FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 1 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
The Series of non-isolated dc-dc converters
deliver exceptional electrical and thermal performance
in industry-standard pin-out for Point-of-Load
converters. Operating from a 6.0Vdc-14Vdc input,
these are the converters of choice for Intermediate
Bus Architecture and Distributed Power Architecture
applications that require high efficiency, tight
regulation, and high reliability in elevated temperature
environments with low airflow.
非絶縁型DC/DCコンバータ シリズ産業POLコン゙ー
と同じ端子配列で極めて優れた電気的特性及び温度特性を提供し
す。
入力電圧6V~14Vで動作しますので、このコンバータは、高効率、高い出力
電圧精度高温及び風量の少ない環境での高信頼性が要求される
IBA、又はDPAでの使用に最適です。
The FPMR12TR7505*A converter of the
Series delivers 5A of output current at a tightly
regulated programmable output voltage of 0.7525Vdc
to 5.5Vdc. The thermal performance of the
FPMR12TR7505*A is best-in-class: No derating is
needed up to 85°C, under natural convection.
シリーズの FPMR12TR7505*A 0.7525V
5.5Vdcの可変を実現します。FPMR12TR7505*Aの温度特性はクラス最
です。自然対流条件で85℃まで出力電流ディレーティングを必要としません
This leading edge thermal performance results from
electrical, thermal and packaging design that is
optimized for high density circuit card conditions.
Extremely high quality and reliability are achieved
through advanced circuit and thermal design
techniques and FDK’s state of the art in-house
manufacturing processes and systems.
回路設計、放熱設計、及びパッケージングの結果である、この最先端の温
度特性は高密度実装回路用に最適化されています。非常に優れた品質
と信頼性は高度な回路設計、温度設計技術、及びFDKの最先端の自社
製造プロセスによりもたらされます。
Features
Delivers up to 5A (27.5W)
5A(27.5W)まで供給可能
High efficiency, no heatsink required
高効率-放熱器が不要
No derating up to 85°C
85℃までディレーティング不要
Negative and Positive ON/OFF logic
ON/OFFロジックはネガティブとポジティブ
Industry-standard SIP pin-out
産業標準のピンアウト
RoHS compliance
RoHS準拠
Small size and low profile: 0.90” x 0.40” x 0.195”
nominal
小型、低背 (22.9 x 10..2 x 4.95mm)
Programmable output voltage via external resistor
外部接続の抵抗によりプログラム可能な出力電圧
No minimum load required
最小負荷は不要
Start up into pre-biased output
出力にプリバイアスがあっても起動可
Remote ON/OFF
リモートON/OFF機能
Auto-reset output over-current protection
過電流保護機能: 自動復帰
Auto-reset over-temperature protection
内部加熱保護機能
High reliability, MTBF = 1 Million Hours
高信頼性: MTBF = 1 Million Hours
UL60950 recognition in U.S. & Canada, and CB
Scheme certification per IEC/EN60950
UL60950、CB Scheme
All materials meet UL94, V-0 flammability rating
全ての部品は UL94 V-0に適合
Applications
Intermediate Bus Architecture
中間バス構成システム
Telecommunications
テレコムシステム
Data/Voice processing
データ処理システム
Distributed Power Architecture
分散型電源システム
Computing (Servers, Workstations)
コンピュータ関係(サーバー、ワークステーション)
FPMR12TR7505*A
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 2 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Electrical Specifications
All specifications apply over specified input voltage, output
load, and temperature range, unless otherwise noted.
電気的仕様
注記が無い場合全ての仕様は指定された入力電圧
荷、温度範囲で適用されます。
1Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings may lead
to degradation in performance and reliability of the converter
and may result in permanent damage.
1 絶対最大定格
絶対最大定格を超えたストレスは、性能の低下、長期信頼性
の低下、及びモジュールの破損を引き起こすことがあります。
Conditions: Ta=25degC, Airflow=200LFM(1.0m/s), Vin=12Vdc, Vout=0.7525-5.5Vdc, unless otherwise specified.
PARAMETER NOTES MIN TYP MAX UNITS
Input Voltage Continuous -0.3 15 Vdc
Operating Temperature Ambient temperature -40 85 °C
Module On -5 0.8 Vdc
ABSOLUTE MAXIMUM RATINGS1
Storage Temperature -55 125 °C
Module Off 2.4 Vin Vdc
Rise Time (Full resistive load) From 0.1*Vout(nom) to 0.9*Vout(nom) 5.0 ms
ON/OFF Control (Negative)
FEATURE CHARACTERISTICS
Switching Frequency 320 kHz
Output Voltage Programming Range By external resistor, See trim Table-1 0.7525 5.5 Vdc
Turn-On Delay Time Full resistive load
with Vin (module enabled, then Vin applied) From Vin=Vin(min) to 0.1*Vout(nom) 5.0 ms
with Enable (Vin applied, then enabled) From enable to 0.1*Vout(nom) 5.0 ms
Output Voltage 0.7525 5.5 Vdc
ON/OFF Control (Positive)
Module Off -5 Vin-2.7 Vdc
Module On Vin-1.0 Vin Vdc
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 3 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Electrical Specifications (Continued) 電気的仕様 (続き)
PARAMETER NOTES MIN TYP MAX UNITS
INPUT CHARACTERISTICS
Operating Input Voltage Range Vout3.8Vdc (3.3Vdc+15%) 6 12 14 Vdc
Vout3.8Vdc (3.3Vdc+15%) 8 12 14 Vdc
Input Under Voltage Lockout
Turn-on Threshold 5.5 Vdc
Turn-off Threshold 4.4 Vdc
Maximum Input Current 5Adc out at 6.0Vdc in
Vout=5.0Vdc (5Adc at 8.0Vdc in) 3.4 Adc
Vout=3.3Vdc 3.0 Adc
Vout=2.5Vdc 2.3 Adc
Vout=2.0Vdc 1.9 Adc
Vout=1.8Vdc 1.7 Adc
Vout=1.5Vdc 1.5 Adc
Vout=1.2Vdc 1.2 Adc
Vout=1.0Vdc 1.0 Adc
Input Stand-by Current (module disabled) 2.5 mA
Input No Load Current (module disabled) Vout=5.0Vdc 65 mA
Vout=3.3Vdc 45 mA
Vout=2.5Vdc 35 mA
Vout=2.0Vdc 28 mA
Vout=1.8Vdc 25 mA
Vout=1.5Vdc 22 mA
Vout=1.2Vdc 18 mA
Vout=1.0Vdc 16 mA
Input Reflected-Ripple Current See Fig.E for setup (BW=20MHz)
Vout=5.0Vdc 75 mAp-p
Vout=3.3Vdc 65 mAp-p
Vout=2.5Vdc 60 mAp-p
Vout=2.0Vdc 50 mAp-p
Vout=1.8Vdc 45 mAp-p
Vout=1.5Vdc 40 mAp-p
Vout=1.2Vdc 38 mAp-p
Vout=1.0Vdc 35 mAp-p
Conditions: Ta=25degC, Airflow=200LFM(1.0m/s), Vin=12Vdc, Vout=0.7525-5.5Vdc, unless otherwise specified.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 4 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Electrical Specifications (Continued) 電気的仕様 (続き)
PARAMETER NOTES MIN TYP MAX UNITS
OUTPUT CHARACTERISTICS
Output Voltage Set Point (no load) -1.5 Vout +1.5 %Vout
Output Regulation
Over Line Full resistive load +/-0.1 %Vout
Over Load From no load to full load +/-0.3 %Vout
Output Voltage Range
(Over all operating input voltage, resistive load
and temperature conditions until end of life)
-2.5 +2.5 %Vout
Output Ripple and Noise BW=20MHz Over line, load and temperature (Fig.D)
Peak to Peak Vout=1.0Vdc 35 80 mVp-p
Peak to Peak Vout=5.0Vdc 40 80 mVp-p
External Load Capacitance Plus full load (resistive)
Min ESR > 1m 1,000 µF
Min ESR > 10m 2,000 µF
Output Current Range 0 5.0 A
Output Current Limit Inception (Iout) Vout=3.3Vdc 10 A
Output Short-Circuit Current Short=10m, Vout=3.3Vdc Set 1.2 Arms
DYNAMIC RESPONSE
Iout step from 2.5A to 5.0A with di/dt=5A/µs Co=47µF x 2 ceramic + 1µF ceramic 120 mV
Setting time (Vout < 10% peak deviation) 60 µs
Iout step from 5.0A to 2.5A with di/dt=5A/µs Co=47µF x 2 ceramic + 1µF ceramic 120 mV
Setting time (Vout < 10% peak deviation) 60 µs
EFFICIENCY Full load (5A)
Vout=5.0Vdc 94.0 %
Vout=3.3Vdc 92.0 %
Vout=2.5Vdc 90.5 %
Vout=2.0Vdc 89.0 %
Vout=1.8Vdc 88.0 %
Vout=1.5Vdc 86.5 %
Vout=1.2Vdc 84.0 %
Vout=1.0Vdc 81.5 %
Conditions: Ta=25degC, Airflow=200LFM(1.0m/s), Vin=12Vdc, Vout=0.7525-5.5Vdc, unless otherwise specified.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 5 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Operation
Input and Output Impedance
The FPMR12TR7505*A converter should be
connected to a DC power source using a low
impedance input line. In order to counteract the
possible effect of input line inductance on the stability
of the converter, the use of decoupling capacitors
placed in close proximity to the converter input pins is
recommended. This will ensure stability of the
converter and reduce input ripple voltage. Although
low ESR Tantalum or other capacitors should typically
be adequate, very low ESR capacitors (ceramic, over
100µF) are recommended to minimize input ripple
voltage. The converter itself has on-board internal
input capacitance of 3µF with very low ESR (ceramic).
FPMR12TR7505*Aと入力電源間は低インピーダンスで接続してください。コン
バータの安定性に影響のある入力インダクタンスを抑えるためコンバータの入
力ピンの近傍にデカップリングコンデンサを付加することをお勧めします。これに
よりコンバータの安定動作を確実にし、入力リップル電圧を抑制します。
ESRタンタル、又はその他のコンデンサも一般的には問題ありませんが、入力
リップルを最小にするためには、非常に低ESRコンデンサ(セラミックで100μF以
上)を推奨します。コンバータ自身は入力回路に極低ESRの3μFセラミック入力
コンデンサを搭載しています。
The FPMR12TR7505*A is capable of stable operation
with no external capacitance on the output. To
minimize output ripple voltage, the use of very low
ESR ceramic capacitors is recommended. These
capacitors should placed in close proximity to the load
to improve transient performance and to decrease
output voltage ripple.
FPMR12TR7505*Aは
作します。出力リップルを最小にするため、極低ESRのセラミックコンデンサの接
続を推奨します。過渡時の特性向上と出力リップル低減のために負荷の
近傍に極低ESRセラミックコンデンサを実装することをお勧めします。
Note that the converter does not have a SENSE pin to
counteract voltage drops between the output pins and
the load. The impedance of the line from the converter
output to the load should thus be kept as low as
possible to maintain good load regulation.
このコンバータは出力端子と負荷間の電圧ドロップを補正するセンス端子を設
けていません。精度の高い負荷特性を保持するために、コンバータの出力
から負荷までのラインインピーダンスは可能な限り低くしてください。
ON/OFF (Pin 5)
The ON/OFF pin (pin 5) can be used to turn the
converter on or off remotely using a signal that is
referenced to GND (pin 3), as shown in Fig. A.
Two remote control options are available,
corresponding to negative and positive logic. In the
negative logic option, to turn the converter on Pin 5
should be at logic low or left open, and to turn the
converter off Pin 5 should be at logic high or connected
to Vin. In the positive logic option, to turn the converter
on Pin 5 should be at logic high, connected to Vin or left
open, and to turn the converter off Pin 5 should be at
logic low.
ON/OFF端子(5番ピン)は図Aのように、グランド(3番ピン)を基準としたリモート
信号によりコンバータをON/OFFするのに使われます。 ネガティブとポジティブロ
ジックに対応するため、2種類のリモートコントロールを選択可能です。
ネガティブオプションの場合、コンバータをONするには5番ピンをLowレベル、又は
未接続とし、コンバータをOFFするには5番ピンをHighレベル、又はVinと接続
とします。ポジティブオプションの場合、コンバータをONするには5番ピンをHighレ
ベル、Vinに接続、又は未接続とし、コンバータをOFFするには5番ピンをLowレ
ベルにします。
Pin 5 is internally pulled-down. A TTL or CMOS logic
gate, or an open collector/drain transistor can be
used to drive Pin 5. When using an open collector/
drain transistor, a pull-up resistor, R*=75k, should
be connected to Vin (See Fig.A).
The device driving Pin 5 must be capable of:
(a) Sinking up to 0.2mA at low logic level (0.8V)
(b) Sourcing up to 0.25mA at high logic level (2.3–5V)
(c) Sourcing up to 0.75mA when connected to Vin
ON/OFFピンはモジュール内部でプルダウンされています。TTL、 CMOSロジッ
ク、又はオープンコレクタのトランジスタもON/OFFピンの操作に使用可能です。
オープンコレクタのトランジスタを使用する時は図Aに示す75kΩ程度のプルアップ
抵抗をVinに接続してください。(図A参照)
ON/OFFピンを操作するデバイスには下記能力が必要です。
(a) 0.8V以下のLowレベルで0.2mAまでのシンク能力
(b) 2.3V-5VのHighロジックレベルで0.25mAまでの供給能力
(c) Vin接続時には0.75mAまでの供給能力
Fig. A: Circuit configuration for remote ON/OFF
Vin
On/Of f
GND
Vout
TRIM
Control Signal
Load
R*
Vin
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 6 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
External Voltage Source
To program the output voltage using an external
voltage source, a voltage, VCTRL, should be applied to
the TRIM pin. Use of a series resistor, REXT, between
the TRIM pin and the programming voltage source is
recommended to make trimming less sensitive.
外部電源を使って出力電圧を可変するには、TRIM端子にVCTRLの電圧を
印加します。電圧設定が敏感すぎるのを避けるため、TRIM端子と外部
電源間に抵抗を直列に接続することをお勧めします。
The voltage of the control voltage VCTRL, in V, for a
given volue of REXT, in k, is given by:
VCTRL電圧は下記の式により算出が可能です。
Table 2 lists values of V
CTRL for REXT=0 and
REXT=15k.
Table 2はREXT=0の時とREXT=15kの時のVCTRL電圧を表しています。
VO-REG [V] RTRIM [k]The Closest
Standard Value [k]
0.7525 Open
1.0 41.42 41.2
1.2 22.46 22.6
1.5 13.05 13.0
1.8 9.02 9.09
2.0 7.42 7.50
2.5 5.01 4.99
3.3 3.12 3.09
5.0 1.47 1.47
5.5 1.21 1.21
Table 1: Trim Resistor Value
VO-REG [V] VCTRL (REXT=0) VCTRL (REXT=15k)
0.7525 0.700 0.700
1.0 0.684 0.436
1.2 0.670 0.223
1.5 0.650 -0.097
1.8 0.630 -0.417
2.0 0.617 -0.631
2.5 0.584 -1.164
3.3 0.530 -2.017
5.0 0.417 -3.831
5.5 0.384 -4.364
Table 2: Control Voltage [Vdc]
Fig. B: Configuration for programming output voltage
Vin
On/of f
GND
Vout
TRIM
Load
RTRIM
Vin
Output Voltage Programming (Pin 2)
The output voltage of the FPMR12TR7505*A
converter can be programmed from 0.7525V to 5.5V
by using an external resistor or a voltage source
FPMR12TR7505*Aの出力電圧は外部抵抗を接続するか、又は外部
源を印加することで 0.7525V~5.5Vまで可変可能です
External Resistor
An external trim resistor, RTRIM, should be connected
between TRIM (pin 2) and GND (pin 3); see Fig. B.
The value of RTRIM, in k, for a desired output voltage,
VO-REQ, in V, is given by:
外部抵抗 RTRIMはTRIM端子(2番ピン)とGND端子(3番ピン)の間に接続して
ください。図Bを参照。 RTRIM の定数、及び必要な出力電圧は次の式によ
り求めます。
Note that the tolerance of a trim resistor will affect the
tolerance of the output voltage. Standard 1% or 0.5%
resistors may suffice for most applications; however, a
tighter tolerance can be obtained by using two
resistors in series insteed of one standard value
resistor.
Table 1 lists calculated values of RTRIM for common
output voltages. For each value of RTRIM, Table 1 also
shows the closest available standard resistor value.
RTRIM の公差は出力電圧の公差に影響します。ほとんどの使用状況にお
いては、標準的な1%又は0.5%品の抵抗で十分です。しかしながら、より厳
しい出力精度のためには、抵抗1本よりも2本を直列に使用します
Table 1に一般的な出力電圧を設定する際の抵抗値を表示します。また
Table 1に標準的な抵抗を使用した場合の近似値も表示しています。
]k[ 1-
0.7525)-(V
10.5
R
-REQO
TRIM Ω=
[V]
15
0.7525)-)(VR(1
-0.7V -REQOEXT
CTRL
+
=
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 7 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Protection Features
Input Under-Voltage Lockout
From a turned-on state, the converter will turn off
automatically when the input voltage drops below
typically 4.4V. It will then turn on automatically when
the input voltage reaches typically 5.5V.
動作している状態で入力電圧がTYPで4.4V未満になると、このコンバータは
自動的に停止します。また、入力電圧がTYPで5.5V以上になると、このコ
ンバータは自動的に動作を開始します。
Output Over-Current Protection (OCP)
The converter is self-protected against over-current
and short circuit conditions. On the occurrence of an
over-current condition, the converter will enter a pulse-
by-pulse hiccup mode. On the removal of the over-
current or short circuit condition, Vout will return to the
original value (auto-reset).
このコンバータは過電流と短絡に対し自己保護します。過電流状態になる
と、このコンバータはパルス-バイ-パルス HICCUPモードになり、過電流状態が解
除されるとVoutは通常の値に戻ります。(自動リセット)
Over-Temperature Protection (OTP)
The converter is self-protected against over-
temperature conditions. In case of overheating due
to abnormal operation conditions, the converter will
turn off automatically. It will turn back on automatically
once it has cooled down to a safe temperature (auto-
reset).
このコンバータは加熱保護機能を有しています異常な動作条件によって
加熱状態になると、このコンバータは自動的に停止します。安全な温度にま
で下がると自動的に復帰します。(自動リセット)
Safety Requirements
The converter meets North American and International
safety regulatory requirements per UL60950 and
EN60950. The converter meets SELV (safety extra-
low voltage) requirements under normal operating
conditions in that the output voltages are ELV (extra-
low voltage) when all the input voltages are ELV. Note
that the converter is not internally fused: to meet
safety requirements, a fast acting in-line fuse with a
maximum rating of 7.5A must be used in the positive
input line.
このコンバータはUL60950とEN60950による北米、及び国際的な安全基準
を満たしています。このコンバータは通常の動作条件下においてSELVの条
件を満たしており、入力電圧がELVであれば出力電圧もELVとなります。
但し、このコンバータは内部にヒューズを持っていませんので、安全規格に適
合させるためには、入力ラインのプラス側に即断型で最大定格7.5Aのヒューズ
を接続してください。
Characterization
Overview
The converter has been characterized for several
operational features, including thermal derating
(maximum available load current as a function of
ambient temperature and airflow), efficiency, power
dissipation, start-up and shutdown characteristics,
ripple and noise, and transient response to load step-
changes.
このコンバータは温度ディレーティング、効率、電力損失、スタートアップ時、及び
シャットダウン時の動作、リップル・ノイズ、動的負荷変動などを含む、さまざまな
動作状態で特徴付けられます。
Figures showing data plots and waveforms for
different output voltages are presented in the following
pages. The figures are numbered as Fig.*V-#, where
*V indicates the output voltage, and # indicates a
particular plot type for that voltage. For example, Fig
*V-2 is a plot of efficiency vs. load current for any
output voltage *V.
各出力電圧時のデータ、及び波形の図は以後のページに掲載されてい
す。図はFig *V-#のように番号付けされており、*Vは出力電圧を表し、#
は特定のプロットを表します。例えば Fig *V-2とあれば、*V出力での効率
特性を表します。
Test Conditions
To ensure measurement accuracy and reproducibility,
all thermal and efficiency data were taken with the
converter soldered to a standardized thermal test
board. The thermal test board was mounted inside
FDK’s custom wind tunnel to enable precise control of
ambient temperature and airflow conditions.
測定精度、及び再現性を確実にするために、全ての温度、及び効率デー
タは標準化された温度評価ボードにコンバータを半田付けして取得していま
す。温度評価ボードをFDK特性の風洞実験設備内に設置することで、
境温度、及び風量を精密に管理しています。
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 8 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
It is advisable to check the converter temperature in
the actual application, particularly if the application
calls for loads close to the maximums specified by
the derating curves. IR thermography or
thermocouples may be used for this purpose. In the
latter case, AWG#40 gauge thermocouples are
recommended to minimize interference and
measurement error. An optimum location for
placement of a thermocouple is indicated in Fig. C.
コンバータの温度を実際の使用環境で測定することをお勧めします。特に
実使用上の負荷が温度ディレーティングの最大値に近い場合は測定が必要
です。温度測定には赤外線サーモグラフィ、又は熱電対をお使いいただけま
熱電対を使用する場合風の妨げになることを防ぐためと、測定誤
差を少なくするため、AWG40の熱電対を推奨します。熱電対での測定に
最適な箇所は図Cに示します。
Thermal Derating
Figs *V-1 show the maximum available load current
vs. ambient temperature and airflow rates. Ambient
temperature was varied between 30°C and 85°C, with
airflow rates from NC(50 LFM) to 400 LFM (0.25m/s to
2.0m/s). The converter was mounted horizontally, and
the airflow was parallel to the long axis of the
converter, going from pin 1 to pin 5.
*V-1はある環境温度と風量の条件下における最大出力電流を表し
ます。環風量NC(50LFM)~400LFM件で30℃85℃の間
を変動させています。コンバータは水平に設置し風向きはコンバータの長手
方向に平行で1ピンから5ピンに向けて吹いています。
The maximum available load current, for any given set
of conditions, is defined as the lower of:
(i) The output current at which the temperature of any
component reaches 120°C, or
(ii) The current rating of the converter (5A)
A maximum component temperature of 120°C should
not be exceeded in order to operate within the
derating curves. Thus, the temperature at the
thermocouple location shown in Fig. C should not
exceed 120°C in normal operation.
各々の測定条件で最大出力電流の値は下記のとおり定義します。
(i) いずれかの部品の温度が120℃の到達した時点の出力電流値、又は
(ii) コンバータの公称定格電流 (5A)
温度ディレーティングの範囲内で動作させるために、部品温度は120℃を超
えないようにご注意ください。従って、通常動作時に図Cに示す位置の
電対の温度が120℃を超えないようにしてください。
The thermal test board comprised a four layer printed
circuit board (PCB) with a total thickness of 0.060”.
Copper metallization on the two outer layers was
limited to pads and traces needed for soldering the
converter and peripheral components to the board.
The two inner layers comprised power and ground
planes of 2 oz. copper. This thermal test board, with
the paucity of copper on the outer surfaces, limits
heat transfer from the converter to the PCB, thereby
providing a worst-case but consistent set of conditions
for thermal measurements.
温度評価ボードは厚さ0.060”(1.6mm)厚4層PCB作成ます。表
面2層の銅箔はコンバータを実装するためのパッドと周辺部品へのパターンの
みに限定しています。内側2層は70μmの銅箔で電力、及びグランドラインを
形成していますこのように表層の銅箔を限りなく少なくした温度評価
ボードは、コンバータからPCBへの熱の逃げを制限し、ワーストケースでありなが
ら矛盾の無い温度評価条件を実現しています。
FDK’s custom wind tunnel was used to provide
precise horizontal laminar airflow in the range of 50
LFM (equivalent to natural convection, NC) to
400LFM, at ambient temperatures between 30°C and
85°C. Infrared (IR) thermography and thermocouples
were used for temperature measurements.
FDK特製の風洞実験装置は水平方向の層流を50LFM(自然対流と同
等、NC)400LFMき、環30℃85℃
制御できます。温度測定には赤外線(IR)サーモグラフィと熱電対を使用してい
ます。
FDK Original Wind Tunnel
Test Chamber
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 9 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Ripple and Noise
The test circuit setup shown in Fig D was used to
obtain the output voltage ripple. And Fig. E was used
to obtain the input reflected ripple current waveforms.
The output voltage ripple waveform was measured
across a 1µF ceramic capacitor. at full load current.
図Dに示す試験回路は出力リップルの測定に使用しており、入力リップルの
測定には図Eの波形を使用しています。全ての出力リップル波形は1μFの
セラミックコンデンサを通して測定しています。
Thermocouple
Fig. C: Location of the thermocouple for thermal testing
Fig. D: Test setup for measuring output voltage ripple
1uH
2 x
47uF
ceramic
capacitor
ceramic
capacitor
1uF
2 x
47uF
ceramic
capacitor
Input
Inductor
Vin source
DC/DC
Converter
DC
+
Is
Vin
GND GND
Vout
Vout
CIN
CO
Fig. E: Test setup for measuring input
reflected ripple current
1uH
100uF
OS con +
2 x 47uF
ceramic
ceramic
capacitor
1uF
2 x
47uF
ceramic
capacitor
Input
Inductor
Vin source
DC/DC
Converter
DC
+
Is
Vin
GND GND
Vout
Vout
CIN CO
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 10 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
8Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Power Dissipation [W]
8Vin
12Vin
14Vin
Fig 5.0V-1: Available load current vs. ambient
temperature and airflow rates for Vout=5.0V with
Vin=12V. Maximum component temperature 120°C.
Fig 5.0V-2: Efficiency vs. load current and input voltage
for Vout=5.0V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 5.0V-3: Power Loss vs. load current and input
voltage for Vout=5.0V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 11 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 5.0V-4: Turn-on transient for Vout=5.0V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 5.0V-5: Output voltage ripple (20mV/div.) for
Vout=5.0V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
Fig 5.0V-6: Output voltage response for Vout=5.0V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 5.0V-7: Output voltage response for Vout=5.0V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 12 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
6Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.51.01.52.02.53.03.54.04.55.0
Load Current [A]
Power Dissipation [W]
6Vin
12Vin
14Vin
Fig 3.3V-1: Available load current vs. ambient
temperature and airflow rates for Vout=3.3V with
Vin=12V. Maximum component temperature 120°C.
Fig 3.3V-2: Efficiency vs. load current and input voltage
for Vout=3.3V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 3.3V-3: Power Loss vs. load current and input
voltage for Vout=3.3V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 13 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 3.3V-4: Turn-on transient for Vout=3.3V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 3.3V-6: Output voltage response for Vout=3.3V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 3.3V-7: Output voltage response for Vout=3.3V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 3.3V-5: Output voltage ripple (20mV/div.) for
Vout=3.3V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 14 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
6Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Power Dissipation [W]
6Vin
12Vin
14Vin
Fig 2.5V-1: Available load current vs. ambient
temperature and airflow rates for Vout=2.5V with
Vin=12V. Maximum component temperature 120°C.
Fig 2.5V-2: Efficiency vs. load current and input voltage
for Vout=2.5V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 2.5V-3: Power Loss vs. load current and input
voltage for Vout=2.5V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 15 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 2.5V-4: Turn-on transient for Vout=2.5V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 2.5V-6: Output voltage response for Vout=2.5V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 2.5V-7: Output voltage response for Vout=2.5V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 2.5V-5: Output voltage ripple (20mV/div.) for
Vout=2.5V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 16 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
6Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Power Dissipation [W]
6Vin
12Vin
14Vin
Fig 2.0V-1: Available load current vs. ambient
temperature and airflow rates for Vout=2.0V with
Vin=12V. Maximum component temperature 120°C.
Fig 2.0V-2: Efficiency vs. load current and input voltage
for Vout=2.0V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 2.0V-3: Power Loss vs. load current and input
voltage for Vout=2.0V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 17 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 2.0V-4: Turn-on transient for Vout=2.0V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 2.0V-6: Output voltage response for Vout=2.0V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 2.0V-7: Output voltage response for Vout=2.0V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 2.0V-5: Output voltage ripple (20mV/div.) for
Vout=2.0V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 18 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
6Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Power Dissipation [W]
6Vin
12Vin
14Vin
Fig 1.8V-1: Available load current vs. ambient
temperature and airflow rates for Vout=1.8V with
Vin=12V. Maximum component temperature 120°C.
Fig 1.8V-2: Efficiency vs. load current and input voltage
for Vout=1.8V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 1.8V-3: Power Loss vs. load current and input
voltage for Vout=1.8V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 19 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 1.8V-4: Turn-on transient for Vout=1.8V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 1.8V-6: Output voltage response for Vout=1.8V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.8V-7: Output voltage response for Vout=1.8V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.8V-5: Output voltage ripple (20mV/div.) for
Vout=1.8V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 20 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
6Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Power Dissipation [W]
6Vin
12Vin
14Vin
Fig 1.5V-1: Available load current vs. ambient
temperature and airflow rates for Vout=1.5V with
Vin=12V. Maximum component temperature 120°C.
Fig 1.5V-2: Efficiency vs. load current and input voltage
for Vout=1.5V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 1.5V-3: Power Loss vs. load current and input
voltage for Vout=1.5V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 21 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 1.5V-4: Turn-on transient for Vout=1.5V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 1.5V-6: Output voltage response for Vout=1.5V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.5V-7: Output voltage response for Vout=1.5V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.5V-5: Output voltage ripple (20mV/div.) for
Vout=1.5V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 22 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
6Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.51.01.52.02.53.03.54.04.55.0
Load Current [A]
Power Dissipation [W]
6Vin
12Vin
14Vin
Fig 1.2V-1: Available load current vs. ambient
temperature and airflow rates for Vout=1.2V with
Vin=12V. Maximum component temperature 120°C.
Fig 1.2V-2: Efficiency vs. load current and input voltage
for Vout=1.2V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 1.2V-3: Power Loss vs. load current and input
voltage for Vout=1.2V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 23 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 1.2V-4: Turn-on transient for Vout=1.2V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 1.2V-6: Output voltage response for Vout=1.2V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.2V-7: Output voltage response for Vout=1.2V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.2V-5: Output voltage ripple (20mV/div.) for
Vout=1.2V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 24 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Load Current [A]
Efficiency [%]
6Vin
12Vin
14Vin
0.0
0.5
1.0
1.5
2.0
2.5
0.51.01.52.02.53.03.54.04.55.0
Load Current [A]
Power Dissipation [W]
6Vin
12Vin
14Vin
Fig 1.0V-1: Available load current vs. ambient
temperature and airflow rates for Vout=1.0V with
Vin=12V. Maximum component temperature 120°C.
Fig 1.0V-2: Efficiency vs. load current and input voltage
for Vout=1.0V.
Airflow rate=200LFM (1m/s) and Ta=25°C.
Fig 1.0V-3: Power Loss vs. load current and input
voltage for Vout=1.0V.
Airflow rate = 200LFM (1m/s) and Ta=25°C.
0
1
2
3
4
5
6
30 40 50 60 70 80
Ambient Temp [DegC]
Output Current [A]
400LFM
200LFM
NC(50)
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 25 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Fig 1.0V-4: Turn-on transient for Vout=1.0V with
application of Vin at full rated load current (resistive)
and 47µFx2 external capacitance at Vin=12V.
Top trace: Vin (10V/div.)
Bottom trace: output voltage (1V/div.)
Time scale: 2ms/div.
Fig 1.0V-6: Output voltage response for Vout=1.0V to
positive load current step change from 2.5A to 5A with
slew rate of 5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.0V-7: Output voltage response for Vout=1.0V to
negative load current step change from 5A to 2.5A with
slew rate of –5A/µs at Vin=12V. Co=47µFx2 ceramic.
Top trace: output voltage (100mV/div.)
Bottom trace: load current (2A/div.)
Time scale: 20µs/div.
Fig 1.0V-5: Output voltage ripple (20mV/div.) for
Vout=1.0V at full rated load current into a resistive load
with external capacitance 47µFx2 ceramic + 1µF
ceramic at Vin=12V.
Time scale: 2µs/div.
FPMR12TR7505*A
http://www.fdk.co.jp
6-14Vdc Input, 5A, 0.7525-5.5Vdc Output
Page 26 of 26 Ver 2.1 Jul. 26, 2007
Series
Delivering Next Generation Technology
Mechanical Drawing
Part Number System
Cautions
NUCLEAR AND MEDICAL APPLICATIONS: FDK Corporation products are not authorized for use as critical
components in life support systems, equipment used in hazardous environments, or nuclear control systems without
the written consent of FDK Corporation.
SPECIFICATION CHANGES AND REVISIONS: Specifications are version-controlled, but are subject to change
without notice.
Pin # Function
1Vout
2TRIM
4Vin
5ON/OFF
Pin Connections
3GND
Product
Series Shape Regulated
/Non
Input
Voltage
Mounting
Scheme
Output
Voltage
Rated
Current
ON/OFF
Logic
Pin
Shape
FP M R 12 TR75 05 * A
Series
Name Middle Regulated Typ=12V Through
Hole
0.75V
(programmable:
See Page 6)
5A N: Negative
P: Positive Standard
Notes
- All dimensions are in millimeters (inches)
- Unless otherwise specified, tolerances are +/- 0.25mm
- Connector Material: Copper
- Connector Finish: Tin over Nickel
- Module Weight: 0.074 oz (2.1g)
- Module Height: 5.7mm Max
- Recommended Through Hole: Φ1.2mm