December 2008 Rev 3 1/26
26
VNQ690SP
Quad channel high side solid state relay
Features
CMOS compatible inputs
Off state open load detection
Undervoltage and overvoltage shutdown
Overvoltage clamp
Thermal shutdown
Current limitation
Very low standby power dissipation
Protection against loss of ground and loss of
VCC
Reverse battery protection(a)
Description
The VNQ690SP is a monolithic device made by
using| STMicroelectronics VIPower M0-3
Technology, intended for driving resistive or
inductive loads with one side connected to
ground.
This device has four independent channels. Built-
in thermal shutdown and output current limitation
protect the chip from over temperature and short
circuit.
Type RDS(on) IOUT VCC
VNQ690SP 90m
(1)
1. Per each channel.
10A 36V
a. See Application schematic on page 16
PowerSO-10
1
10
Table 1. Device summary
Package
Order codes
Tube Tape and reel
PowerSO-10 VNQ690SP VNQ690SP13TR
www.st.com
Contents VNQ690SP
2/26
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16
3.1.1 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 16
3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 17
3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . . 18
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 PowerSO-10 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 PowerSO-10 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
VNQ690SP List of tables
3/26
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 5. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 6. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 7. VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 8. Switching (VCC = 13V; Tj = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 9. Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 10. Openload detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 11. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 12. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 13. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 14. PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 15. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
List of figures VNQ690SP
4/26
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Status timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Off state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 10. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 11. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 12. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. On state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 15. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 16. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 17. On state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 18. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 19. Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 20. Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 21. Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 22. Openload Off state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 23. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 24. Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 25. PowerSO-10 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 26. Rthj-amb Vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 19
Figure 27. Thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 28. Thermal fitting model of a quad channel HSD in PowerSO-10. . . . . . . . . . . . . . . . . . . . . . 20
Figure 29. PowerSO-10 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 30. PowerSO-10 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 31. PowerSO-10 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 32. SO-28 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
VNQ690SP Block diagram and pin description
5/26
1 Block diagram and pin description
Figure 1. Block diagram
Figure 2. Configuration diagram (top view)
Table 2. Suggested connections for unused and not connected pins
Connection / pin Status N.C. Output Input
Floating X X X X
To ground X Through 10K
resistor
UNDERVOLTAGE
OVERVOLTAGE
OVERTEMP. 1
OVERTEMP. 2
I
LIM2
DEMAG 2
I
LIM1
DEMAG 1
INPUT 1
INPUT 2
GND
V
CC
OUTPUT 1
OUTPUT 2
DRIVER 2
DRIVER 1
LOGIC
OVERTEMP. 3
OVERTEMP. 4
I
LIM4
DEMAG 4
I
LIM3
DEMAG 3
INPUT 3
INPUT 4 OUTPUT 3
OUTPUT 4
DRIVER 4
DRIVER 3
STATUS STATUS
OPEN LOAD
OFF-STATE
1
2
3
4
5
6
7
8
9
10
11
GND
OUTPUT 4
OUTPUT 3
OUTPUT 2
OUTPUT 1
STATUS
INPUT 4
INPUT 3
INPUT 2
INPUT 1
V
CC
Electrical specifications VNQ690SP
6/26
2 Electrical specifications
2.1 Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the Operating sections of
this specification is not implied. Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality document.
2.2 Thermal data
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
VCC Supply voltage 41 V
- VCC Reverse DC supply voltage - 0.3 V
IOUT DC output current, per each channel Internally limited A
IRReverse DC output current, per each channel - 15 A
IIN Input current +/- 10 mA
ISTAT Status current +/- 10 mA
IGND DC ground current at TC < 25°C -200 mA
VESD
Electrostatic discharge (human body model: R=1.5KΩ;
C = 100pF)
- INPUT
- STATUS
- OUTPUT
- VCC
4000
4000
5000
5000
V
V
V
V
EMAX
Maximum switching energy
(L = 0.38mH; RL = 0; Vbat = 13.5V; Tjstart = 150ºC; IL = 14A) 53 mJ
Ptot Power dissipation at TC = 25°C 78 W
TjJunction operating temperature - 40 to 150 °C
Tstg Storage temperature - 55 to 150 °C
Table 4. Thermal data (per island)
Symbol Parameter Value Unit
Rthj-lead Thermal resistance junction-case 2 °C/W
Rthj-amb
Thermal resistance junction-ambient
(one chip ON) 52(1)
1. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35 µm thick).
37(2)
2. When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35 µm thick).
°C/W
VNQ690SP Electrical specifications
7/26
2.3 Electrical characteristics
Values specified in this section are for 6V < VCC < 24V; -40°C < Tj < 150°C, unless
otherwise stated.
Figure 3. Current and voltage conventions
Note: VFn = VCCn - VOUTn during reverse battery condition.
I
S
I
GND
V
CC
GND
INPUT 4
INPUT 3
I
OUT2
I
IN3
I
IN4
V
IN4
V
IN3
V
CC
V
OUT2
I
OUT1
V
OUT1
INPUT 1
I
IN1
INPUT 2
I
IN2
V
IN1
V
IN2
I
STAT
STATUS
V
STAT
OUTPUT 4
OUTPUT 3
I
OUT3
I
OUT4
V
OUT4
V
OUT3
OUTPUT 1
OUTPUT 2
V
F1
(*)
Table 5. Power
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC(1) Operating supply
voltage 61336V
VUSD(1) Undervoltage shutdown 3.5 4.6 6 V
VUVhyst(1) Undervoltage
hysteresis 0.2 1 V
VOV(1) Overvoltage shutdown 36 V
VOVhyst(1) Overvoltage hysteresis 0.25 V
RON On state resistance
IOUT = 1A; Tj = 25°C
9V < VCC < 18V
IOUT = 1A;Tj = 150°C
9V < VCC < 18V
90
180
m
m
IS(1) Supply current
Off State; VCC = 13.5V;
VIN = VOUT = 0V
Off State; VCC = 13.5V;
VIN = VOUT = 0V;
Tj = 25°C
On State; VCC = 13V; VIN = 3.25V;
9V < VCC < 18V
12
12
6
40
25
12
µA
µA
mA
Electrical specifications VNQ690SP
8/26
Note: To ensure long term reliability under heavy overload or short circuit conditions, protection
and related diagnostic signals must be used together with a proper software strategy. If the
device is subjected to abnormal conditions, this software must limit the duration and number
of activation cycles.
IL(off1) Off state output current VIN = VOUT = 0V 0 50 µA
IL(off2) Off state output current VIN = 0V; VOUT = 3.5V -75 0 µA
IL(off3) Off state output current VIN = VOUT = 0V; VCC = 13V;
Tj = 125°C A
IL(off4) Off state output current VIN = VOUT = 0V; VCC = 13V;
Tj =25°C A
1. Per device.
Table 6. Protections
Symbol Parameter Test conditions Min. Typ. Max. Unit
TTSD Shutdown temperature 150 175 200 °C
TRReset temperature 135 °C
Thyst Thermal hysteresis 7 15 25 °C
Ilim DC short circuit current 9V < VCC < 36V
6V < VCC < 36V
10 14 20
20
A
A
Vdemag
Turn-off output clamp
voltage
IOUT = 2A;
VIN = 0V;
L = 6mH
VCC -
41
VCC -
48
VCC -
55 V
VSTAT Status low output voltage ISTAT=1.6mA 0.5 V
ILSTAT Status leakage current Normal operation;
VSTAT=5V 10 µA
CSTAT Status pin input capacitance Normal operation;
VSTAT=5V 25 pF
VSCL Status clamp voltage ISTAT=1mA
ISTAT=-1mA
66.8
-0.7
8V
V
Table 5. Power (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 7. VCC - output diode
Symbol Parameter Test conditions Min. Typ. Max. Unit
VFForward on voltage - IOUT = 0.9A; Tj = 150°C 0.6 V
VNQ690SP Electrical specifications
9/26
Figure 4. Status timings
Table 8. Switching (VCC = 13V; Tj = 25°C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
td(on) Turn-on delay time RL = 13 channels 1,2,3,4
(see Figure 5)30 µs
td(off) Turn-off delay time RL = 13 channels 1,2,3,4
(see Figure 5)30 µs
dVOUT/dt(on) Turn-on voltage slope RL = 13 channels 1,2,3,4
(see Figure 5)
See
Figure 10 V/µs
dVOUT/dt(off) Turn-off voltage slope RL = 13 channels 1,2,3,4
(see Figure 5)
See
Figure 12 V/µs
Table 9. Logic inputs
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Input low level voltage 1.25 V
IIL Input low level current VIN = 1.25V 1 µA
VIH Input high level voltage 3.25 V
IIH Input high level current VIN = 3.25V 10 µA
VI(hyst) Input hysteresis voltage 0.5 V
VICL Input clamp voltage IIN = 1mA
IIN = -1mA
66.8
- 0.7
8V
V
Table 10. Openload detection
Symbol Parameter Test conditions Min. Typ. Max. Unit
tSDL Status delay See Figure 4 20 µs
VOL Openload voltage detection threshold VIN = 0V 1.5 2.5 3.5 V
tDOL Openload detection delay at turn-off VCC = 18V 300 µs
VIN
VSTAT
tDOL
OPENLOAD STATUS TIMING
VIN
VSTAT
OVERTEMP STATUS TIMING
tSDL
tSDL
tSDL
Electrical specifications VNQ690SP
10/26
Figure 5. Switching characteristics
Table 11. Truth table
Conditions Input Output Status
Normal operation L
H
L
H
H
H
Current limitation L
H
L
X
H
H
Overtemperature L
H
L
L
H
L
Undervoltage L
H
L
L
X
X
Overvoltage L
H
L
L
H
H
Output voltage > VOL
L
H
H
H
L
H
V
OUT
dV
OUT
/dt
(on)
t
r
80%
10% t
f
dV
OUT
/dt
(off)
I
SENSE
t
t
90%
t
d(off)
INPUT
t
90%
t
d(on)
t
DSENSE
VNQ690SP Electrical specifications
11/26
Table 12. Electrical transient requirements
ISO T/R
7637/1
Test pulse
Test level
I II III IV Delays and impedance
1 - 25V - 50V - 75V - 100V 2ms, 10
2 + 25V + 50V + 75V + 100V 0.2ms, 10
3a - 25V - 50V - 100V - 150V 0.1µs, 50
3b + 25V + 50V + 75V + 100V 0.1µs, 50
4 - 4V - 5V - 6V - 7V 100ms, 0.01
5 + 26.5V + 46.5V + 66.5V + 86.5V 400ms, 2
ISO T/R
7637/1
Test pulse
Test level
IIIIIIIV
1C C C C
2C C C C
3a C C C C
3b C C C C
4C C C C
5C E E E
Class Contents
CAll functions of the device are performed as designed after exposure to
disturbance.
EOne or more functions of the device is not performed as designed after exposure
and cannot be returned to proper operation without replacing the device.
Electrical specifications VNQ690SP
12/26
Figure 6. Waveforms
OPEN LOAD without external pull-up
STATUSn
INPUTn
NORMAL OPERATION
UNDERVOLTAGE
VCC
VUSD
VUSDhyst
INPUTn
OVERVOLTAGE
VCC
VCC > VOV
STATUSn
INPUTn
STATUSn
STATUSn
INPUTn
STATUSn
INPUTn
OPEN LOAD with external pull-up
undefined
OVERTEMPERATURE
INPUTn
STATUSn
TTSD
TR
Tj
LOAD VOLTAGEn
VCC<VOV
LOAD VOLTAGEn
LOAD VOLTAGEn
LOAD VOLTAGEn
LOAD VOLTAGEn
LOAD CURRENTn
VOUT > VOL
VOL
VNQ690SP Electrical specifications
13/26
2.4 Electrical characteristics curves
Figure 7. Off state output current Figure 8. High level input current
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
1
1.25
1.5
1.75
2
2.25
2.5
2.75
3
3.25
3.5
IL(off1) (µA )
Vcc=24V
Vout=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Iih A )
Vin=3.25V
Figure 9. Input clamp voltage Figure 10. Turn-on voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
6
6.25
6.5
6.75
7
7.25
7.5
7.75
8
Vicl (V)
Ii n =1 m A
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0
50
100
150
200
250
300
350
400
450
500
dVout/dt(on) (V/ms)
Vcc=13V
RI=13Ohm
Figure 11. Overvoltage shutdown Figure 12. Turn-off voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
30
32.5
35
37.5
40
42.5
45
47.5
50
Vov (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
100
150
200
250
300
350
400
450
500
550
600
dV out/dt(off) (V/ms)
Vcc=13V
RI=13Ohm
Electrical specifications VNQ690SP
14/26
Figure 13. ILIM vs Tcase Figure 14. On state resistance vs VCC
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
5
7.5
10
12.5
15
17.5
20
22.5
25
Ilim (A)
Vcc=13V
0 5 10 15 20 25 30 35 40
Vcc (V)
20
40
60
80
100
120
140
160
Ron (mOhm)
Io u t =1 A
Tc= 25ºC
Tc= -40ºC
Tc= 150ºC
Figure 15. Input high level Figure 16. Input hysteresis voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
2
2.25
2.5
2.75
3
3.25
3.5
3.75
4
Vih (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Vihyst (V)
Figure 17. On state resistance vs Tcase Figure 18. Input low level
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0
20
40
60
80
100
120
140
160
Ron (mOhm)
Io u t =1 A
Vc c=9V; 18V & 36V
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
Vil (V)
VNQ690SP Electrical specifications
15/26
Figure 19. Status leakage current Figure 20. Status low output voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
Ils ta t (µA )
Vstat=5V
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Vstat (V)
Is tat=1.6mA
Figure 21. Status clamp voltage Figure 22. Openload Off state detection
threshold
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
6.6
6.7
6.8
6.9
7
7.1
7.2
7.3
7.4
Vscl (V)
Is t a t =1 m A
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC )
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Vol (V)
Vin=0V
Application information VNQ690SP
16/26
3 Application information
Figure 23. Application schematic
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
3.1 GND protection network against reverse battery
This section provides two solutions for implementing a ground protection network against
reverse battery.
3.1.1 Solution 1: a resistor in the ground line (RGND only)
This can be used with any type of load.
The following show how to dimension the RGND resistor:
1. RGND 600mV / 2 (IS(on)max)
2. RGND ≥ ( - VCC) / ( - IGND)
where - IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power dissipation in RGND (when VCC < 0 during reverse battery situations) is:
PD = ( - VCC)2/ RGND
VCC
Dld
+5V
Rprot
STATUS
INPUT1
+5V
OUTPUT3
OUTPUT1
OUTPUT2
OUTPUT4
INPUT3
INPUT4
Rprot
Rprot
Rprot
Rprot
INPUT2
µ
C
GND
DGND
RGND
VGND
.
VNQ690SP Application information
17/26
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that, if the microprocessor ground is not shared by the device ground, then the
RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift will vary depending on how many devices are ON in the case of several
high side drivers sharing the same RGND .
If the calculated power dissipation requires the use of a large resistor, or several devices
have to share the same resistor, then ST suggests using solution 2 below.
3.1.2 Solution 2: a diode (DGND) in the ground line
A resistor (RGND = 1k) should be inserted in parallel to DGND if the device will be driving
an inductive load. This small signal diode can be safely shared amongst several different
HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in
the input threshold and the status output values if the microprocessor ground is not common
with the device ground. This shift will not vary if more than one HSD shares the same
diode/resistor network. Series resistor in INPUT and STATUS lines are also required to
prevent that, during battery voltage transient, the current exceeds the Absolute Maximum
Rating. Safest configuration for unused INPUT and STATUS pin is to leave them
unconnected.
3.2 Load dump protection
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the
VCC maximum DC rating. The same applies if the device is subject to transients on the VCC
line that are greater than those shown in the ISO T/R 7637/1 table.
3.3 MCU I/O protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the µC I/O pins from latching up.
The value of these resistors is a compromise between the leakage current of µC and the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC
I/Os:
- VCCpeak / Ilatchup Rprot (VOHµC - VIH - VGND) / IIHmax
Example
For the following conditions:
VCCpeak = - 100V
Ilatchup 20mA
VOHµC 4.5V
5k Rprot 65k.
Recommended values are:
Rprot = 10k
Application information VNQ690SP
18/26
3.4 Maximum demagnetization energy (VCC = 13.5V)
Figure 24. Maximum turn-off current versus load inductance
Note: Values are generated with RL = 0Ω.
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse
must not exceed the temperature specified above for curves B and C.
VIN, IL
t
Demagnetization Demagnetization Demagnetization
A = single pulse at TJstart = 150ºC
B= repetitive pulse at TJstart = 100ºC
C= repetitive pulse at TJstart = 125ºC
1
10
100
0.01 0.1 1 10 100
L(mH)
I
LMAX (A)
A
B
C
VNQ690SP Package and PCB thermal data
19/26
4 Package and PCB thermal data
4.1 PowerSO-10 thermal data
Figure 25. PowerSO-10 PC board
Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 58mm x 58mm, PCB
thickness = 2mm, Cu thickness = 35µm, Copper areas: from minimum pad lay-out to 8 cm2).
Figure 26. Rthj-amb Vs PCB copper area in open box free air condition
30
35
40
45
50
55
0246810
PCB Cu heatsink area (cm^2)
RTHj_amb (°C/W)
Tj-Tamb=50°C
Package and PCB thermal data VNQ690SP
20/26
Figure 27. Thermal impedance junction ambient single pulse
Equation 1: pulse calculation formula
Figure 28. Thermal fitting model of a quad channel HSD in PowerSO-10
0.1
1
10
100
1000
0.0001 0.001 0.01 0.1 1 10 100 1000
Time (s)
ZT H (°C /W)
Footprint
6 cm2
ZTHδRTH δZTHtp 1δ()+=
where
δtpT=
Pd1
C1
R4
C3 C4
R3R1 R6R5R2
C5 C6C2
Pd2
R14
C13 C14
R13
Tj_1
Tj_2
T_amb
Pd3
C7
R10
C9 C10
R9R7 R12R11
R8
C11 C12
C8
Pd4
R16
C15 C16
R15
Tj_3
Tj_4
R17 R18
VNQ690SP Package and PCB thermal data
21/26
Table 13. Thermal parameters
Area / island (cm2) Footprint 6
R1 = R7 = R13 = R15 (°C/W) 0.18
R2 = R8 = R14 = R16 (°C/W) 0.8
R3 = R9 (°C/W) 0.7
R4 = R10 (°C/W) 0.8
R5 = R11 (°C/W) 13
R6 = R12 (°C/W) 37 22
C1 = C7 = C13 = C15 (W.s/°C) 0.0006
C2 = C8 = C14 = C16 (W.s/°C) 1.5E-03
C3 = C9 (W.s/°C) 1.75E-02
C4 = C10 (W.s/°C) 0.4
C5 = C11 (W.s/°C) 0.75
C6 = C12 (W.s/°C) 3 5
R17 = R18 (°C/W) 150
Package and packing information VNQ690SP
22/26
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. ECOPACK® packages are lead-free. The category of Second Level Interconnect
is marked on the package and on the inner box label, in compliance with JEDEC Standard
JESD97. The maximum ratings related to soldering conditions are also marked on the inner
box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at www.st.com.
5.2 PowerSO-10 mechanical data
Figure 29. PowerSO-10 package dimensions
DETAIL "A"
PLANE
SEATING
α
L
A1
F
A1
h
A
D
D1
= =
= =
E4
0.10 A
E
C
A
B
B
DETAIL "A"
SEATING
PLANE
E2
10
1
eB
HE
0.25
VNQ690SP Package and packing information
23/26
Table 14. PowerSO-10 mechanical data
Dim.
mm
Min. Typ. Max.
A 3.35 3.65
A(1)
1. Muar only POA P013P.
3.4 3.6
A1 0 0.10
B 0.40 0.60
B(1) 0.37 0.53
C 0.35 0.55
C(1) 0.23 0.32
D 9.40 9.60
D1 7.40 7.60
E 9.30 9.50
E2 7.20 7.60
E2(1) 7.30 7.50
E4 5.90 6.10
E4(1) 5.90 6.30
e1.27
F 1.25 1.35
F(1) 1.20 1.40
H 13.80 14.40
H(1) 13.85 14.35
h0.50
L 1.20 1.80
L(1) 0.80 1.10
α
α(1)
Package and packing information VNQ690SP
24/26
5.3 PowerSO-10 packing information
Figure 32. SO-28 tape and reel shipment (suffix “TR”)
Figure 30. PowerSO-10 suggested
pad layout
Figure 31. PowerSO-10 tube shipment
(no suffix)
6.30
10.8 - 11
14.6 - 14.9
9.5
1
2
3
4
5
1.27
0.67 - 0.73
0.54 - 0.6
10
9
8
7
6
B
A
C
All dimensions are in mm.
Base Q.ty Bulk Q.ty Tube length (±
0.5) AB C (±
0.1)
Casablanca 50 1000 532 10.4 16.4 0.8
Muar 50 1000 532 4.9 17.2 0.8
C
A
B
MUARCASABLANCA
Base Q.ty 600
Bulk Q.ty 600
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 24.4
N (min) 60
T (max) 30.4
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 24
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 24
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 11.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
Reel dimensions
VNQ690SP Revision history
25/26
6 Revision history
Table 15. Document revision history
Date Revision Changes
09-Sep-2004 1 Initial release.
04-Mar-2008 2
Minor changes.
Current and voltage convention update (page 2).
Configuration diagram (top view) & suggested connections for unused
and n.c. pins insertion (page 3).
6 cm2 Cu condition insertion in thermal data table (page 3).
VCC - output diode section update (page 4).
Protections note insertion (page 4)
Revision history table insertion (page 18).
Disclaimers update (page 19).
02-Dec-2008 3
Document reformatted and restructured.
Added contents, list of tables and figures.
Added ECOPACK® packages information.
VNQ690SP
26/26
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com