To all our customers Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Renesas Technology Home Page: http://www.renesas.com Renesas Technology Corp. Customer Support Dept. April 1, 2003 Cautions Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. HA17339/A Series Quadruple Comparators ADE-204-065A (Z) Rev. 1 Mar. 2001 Description The HA17339A and HA17339 series products are comparators designed for general purpose, especially for power control systems. These ICs operate from a single power-supply voltage over a wide range of voltages, and feature a reduced power-supply current since the supply current is independent of the supply voltage. These comparators have the merit which ground is included in the common-mode input voltage range at a single-voltage power supply operation. These products have a wide range of applications, including limit comparators, simple A/D converters, pulse/square-wave/time delay generators, wide range VCO circuits, MOS clock timers, multivibrators, and high-voltage logic gates. Features * * * * * * * * Wide power-supply voltage range: 2 to 36 V Very low supply current: 0.8 mA Low input bias current: 25 nA Low input offset current: 5 nA Low input offset voltage: 2 mV The common-mode input voltage range includes ground. Low output saturation voltage: 1 mV (5 A), 70 mV (1 mA) Output voltages compatible with CMOS logic systems HA17339/A Series Features only for "A" series * Low electro-magnetic susceptibility Measurement Condition Vcc 1k 1k Vin 1V + - 5.0 5.1 k 4.0 Vout Vout (V) Vcc = 5 V HA17339A Vout vs. Vin 6.0 0.01 F -10 dBm RF signal source (for quasi-RF noise) 3.0 2.0 1.0 HA17339A (0 Hz) HA17339A (10 MHz) HA17339A (100 MHz) 0.0 -1.0 0.85 0.90 0.95 1.00 Vin (V) 1.05 1.10 1.15 HA17339 Vout vs. Vin 6.0 5.0 Vout (V) 4.0 3.0 2.0 1.0 HA17339 (0 Hz) HA17339 (10 MHz) HA17339 (100 MHz) 0.0 -1.0 0.85 0.90 0.95 1.00 Vin (V) Ordering Information Type No. Application Package HA17339AP Industrial use DP-14 HA17339ARP Commercial use FP-14DN HA17339AFP HA17339 HA17339F 2 FP-14DA Commercial use DP-14 FP-14DA 1.05 1.10 1.15 HA17339/A Series Pin Arrangement Vout2 1 14 Vout3 Vout1 2 13 Vout4 VCC 3 Vin(-)1 4 11 Vin(+)4 Vin(+)1 5 10 Vin(-)4 Vin(-)2 6 Vin(+)2 7 1 4 - + - + - + + 2 3- 12 GND 9 Vin(+)3 8 Vin(-)3 (Top view) Circuit Structure (1/4) VCC Q2 Vin(+) Q3 Q4 Q1 Vout Q8 Vin(-) Q7 Q5 Q6 3 HA17339/A Series Absolute Maximum Ratings (Ta = 25C) Ratings Item Symbol 17339AP 17339AFP 17339ARP 17339 17339F Unit Power supply voltage VCC 36 36 36 36 36 V Differential input voltage Vin(diff) VCC VCC VCC VCC VCC V Input voltage Vin -0.3 to +VCC -0.3 to +VCC -0.3 to +VCC -0.3 to +VCC -0.3 to +VCC V Output current Iout * 2 20 20 20 20 20 mA Allowable power dissipation PT 625 * 1 625 * 3 625 * 3 625 * 1 625 * 3 mW Operating temperature Topr -40 to +85 -40 to +85 -40 to +85 -20 to +75 -20 to +75 C Storage temperature Tstg -55 to +125 -55 to +125 -55 to +125 -55 to +125 -55 to +125 C Output pin voltage Vout 36 36 36 36 36 V Notes: 1. These are the allowable values up to Ta = 50C. Derate by 8.3 mW/C above that temperature. 2. These products can be destroyed if the output and VCC are shorted together. The maximum output current is the allowable value for continuous operation. 3. Tjmax = j-a * PCmax + Ta (j-a; Thermal resistor between junction and ambient at set board use). The wiring density and the material of the set board must be chosen for thermal conductance of efficacy board. And P C max cannot be over the value of P T. 40 mm 240 a b Thermal resistor j-a (C) 220 200 SO 180 P1 4- 160 140 120 100 no 1.5 t epoxy co mp SO ou P1 4- wit nd a. Class epoxy board of 10% wiring density b. Class epoxy board of 30% wiring density hc om po un d 80 0.5 1 2 5 10 Thermal conductance of efficacy board (W/m C) 4 20 HA17339/A Series Electrical Characteristics (VCC = 5 V, Ta = 25C) Item Symbol Min Typ Max Unit Test Condition Input offset voltage VIO 2 7 mV Output switching point: when VO = 1.4V, RS = 0 Input bias current I IB 25 250 nA I IN(+) or IIN(-) Input offset current I IO 5 50 nA I IN(+) - IIN(-) Common-mode input voltage *1 VCM 0 VCC - 1.5 V Supply current I CC 0.8 2 mA RL = AV 200 V/mV RL = 15k Response time * tR 1.3 s VRL = 5V, RL = 5.1k Output sink current Iosink 6 16 mA VIN(-) = 1V, VIN(+) = 0, VO 1.5V Output saturation voltage VO sat 200 400 mV VIN(-) = 1V, VIN(+) = 0, Iosink = 3mA Output leakage current I LO 0.1 nA VIN(+) = 1V, VIN(-) = 0, VO = 5V Voltage Gain 2 Notes: 1. Voltages more negative than -0.3 V are not allowed for the common-mode input voltage or for either one of the input signal voltages. 2. The stipulated response time is the value for a 100 mV input step voltage that has a 5 mV overdrive. 5 HA17339/A Series Test Circuits 1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (IIB) test circuit Rf 5k VCC SW1 RS 50 - R 20 k R 20 k RS 50 Rf 5 k VC1 RL 51k VO + 470 - + SW2 V SW1 On Off On Off Vout VO1 1 VC1 = V 2 CC VO2 VO3 VC2 = 1.4V VO4 SW2 On Off Off On VC2 VIO = | VO1 | 1 + Rf / RS (mV) IIO = | VO2 - VO1 | R(1 + Rf / RS) (nA) IIB = | VO4 - VO3 | 2 R(1 + Rf / RS) (nA) 2. Output saturation voltage (VO sat) output sink current (Iosink), and common-mode input voltage (VCM) test circuit VCC 50 SW1 1 2 VC1 5k 4.87k 1.6k SW2 1 2 - + 50 50 SW3 Item VC1 VOsat 2V VC2 0V VC3 SW1 1 Iosink 2V VCM 2V 0V -1 to VCC 1.5V 1 2 VC3 VC2 3. Supply current (ICC) test circuit + 1V 6 - A VCC ICC: RL = SW2 1 SW3 Unit 1 at V VCC = 5V 3 at VCC = 15V 1 2 mA Switched 3 V between 1 and 2 HA17339/A Series 4. Voltage gain (AV) test circuit (RL = 15k) +V VCC 20k Vin 10k 30k 10 AV = 20 log VO1 - VO2 VIN1 - VIN2 VO - 50 20k 50 -V RL 15k + + - (dB) 5. Response time (tR) test circuit VCC - +V Vin VO 50 24k RL 5.1k + P.G VR 5k 30k -V 50 120k SW 12V tR: RL = 5.1k, a 100mV input step voltage that has a 5mV overdrive * With VIN not applied, set the switch SW to the off position and adjust VR so that VO is in the vicinity of 1.4V. * Apply VIN and turn the switch SW on. 90% 10% tR 7 HA17339/A Series 90 80 70 60 50 40 30 20 10 25 45 65 85 105 125 VCC = 5 V Input Bias Current vs. Ambient Temperature Characteristics 5 5 25 45 65 85 105 125 VCC = 5 V RL = Supply Current vs. Ambient Temperature Characteristics Ambient Temperature Ta (C) 0 -55 -35 -15 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -55 -35 -15 Ambient Temperature Ta (C) Input Bias Current IIB (nA) Supply Current ICC (mA) Characteristic Curves 8 Input Bias Current IIB (nA) Supply Current ICC (mA) 60 50 40 30 20 10 1.6 1.4 1.2 1.0 0.8 0.6 10 20 30 40 Ta = 25C Input Bias Current vs. Power-Supply Voltage Characteristics 0 Power-Supply Voltage VCC (V) 10 20 30 40 Ta = 25C RL = Supply Current vs. Power-Supply Voltage Characteristics 0 Power-Supply Voltage VCC (V) Output Sink Current Iosink (mA) Voltage Gain AV (dB) 45 40 35 30 25 20 15 10 5 25 45 65 85 105 125 VCC = 5 V Vin(-) = 1 V Vin(+) = 0 Vout = 1.5 V Output Sink Current vs. Ambient Temperature Characteristics 5 5 25 45 65 85 105 125 VCC = 5 V RL = 15 k Voltage Gain vs. Ambient Temperature Characteristics Ambient Temperature Ta (C) 0 -55 -35 -15 130 125 120 115 110 105 100 95 90 85 -55 -35 -15 Ambient Temperature Ta (C) Output Sink Current Iosink (mA) Voltage Gain AV (dB) 30 25 20 15 10 5 0 130 120 110 100 90 80 70 10 HA17339/A Series 20 20 30 Ta = 25C RL = 15 k 30 40 40 Voltage Gain vs. Power-Supply Voltage Characteristics Power-Supply Voltage VCC (V) 10 Output Sink Current vs. Power-Supply Voltage Characteristics 0 0 Power-Supply Voltage VCC (V) 9 HA17339/A Series HA17339/A Application Examples The HA17339/A houses four independent comparators in a single package, and operates over a wide voltage range at low power from a single-voltage power supply. Since the common-mode input voltage range starts at the ground potential, the HA17339/A is particularly suited for single-voltage power supply applications. This section presents several sample HA17339/A applications. HA17339/A Application Notes 1. Square-Wave Oscillator The circuit shown in figure one has the same structure as a single-voltage power supply astable multivibrator. Figure 2 shows the waveforms generated by this circuit. 100k 75pF C VCC VCC 4.3k VCC R - HA17339 + Vout 100k 100k 100k Figure 1 Square-Wave Oscillator (1) Horizontal: 2 V/div, Vertical: 5 s/div, VCC = 5 V (2) Horizontal: 5 V/div, Vertical: 5 s/div, VCC = 15 V Figure 2 Operating Waveforms 10 HA17339/A Series 2. Pulse Generator The charge and discharge circuits in the circuit from figure 1 are separated by diodes in this circuit. (See figure 3.) This allows the pulse width and the duty cycle to be set independently. Figure 4 shows the waveforms generated by this circuit. VCC R1 1M D1 IS2076 R2 100k D2 IS2076 C - 80pF VCC VCC HA17339 + Vout 1M 1M 1M Figure 3 Pulse Generator Horizontal: 2 V/div, Vertical: 20 s/div, VCC = 5 V Horizontal: 5 V/div, Vertical: 20 s/div, VCC = 15 V Figure 4 Operating Waveforms 3. Voltage Controlled Oscillator In the circuit in figure 5, comparator A1 operates as an integrator, A2 operates as a comparator with hysteresis, and A3 operates as the switch that controls the oscillator frequency. If the output Vout1 is at the low level, the A3 output will go to the low level and the A1 inverting input will become a lower level than the A1 noninverting input. The A1 output will integrate this state and its output will increase towards the high level. When the output of the integrator A1 exceeds the level on the comparator A2 inverting input, A2 inverts to the high level and both the output Vout1 and the A3 output go to the high level. This causes the integrator to integrate a negative state, resulting in its output decreasing towards the low level. Then, when the A1 output level becomes lower than the level on the A2 noninverting input, the output Vout1 is once again inverted to the low level. This operation generates a square wave on Vout1 and a triangular wave on Vout2. 11 HA17339/A Series VCC 100k - +VC 10 0.1 Frequency control voltage input 20k A1 5.1k 0.01 + VCC VCC 3k HA17339 3k + A2 HA17339 VCC/2 20k Output 1 - VCC 50k A3 VCC = 30V +250mV < +VC < +50V 700Hz < / < 100kHz 100k VCC 500p - Output 2 VCC/2 HA17339 + Figure 5 Voltage Controlled Oscillator 4. Basic Comparator The circuit shown in figure 6 is a basic comparator. When the input voltage VIN exceeds the reference voltage VREF, the output goes to the high level. VCC Vin VREF + 3k HA17339 - Figure 6 Basic Comparator 5. Noninverting Comparator (with Hysteresis) Assuming +VIN is 0V, when VREF is applied to the inverting input, the output will go to the low level (approximately 0V). If the voltage applied to +VIN is gradually increased, the output will go high when the value of the noninverting input, +VIN x R2/(R1 + R2), exceeds +VREF. Next, if +VIN is gradually lowered, Vout will be inverted to the low level once again when the value of the noninverting input, (Vout - V IN) x R1/(R1 + R2), becomes lower than VREF. With the circuit constants shown in figure 7, assuming VCC = 15V and +VREF = 6V, the following formula can be derived, i.e. +VIN x 10M/(5.1M + 10M) > 6V, and Vout will invert from low to high when +VIN is > 9.06V. (Vout - VIN) x R1 + VIN < 6V R1 + R2 (Assuming Vout = 15V) When +VIN is lowered, the output will invert from high to low when +VIN < 1.41V. Therefore this circuit has a hysteresis of 7.65V. Figure 8 shows the input characteristics. 12 HA17339/A Series VCC - HA17339 + +VREF R1 +Vin VCC 5.1M 3k Vout 10M R2 Figure 7 Noninverting Comparator Output Voltage Vout (V) 20 VCC = 15 V, +VREF = 6 V +Vin = 0 to 10 V 16 12 8 4 0 0 5 10 15 Input Voltage VIN (V) Figure 8 Noninverting Comparator I/O Transfer Characteristics 6. Inverting Comparator (with Hysteresis) In this circuit, the output Vout inverts from high to low when +VIN > (VCC + Vout)/3. Similarly, the output Vout inverts from low to high when +V IN < VCC/3. With the circuit constants shown in figure 9, assuming VCC = 15V and Vout = 15V, this circuit will have a 5V hysteresis. Figure 10 shows the I/O characteristics for the circuit in figure 9. VCC - +Vin VCC VCC 3k HA17339 1M Vout + 1M 1M Figure 9 Inverting Comparator 13 HA17339/A Series Output Voltage Vout (V) 20 VCC = 15 V 16 12 8 4 0 0 5 10 15 Input Voltage VIN (V) Figure 10 Inverting Comparator I/O Transfer Characteristics 7. Zero-Cross Detector (Single-Voltage Power Supply) In this circuit, the noninverting input will essentially beheld at the potential determined by dividing VCC with 100k and 10k resistors. When VIN is 0V or higher, the output will be low, and when VIN is negative, Vout will invert to the high level. (See figure 11.) VCC Vin 5.1k 1S2076 100k 5.1k 100k VCC - HA17339 + 10k 20M Figure 11 Zero-Cross Detector 14 5.1k Vout HA17339/A Series Package Dimensions Unit: mm 19.20 20.32 Max 8 6.30 7.40 Max 14 1.30 7 2.54 0.25 0.48 0.10 0.51 Min 2.39 Max 7.62 2.54 Min 5.06 Max 1 + 0.10 0.25 - 0.05 0 - 15 Hitachi Code JEDEC EIAJ Mass (reference value) DP-14 Conforms Conforms 0.97 g Unit: mm 10.06 10.5 Max 8 5.5 14 1 0.10 0.10 1.42 Max 1.27 *0.42 0.08 0.40 0.06 *0.22 0.05 0.20 0.04 2.20 Max 7 + 0.20 7.80 - 0.30 1.15 0 - 8 0.70 0.20 0.15 0.12 M *Dimension including the plating thickness Base material dimension Hitachi Code JEDEC EIAJ Mass (reference value) FP-14DA -- Conforms 0.23 g 15 HA17339/A Series Unit: mm 8.65 9.05 Max 8 1 7 *0.20 0.05 0.635 Max 1.75 Max 3.95 14 + 0.10 6.10 - 0.30 1.08 *0.40 0.06 0.11 0.14 +- 0.04 0 - 8 1.27 0.67 0.60 +- 0.20 0.15 0.25 M *Pd plating 16 Hitachi Code JEDEC EIAJ Mass (reference value) FP-14DN Conforms Conforms 0.13 g HA17339/A Series Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica Europe Asia Japan : : : : http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585200 Hitachi Europe GmbH Electronic Components Group Dornacher Strae 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://semiconductor.hitachi.com.hk Copyright (c) Hitachi, Ltd., 2001. All rights reserved. Printed in Japan. Colophon 3.0 17