© Semiconductor Components Industries, LLC, 2007
March, 2007 Rev. 0
1Publication Order Number:
74HC373/D
74HC373
Octal 3−State Non−Inverting
Transparent Latch
HighPerformance SiliconGate CMOS
The 74HC373 is identical in pinout to the LS373. The device inputs
are compatible with standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
These latches appear transparent to data (i.e., the outputs change
asynchronously) when Latch Enable is high. When Latch Enable goes
low, data meeting the setup and hold time becomes latched.
The Output Enable input does not affect the state of the latches, but
when Output Enable is high, all device outputs are forced to the
highimpedance state. Thus, data may be latched even when the
outputs are not enabled.
The HC373A is identical in function to the HC573A which has the
data inputs on the opposite side of the package from the outputs to
facilitate PC board layout.
The HC373A is the noninverting version of the HC533A.
Features
Output Drive Capability: 15 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1.0 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the JEDEC Standard No. 7.0 A Requirements
ESD Performance: HBM > 2000 V; Machine Model > 200 V
Chip Complexity: 186 FETs or 46.5 Equivalent Gates
This is a PbFree Device
http://onsemi.com
MARKING
DIAGRAM
HC373 = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
G= PbFree Package
See detailed ordering and shipping information in the package
dimensions section on page 3 of this data sheet.
ORDERING INFORMATION
1
20
HC
373
ALYW G
G
TSSOP20
DT SUFFIX
CASE 948E
1
20
(Note: Microdot may be in either location)
74HC373
http://onsemi.com
2
DATA
INPUTS
D0
D1
D2
D3
D4
D5
D6
D7 18
17
14
13
8
7
4
3
1
OUTPUT ENABLE
19
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
16
15
12
9
6
5
2
PIN 20 = VCC
PIN 10 = GND
NONINVERTING
OUTPUTS
11
LATCH ENABLE
FUNCTION TABLE
Inputs Output
Output Latch
Enable Enable D Q
LHHH
LHLL
L L X No Change
HXXZ
X = Don’t Care
Z = High Impedance
Q2
D1
D0
Q0
OUTPUT
ENABLE
GND
Q3
D3
D2
Q1 5
4
3
2
1
10
9
8
7
6
14
15
16
17
18
19
20
11
12
13
Q6
D6
D7
Q7
VCC
LATCH
ENABLE
Q4
D4
D5
Q5
LOGIC DIAGRAM PIN ASSIGNMENT
Design Criteria Value Units
Internal Gate Count* 46.5 ea
Internal Gate Propagation Delay 1.5 ns
Internal Gate Power Dissipation 5.0 mW
Speed Power Product 0.0075 pJ
*Equivalent to a twoinput NAND gate.
74HC373
http://onsemi.com
3
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol Parameter Value Unit
VCC DC Supply Voltage (Referenced to GND) – 0.5 to + 7.0 V
Vin DC Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V
Vout DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V
Iin DC Input Current, per Pin ±20 mA
Iout DC Output Current, per Pin ±35 mA
ICC DC Supply Current, VCC and GND Pins ±75 mA
PDPower Dissipation in Still Air, TSSOP Package† 450 mW
Tstg Storage Temperature – 65 to + 150 _C
TLLead Temperature, 1 mm from Case for 10 Seconds
(TSSOP Package) 260
_C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
Derating TSSOP Package: 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor HighSpeed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol Parameter Min Max Unit
VCC DC Supply Voltage (Referenced to GND) 2.0 6.0 V
Vin, Vout DC Input Voltage, Output Voltage (Referenced to GND) 0 VCC V
TAOperating Temperature, All Package Types – 55 + 125 _C
tr, tfInput Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
0
0
0
1000
500
400
ns
ORDERING INFORMATION
Device Package Shipping
74HC373DTR2G TSSOP20* 2500 Units / Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently PbFree.
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this highimpedance cir-
cuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
74HC373
http://onsemi.com
4
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol Parameter Test Conditions
VCC
(V) – 55 to 25_Cv 85_Cv 125_CUnit
VIH Minimum HighLevel Input
Voltage
Vout = VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL Maximum LowLevel Input
Voltage
Vout = 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
VOH Minimum HighLevel Output
Voltage
Vin = VIH
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
Vin = VIH |Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.2
3.7
5.2
VOL Maximum LowLevel Output
Voltage
Vin = VIL
|Iout| v 20 mA
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
Vin = VIL |Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.4
0.4
0.4
Iin Maximum Input Leakage Current Vin = VCC or GND 6.0 ±0.1 ±1.0 ±1.0 mA
IOZ Maximum ThreeState
Leakage Current
Output in HighImpedance State
Vin = VIL or VIH
Vout = VCC or GND
6.0 ±0.5 ±5.0 ±10 mA
ICC Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0 4.0 40 40 mA
NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor HighSpeed CMOS Data Book (DL129/D).
74HC373
http://onsemi.com
5
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Symbol Parameter
VCC
(V)
Guaranteed Limit
Unit
– 55 to 25_Cv 85_Cv 125_C
tPLH
tPHL
Maximum Propagation Delay, Input D to Q
(Figures 1 and 5)
2.0
3.0
4.5
6.0
125
80
25
21
155
110
31
26
190
130
38
32
ns
tPLH
tPHL
Maximum Propagation Delay, Latch Enable to Q
(Figures 2 and 5)
2.0
3.0
4.5
6.0
140
90
28
24
175
120
35
30
210
140
42
36
ns
tPLZ
tPHZ
Maximum Propagation Delay, Output Enable to Q
(Figures 3 and 6)
2.0
3.0
4.5
6.0
150
100
30
26
190
125
38
33
225
150
45
38
ns
tPZL
tPZH
Maximum Propagation Delay, Output Enable to Q
(Figures 3 and 6)
2.0
3.0
4.5
6.0
150
100
30
26
190
125
38
33
225
150
45
38
ns
tTLH
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 5)
2.0
3.0
4.5
6.0
60
23
12
10
75
27
15
13
90
32
18
15
ns
Cin Maximum Input Capacitance 10 10 10 pF
Cout Maximum ThreeState Output Capacitance
(Output in HighImpedance State)
15 15 15 pF
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON
Semiconductor HighSpeed CMOS Data Book (DL129/D).
CPD Power Dissipation Capacitance (Per Enabled Output)*
Typical @ 25°C, VCC = 5.0 V
pF
36
* Used to determine the noload dynamic power consumption: PD = CPD VCC2f + ICC VCC. For load considerations, see Chapter 2 of the
ON Semiconductor HighSpeed CMOS Data Book (DL129/D).
74HC373
http://onsemi.com
6
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
TIMING REQUIREMENTS (CL = 50 pF, Input tr = tf = 6.0 ns)
Symbol Parameter Figure
VCC
(V)
Guaranteed Limit
Unit
– 55 to 25_Cv 85_Cv 125_C
Min Max Min Max Min Max
tsu Minimum Setup Time, Input D to Latch Enable 4 2.0
3.0
4.5
6.0
25
20
5.0
5.0
30
25
6.0
6.0
40
30
8.0
7.0
ns
thMinimum Hold Time, Latch Enable to Input D 4 2.0
3.0
4.5
6.0
5.0
5.0
5.0
5.0
5.0
5.0
5 0
5.0
5.0
5.0
5.0
5.0
ns
twMinimum Pulse Width, Latch Enable 2 2.0
3.0
4.5
6.0
60
23
12
10
75
27
15
13
90
32
18
15
ns
tr, tfMaximum Input Rise and Fall Times 1 2.0
3.0
4.5
6.0
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
SWITCHING WAVEFORMS
VCC
GND
tf
tr
INPUT D
Q
10%
50%
90%
10%
50%
90%
tTLH
tPLH tPHL
tTHL
VCC
GND
50%
LATCH ENABLE
tPLH tPHL
Q
tw
50%
Figure 1. Figure 2.
Figure 3. Figure 4.
50%
50%
1.3 V
Q
tPZL tPLZ
tPZH tPHZ
10%
90%
VCC
GND
HIGH
IMPEDANCE
VOL
VOH
HIGH
IMPEDANCE
Q
OUTPUT
ENABLE
50%
INPUT D
LATCH ENABLE
VCC
VCC
GND
GND
VALID
th
tsu
50%
74HC373
http://onsemi.com
7
TEST CIRCUITS
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
Figure 5. Figure 6.
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
1 kW
D0
3
DQ
LE
2
Q0
11
1
D1
4
DQ
LE
5
Q1
D2
7
DQ
LE
6
Q2
D3
8
DQ
LE
9
Q3
D4
13
DQ
LE
12
Q4
D5
14
DQ
LE
15
Q5
D6
17
DQ
LE
16
Q6
D7
18
DQ
LE
19
Q7
Figure 7. EXPANDED LOGIC DIAGRAM
74HC373
http://onsemi.com
8
PACKAGE DIMENSIONS
TSSOP20
CASE 948E02
ISSUE C
DIM
A
MIN MAX MIN MAX
INCHES
6.60 0.260
MILLIMETERS
B4.30 4.50 0.169 0.177
C1.20 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.27 0.37 0.011 0.015
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
____
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE W.
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
110
1120
PIN 1
IDENT
A
B
T
0.100 (0.004)
C
DGH
SECTION NN
K
K1
JJ1
N
N
M
F
W
SEATING
PLANE
V
U
S
U
M
0.10 (0.004) V S
T
20X REFK
L
L/2
2X
S
U0.15 (0.006) T
DETAIL E
0.25 (0.010)
DETAIL E
6.40 0.252
−−− −−−
S
U0.15 (0.006) T
7.06
16X
0.36 16X
1.26
0.65
DIMENSIONS: MILLIMETERS
1
PITCH
SOLDERING FOOTPRINT*
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
74HC373
http://onsemi.com
9
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
74HC373/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative