGT = 2 A
800 A/µs
(dvD/dt)cr Critical rate of rise of off-state voltage
VD = 2/3 VDRM 1 000 V/µs
PGAVm Maximum average gate power losses 3 W
IFGM Peak gate current 10 A
VFGM Peak gate voltage 12 V
VRGM Reverse peak gate voltage 10 V
Tjmin - Tjmax Operating temperature range -40 ÷ 125 °C
Tstgmin -
Tstgmax Storage temperature range -40 ÷ 125 °C
Unless otherwise specified Tj = 125 °C
Note 1: De-rating factor of 0.13% VRRM or VDRM per °C is applicable for Tj below 25 °C
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 3 of 15
Characteristics Value Unit
min. typ. max.
VTM Maximum peak on-state voltage
ITM = 1 500 A 2.930
V
VT0 Threshold voltage 2.348
V
rT Slope resistance
IT1 = 880 A, IT2 = 2 639 A 0.386
m
IDM Peak off-state current
VD = VDRM 70 mA
IRM Peak reverse current
VR = VRRM 70 mA
tgd Delay time
Tj = 25 °C, VD = 0.4 VDRM, ITM = ITAVm,
tr = 0.3 µs, IGT = 2 A
2.0 µs
tq1 Turn-off time
IT = 500 A, diT/dt = -50 A/µs,
VR = 100 V, VD = 2/3 VDRM,
dvD/dt = 50 V/µs
group of tq
5STF 06T2020
5STF 06T1820
5STF 06T2025
5STF 06T1825
20.0
25.0
µs
Qrr Recovery charge
the same conditions as at tq1 240 µC
IrrM Reverse recovery current
the same conditions as at tq1 80 A
IH Holding current Tj = 25 °C
Tj = 125 °C 250
150 mA
IL Latching current Tj = 25 °C
Tj = 125 °C 1 500
1 000
mA
VGT Gate trigger voltage
VD = 12V, IT = 4 A Tj = - 40 °C
Tj = 25 °C
Tj = 125 °C
0.25
4
3
2
V
IGT
Gate trigger current
VD = 12V, IT = 4 A Tj = - 40 °C
Tj = 25 °C
Tj = 125 °C
10
1000
500
300
mA
Unless otherwise specified Tj = 125 °C
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 4 of 15
Thermal Parameters Value Unit
Rthjc Thermal resistance junction to case
double side cooling 32.0 K/kW
anode side cooling 52.0
cathode side cooling 83.0
Rthch Thermal resistance case to heatsink
double side cooling 10.0 K/kW
single side cooling 20.0
Transient Thermal Impedance
i 1 2 3 4 5
τi ( s ) 0.4857 0.2162 0.0762 0.0043 0.0006
Ri( K/kW )
13.07 8.03 8.20 2.57 0.13
0
5
10
15
20
25
30
35
0.001 0.01 0.1 1 10
Square wave pulse duration t d ( s )
Transient thermal impedance junction
to case Zthjc ( K/kW )
Analytical function for transient
thermal impedance
=τ= 5
1))/exp(1(
iiithjc tRZ
Conditions:
Fm = 10 ± 2 kN, Double side cooled
Correction for periodic waveforms
180°
sine: add 2.3 K/kW
180°
rectangular:
add 3.1 K/kW
120°
rectangular:
add 5.2 K/kW
60°
rectangular:
add 8.7 K/kW
Fig. 2
Dependence transient thermal impedance junction
to case on square pulse
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 5 of 15
On-State Characteristics
0
1000
2000
3000
4000
5000
0 1 2 3 4 5
VT ( V )
IT ( A )
125 °C
Tj = 25 °C
Fig. 3
Maximum on-state characteristics
Gate Trigger Characteristics
0
1
2
3
4
5
6
00.2 0.4 0.6 0.8 1
IG ( A )
VG ( V )
+125 °C
+25 °C
-40 °C
IGTmin
V
GTmin
DC
0
2
4
6
8
10
12
14
0 2 4 6 8 10 12
IG ( A )
VG ( V )
DC
10 ms
1 ms
50 µs
VGTmax
IGTmax
Fig. 4
Gate trigger characteristics Fig. 5
Maximum peak gate power loss
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 6 of 15
Surge Characteristics
0
5
10
15
20
110 100
t ( ms )
ITSM ( kA )
0
0.2
0.4
0.6
0.8
i2dt (106 A2s)
I
TSM
i2dt
0
2
4
6
8
10
110 100
Number n of cycles at 50 Hz
ITSM ( kA )
V
R
= 0 V
VR 0.5 VDRM
Fig. 6
Surge on-state current vs. pulse length,
half sine wave, single pulse,
VR = 0 V, Tj = Tjmax
Fig. 7
Surge on-state current vs. number
of pulses, half sine wave, Tj = Tjmax
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 7 of 15
Power Loss and Maximum Case Temperature Characteristics
0
500
1000
1500
0 200 400 600
ITAV ( A )
PT ( W )
ψ = 30°
60°
90°
120°
180°
DC
0
500
1000
1500
0 200 400 600
ITAV ( A )
PT ( W )
ψ
= 30°
60°
90°
120°
180°
270°
DC
Fig. 8
On-state power loss vs. average on-state
current, sine waveform, f = 50 Hz, T = 1/f Fig. 9
On-state power loss vs. average on-state
current, square waveform, f = 50 Hz, T = 1/f
60
70
80
90
100
110
120
130
0200 400 600
ITAV ( A )
TC ( °C )
180°
60°
90°
120°
ψ = 30°
DC
60
70
80
90
100
110
120
130
0200 400 600
ITAV ( A )
TC ( °C )
180°
DC
270°
120°
90°
60°
ψ
= 30°
Fig. 10
Max. case temperature vs. aver. on-state
current, sine waveform, f = 50 Hz, T = 1/f Fig. 11
Max. case temperature vs. aver. on-state
current, square waveform, f = 50 Hz, T = 1/f
Note 2: Figures number 8 ÷ 11 have been calculated without considering any turn-on and turn-off losses.
They are valid for f = 50 or 60 Hz operation.
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 8 of 15
Turn-off Time, Parameter Relationship
0.50
0.60
0.70
0.80
0.90
1.00
25 50 75 100 125
Tj ( °C )
tq / tq1 ( - )
Maximum values of turn-off time at application
specific conditions are given by using this formula:
)/()/()( dtdi
t
t
dtdv
t
t
T
t
t
tt T
q
q
D
q
q
j
q
q
qq = 111
1
where:
1q
t is turn-off time at standard conditions,
see section "Characteristics"
)( j
q
qT
t
t
1 is factor to be taken from fig. 12
)/( dtdv
t
tD
q
q
1 is factor to be taken from fig. 13
)/( dtdi
t
tT
q
q
1 is factor to be taken from fig. 14
Fig. 12
Normalised maximum turn-off time
vs. junction temperature
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
0200 400 600 800 1000
dv
D
/dt
( V/µs )
t
q
/ t
q1
( - )
0.80
0.90
1.00
1.10
1.20
1.30
1.40
0 200 400 600 800 1000
- diT/dt ( A/µs )
tq / tq1 ( - )
Fig. 13
Normalised maximum turn-off time
vs. rate of rise of off-state voltage Fig. 14
Normalised maximum turn-off time
vs. rate of fall of on-state current
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 9 of 15
Turn-on Characteristics
0
6000
10 30
t
iG (t), vT (t), iT (t)
0
2500
diT/dt
tgd
v T (t)
iT (t)
ITM
0.5 ITM
0.1 I
TM
V D
0.9 V D
iG (t)
0.1 V D
tgt td
0.0
0.5
1.0
1.5
2.0
0200 400 600 800 1000
diT/dt ( A/µs )
Won ( J )
Fig. 15
Typical waveforms and definition of symbols
at turn-on of a thyristor Fig. 16
Maximum turn-on energy per pulse vs.
rate of rise on-state current, Tj = Tjmax
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 10 of 15
Turn-off Characteristics
-600
10
t
vT (t), iT (t)
-600
- diT/dt
tq
v T (t)
iT (t)
IrrM VR
Qrr
I
TM
VD
dv D/dt
10
100
1000
10000
10 100 1000
- diT/dt ( A/µs )
Qrr ( µC )
ITM = 2000 A
1000 A
500 A
Fig. 17
Typical waveforms and definition of symbols
at turn-off of a thyristor, inductive switching
without RC snubber
Fig. 18
Max. recovered charge vs. rate of fall
on-state current, trapezoid pulse,
VR = 100 V, Tj = Tjmax
10
100
1000
10 100 1000
- diT/dt ( A/µs )
IrrM ( A )
ITM = 2000 A
1000 A
500 A
0.0
0.5
1.0
1.5
0200 400 600 800 1000
- diT/dt ( A/µs )
Woff ( J )
VR = 2/3 VDRM
500 V
200 V
100 V
1000 V
Fig. 19
Max. reverse recovery current vs.
rate of fall on-state current, trapezoid pulse,
VR = 100 V, Tj = Tjmax
Fig. 20
Maximum turn-off energy per pulse vs.
rate of fall on-state current, trapezoid pulse,
inductive switching without RC snubber,
ITM = 2 000 A, Tj = Tjmax
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 11 of 15
Frequency Ratings
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 21
Average on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 100 A/µs, VR = 100 V
Fig. 22
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 100 A/µs, VR = 100 V
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 23
Average on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 100 A/µs, VR = 2/3 VDRM
Fig. 24
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 100 A/µs, VR = 2/3 VDRM
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 12 of 15
Frequency Ratings
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 25
Average on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 500 A/µs, VR = 100 V
Fig. 26
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 500 A/µs, VR = 100 V
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 27
Average on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 500 A/µs, VR = 2/3 VDRM
Fig. 28
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 70 °C,
diT/dt = ± 500 A/µs, VR = 2/3 VDRM
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 13 of 15
Frequency Ratings
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 29
Average on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 100 A/µs, VR = 100 V
Fig. 30
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 100 A/µs, VR = 100 V
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 31
Average on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 100 A/µs, VR = 2/3 VDRM
Fig. 32
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 100 A/µs, VR = 2/3 VDRM
5STF 06T2020
ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic
ABB s.r.o. reserves the right to change the data contained herein at any time without notice
TS - TR/248/07 Jul-10 14 of 15
Frequency Ratings
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 33
Average on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 500 A/µs, VR = 100 V
Fig. 34
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 500 A/µs, VR = 100 V
0
100
200
300
400
500
600
700
10 100 1000 10000
f ( Hz )
ITAV ( A )
180°
270°
120°
90°
60°
ψ = 30°
0
1000
2000
3000
4000
5000
10 100 1000 10000
f ( Hz )
ITM ( A )
180°
270°
120°
90°
60°
ψ
= 30°
Fig. 35
Average on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 500 A/µs, VR = 2/3 VDRM
Fig. 36
Maximum on-state current vs. frequency,
trapezoid waveform, TC = 90 °C,
diT/dt = ± 500 A/µs, VR = 2/3 VDRM