Interna TOR Re Advanced e e Dynamic dv/dt Rating e@ 175C Operating Temperature e Fast Switching e@ Fully Avalanche Rated Description Fifth Generation HEXFET Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per tional ctifier PD- 9.1410A IRFPO44N HEXFET Power MOSFET Process Technology D Voss = 55V Ip = 538A silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole. TO-247 Absolute Maximum Ratings Parameter Max. Units Ip @ Ty = 26C Continuous Drain Current, Veg @ 10V 53 Ip @ Te = 100C | Continuous Drain Current, Vag @ 10V 37 A low Pulsed Drain Current O 180 Pp @Te = 25C Power Dissipation 120 Ww Linear Derating Factor 0.77 WPC Vas Gate-to-Source Voltage +20 V Eas Single Pulse Avalanche Energy @ 230 mJ lar Avalanche Current 28 A Ean Repetitive Avalanche Energy 12 mJ dv/dt Peak Diode Recovery dv/dt & .0 V/ns Ty Operating Junction and 55 to+175 Tstg Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 Ibfein (1.1Nem) Thermal Resistance Parameter Typ. Max. Units Rosc Junction-to-Case _ 1.3 Recs Case-to-Sink, Flat, Greased Surface 0.24 CIW Resa Junction-to-Ambient _ 40 C-360 www.irf.comInternational IRFP044N IOR Rectifier Electrical Characteristics @ T, = 25C (unless otherwise specified) Parameter Min. | Typ.| Max. | Units Conditions Vipryposs Drain-to-Source Breakdown Voltage 5 | | V | Vas = OV, Ip = 250pA AVieryose/ATs | Breakdown Voltage Temp. Coefficient ~~ |0.0171 | V&C] Reference to 25C, Ilp= 1mAD Rogvon) Static Drain-to-Source On-Resistance _ ~- 10.020) Q | Veg = i0V, Ip =29A@ Vesan) Gate Threshold Voltage 20 | | 40 V_ | Vos = Vas. Ip = 250A Sts Forward Transconductance 16 _| S | Vos = 25V, Ip = 284 tn | | 25 Vos = 55V, Vas = OV loss Drain-to-Source Leakage Current T 380 pA Vos = 44V. Vag = OV. T) = 150C lass Gate-to-Source Forward Leakage | | 100 nA Vas = 20V Gate-to-Source Reverse Leakage - | | -100 Ves = -20V Qg Total Gate Charge ~j[-]s Ip = 28A Qgs Gate-to-Source Charge ~ | 13 nC | Vos=44V Qgs Gate-to-Drain ("Miller") Charge _ | 24 Vas = 10V, see figure 6 and 13 @ fafon) Turn-On Delay Time | 2) Vop = 28V tr Rise Time _ 80 | ns Ip = 28A tarot} Turn-Off Delay Time | 4/)- Re= 12Q t Fall Time _ a Rp = 0.98Q, see figure 10 @@ Lo Intemal Drain Inductance | 50; 4 an(o25n) , oe " frorn package dey Ls intemal Source Inductance | 18 | and center of die contact 3 Ciss input Capacitance ~~ |1500| Vag = OV Coss Output Capacitance | 450; pF | Vog=25V Crss Reverse Transfer Capacitance | 160} f = 1.0MHz, see figure 5 Source-Drain Ratings and Characteristics Parameter Min.| Typ.| Max. | Units Conditions Is Continuous Source Current _| | 59 MOSFET symbol ie (Body Diode) a_| Showing the be Isa Pulsed Source Current | | 420 integral reverse 8 (Body Diode) p-njunction diode. Is Vsp Diode Forward Voltage | 1 13 V | Ty= 28C, Is = 29A, Vas = OV @ ty Reverse Recovery Time | 72 | 110 ns | Ty=25C, lr = 28A On Reverse Recovery Charge | 210] 310 | pC | di/dt=-100A/us @ ton Forward Turn-On Time Intrinsic tumn-on time is negligible (tum-on is dominated by Lg+Lp) Notes: Lay temperature. (see figure 11) Vpp = 25V, starting T= 25C, L = 410yH, Rg = 25Q, lag = 28A. (see figure 12) & www.irf.com Isp < 28A, di/dt <= 240A/ps, Vpn $ Vierjoss: Ty s 175C Repetitive rating; pulse width limited by max. junction @ Pulse width < 300us; duty cycle = 2%. Uses IRFZ46N data and test conditions C-361IRFPO44N international TOR Rectifier 4000 1640 rr Wl 10 8.04 7.0V: oy 5.N OY 4.5V 6 5. BOTTOM 4. + o Qo 100 10 wn 4.5 In . Drain-to-Source Currant (A} Ip: Drain-to-Source Current (A) sje mt Ba po 20us PULSE WIDTH 20us PULSE WIDTH : Te = 25C ' To = 175 0.1 1 10 100 0.4 1 10 100 Vpg_ Drain-to-Source Voltage (V) Vos. Drain-io-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 pom 2.5 = 4 o Ip = 46A; PT eye o ! : i \ c P cope i _ oPebe Pep be Me ~ - s : x ~ es ae |. = i B20 TTT os dpe 5 100 o i te Oo @O mis : i I : ao : ao OU : r r t . r T S 5 q : : : : 8 ef ELL TL Lae t ' a . . By 2 = : : } : : 5 epee tp yy a 2 05 et + i : : : a | ! poor ~~ TV pg= 25V o pep oh ' 20us PULSE WIDTH oa _ Veg = 10V 4 6 7 8 g 10 60-40 -20 0 6-20 40 60 BO 100 120 140 160 180 Vas , Gate-to-Source Voltage (V)} T, , Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature C-362 www.irf.comInternational ToR Rectifier 280 ' Wes = OV, f=1MHz '"1Gigg = Cys +Cgq, Cas SHORTED 2400 mC iss = Cog --- | . oss = Cds + Coa a 2000 PCigg-+-+ = ce cee id 8 i600 PML : x NS if oS Coss Phat poop PE & 1200 +~ ___- &% Do it i - qo o 4 - : i j 00 400 Q Vig . Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 pm o a Qo Isp , Reverse Drain Current (A) Vas =0V 0.8 1.2 1.6 2.0 Vsp , Source-to-Drain Voltage (V) 0.4 24 Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com Ip. Drain Current (A) 20 = _ oO nN ao Ves: Gate-to-Source Voliage (V) IRFP044N Vpg = 44Vo. ~ FOR TEST CIRCUIT SEE FIGURE 13 6 10 20 30 40 50 60 Qq, Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 ST ELD och corto bus OPERATION IN THIS AREA LIMITED ~~ - BY RDS(on} oS Q a i =~ sii al - on ~ i . i L 10 iy Te = 25C a Ty = 175C i a 1 Single Pulse oh 1 16 100 Vog , Drain-to-Source Voltage (V} Fig 8. Maximum Safe Operating Area C-363IRFP044N International TOR Rectifier 60 500 . ' > : | Ip a fo fToP 11A 50 > \ : 20A 2 400 {BOTTOM 28A SZ ! vf fp pe c = 4 : , i g = 300 hi \ : = ~_ i oO $ a. Np de | i = * < N \ es ee eee Ge & 2 200 NN Ne NS a 20 a \ S aw 10 a ~~ : 0 ur, LWpp = 25, 25 50 75 100 125 150 175 25 50 75 400 125 150 175 o Tc , Case Temperature (C) Starting T; , Junction Temperature (C) Fig 9. Maximum Drain Current Vs. Fig 12. Maximum Avalanche Energy Case Temperature Vs. Drain Current 10 0.1 Thermal Response (Z thc) Notes: 1. Duty factor D = ty /t2 2, Peak Ty=P ox Zinc + Tc 0.04 0.00001 0.0001 0.001 0.01 0.1 1 t;, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal impedance, Junction-to-Case Mechanical drawings, Appendix A Part marking information, Appendix B Test Circuit diagrams, Appendix C C-364 www.in.com