©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
HUF75329D3, HUF75329D3S
20A, 55 V, 0.026 Ohm, N-Channel Ultr aFET
Power MOSFETs
These N-Channel power MOSFETs
are manufactured using the
inno vat ive UltraFET ® process . This
advanced process technology
achieves the lowest possible on-resistance per silicon area,
resulting in outstandi ng performance . This device is capa ble
of withstanding high ene r gy in the ava lan che mode an d the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, low-
v oltage bus switches, and power manag em ent in portable
and battery-operated products.
Formerly developmental type TA75329.
Features
20A, 55V
Simulation Models
- Tempera ture C ompens ated P SPICE® and SABER™
Models
- SPICE and SABER Thermal Impedance Models
A vailable on the WEB at: www.f airchildsemi.com
Peak Current vs Pulse Wi dth Curve
UIS Rating Curve
Related Literature
- TB334, “G uid eli ne s for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
Product reliability information can be found at http://www.fairchildsemi.com/products/disc rete/reliability/index.html
For severe environments, see our Autom otive HUFA series.
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 an d QS9000 quality systems c e rtification.
Ordering Information
PART NUMBER PACKAGE BRAND
HUF75329D3 TO-251AA 75329D
HUF75329D3S TO-252AA 75329D
NOTE: When ordering, use the entire part number . Add the suffix T to
obtain the TO-252AA variant in tape and reel, e.g., HUF75329D3ST.
D
G
S
JEDEC TO-251AA JEDEC TO-252AA
DRAIN
(FLANGE) DRAIN
SOURCE
GATE DRAIN
(FLANGE)
GATE
SOURCE
Data Sheet December 2001
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . VDSS 55 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . VDGR 55 V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 20
Figure 4 A
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figure 6
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
0.86 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . .TJ, TSTG -55 to 175 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUTION: Str esses above those l isted in “A bsolute Maximu m Rating s” may cause per manent d amage to t he device. This is a str ess onl y rating and operation o f the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications TC = 25oC, Unles s Otherwise Spec ified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source B reakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 55 - - V
Zero Gate Vo ltage Drain C urrent IDSS VDS = 50V, VGS = 0V - - 1 µA
VDS = 45V, VGS = 0V, TC = 150oC--250µA
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V
Drain to Source On Resist ance rDS(ON) ID = 20A, VGS = 10V (Figure 9) - 0.022 0.026
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case RθJC (Figure 3) - - 1.17 oC/W
Thermal Resistance Junction to Ambient RθJA TO-251, TO-252 - - 100 oC/W
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time tON VDD = 30V, ID 20A,
RL = 1.5, VGS = 10V,
RGS = 9.1
- - 60 ns
Turn-On De lay Time td(ON) -7-ns
Rise Time tr-30- ns
Turn-Off De lay Time td(OFF) -10- ns
Fall Time tf-33- ns
Turn-Off T ime tOFF - - 65 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Qg(TOT) VGS = 0V to 20V VDD = 30V,
ID 20A,
RL = 1.5
Ig(REF) = 1.0mA
(Figure 13)
-5065nC
Gate Charge at 10V Qg(10) VGS = 0V to 10V - 32 40 nC
Threshold Gate Charge Qg(TH) VGS = 0 V to 2V - 2.0 2.5 nC
Gate to Source Gate C harge Qgs -5-nC
Reverse Transfer Capacitance Qgd -13-nC
HUF75329D3, HUF75329D3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
- 1060 - pF
Output Capacitance COSS - 405 - pF
Reverse Transfer Capacitance CRSS -95-pF
Electrical Specifications TC = 25oC, Unles s Otherwise Spec ified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNI TS
Source to D rain Diode Volt age VSD ISD = 20A - - 1.25 V
Reverse Recovery Time trr ISD = 20A, dISD/dt = 100A/µs--68ns
Reverse Recovered Charge QRR ISD = 20A, dISD/dt = 100A/µs - - 120 nC
Typical Performance Curves
FIGURE 1. NORMALIZED PO WER DISSIPA TI ON vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00 25 50 75 100 150
0.2
0.4
0.6
0.8
1.0
1.2
125 17
5
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
5
10
15
25
50 75 100 125 150 17
5
025
20
t, RECTANGULAR PULSE DURATION (s)
SINGLE PULSE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
10-4 10-3 10-2 10-1 100101
10-5
0.1
1
2
0.01
ZθJC, NORMALIZED
THERMAL IMPEDANCE
HUF75329D3, HUF75329D3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. TRANSFER CHARA C TERISTICS
Typical Performance Curves (Continued)
101
100
10-1
10-2
10-3
10-4
10-5
10
100
1000 TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 1 0V
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
100
500
10 100
1120
0
VDS, DRAIN TO SOURCE VO LTAGE (V)
ID, DRAIN CURRENT (A)
TJ = MAX RATED
TC = 25oC
100µs
10ms
1ms
VDSS(MAX) = 55V
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
110
0
100
0.01
200
1
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STAR TING TJ = 25oC
STAR TING TJ = 150oC
0.1 10
10
023
5
I
D
, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 10V
VGS = 20V
PULSE DURATION = 80
µ
s
TC = 25oC
VGS = 5V
VGS = 8 V
0
20
40
100
41
80
60
VGS = 6V
VGS = 7 V
DUTY CYCLE = 0.5% MAX
0 3.0 4.5 6.0 7.
5
1.5
0
20
40
I
D
, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
25oCVDD = 15V
100
60
80
-55oC
175oC
PULSE DURATION = 80
µ
s
DUTY CYCLE = 0.5% M AX
HUF75329D3, HUF75329D3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
FIGURE 9. NORMALIZED DRAIN T O SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD V OLT AGE vs
JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED DRAIN T O SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Typical Performance Curves (Continued)
1.0
1.5
2.0
2.5
-40 0 40 80 120 160 200
0.5-80
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
PULSE DURATION = 80µs
VGS = 10V, ID = 20A
DUTY CYCLE = 0.5% MAX
0.8
1.0
1.2
-40 0 40 80 120 160 200
0.6
-80
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VO LTAGE
VGS = VDS, ID = 250µA
0.4
0.9
1.0
1.1
1.2
-40 0 40 80 120 160 200-80
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 250µA
BREAKDOWN VOLTAGE
0.8
1200
600
00 1020304050
C, CAPACITANCE (pF)
900
VDS, DRAIN TO SOURCE VOLTAG E (V)
300
CISS
COSS
CRSS
60
1500 VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
10
8
6
4
0
VGS, GATE TO SOURCE VOLTAGE (V)
VDD = 30V
2
15 20 3
5
0
Qg, GATE CHARGE (nC)
510
ID = 20A
ID = 12.5A
ID = 5A
WAVEFORMS IN
DESCENDING ORDER:
25 30
HUF75329D3, HUF75329D3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
Test Circuits and Wavef orms
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PE AK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
RL
VGS +
-
VDS
VDD
DUT
IG(REF)
VDD
Qg(TH)
VGS = 2V
Qg(10)
VGS = 10V
Qg(TOT)
VGS = 20
V
VDS
VGS
I
g(REF)
0
0
Qgs Qgd
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
HUF75329D3, HUF75329D3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
PSPICE Ele ctrical Model
.SUBCKT HUF75329D 2 1 3 ; rev 6/19/97
CA 12 8 1.72e-9
CB 15 14 1.52e-9
CIN 6 8 9.61e-10
DBODY 7 5 DBODYMOD
DBRE AK 5 11 DB REAK MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 58.13
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTH R ES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRA IN 2 5 1e- 9
LGATE 1 9 2.86e-9
LSOURCE 3 7 2.69e-9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1e-3
RGATE 9 20 1.52
RLDRAIN 2 5 10
RLGATE 1 9 26.9
RLSOURCE 3 7 28.6
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 13.85e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTE M P 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S 2 BMOD
VBAT 22 1 9 DC 1
ESL C 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*135),3.5))}
.MODEL DBOD YMOD D (IS = 7.50e-13 RS = 5.05e-3 TRS1 = 2.21e-3 TRS2 = 1.02e-6 CJO = 1.51e-9 TT = 4.05e-8 M = 0 .5)
.MODEL DBREAKMOD D (RS = 2.14e- 1TRS1 = 9.62e- 4TRS2 = 1.23e-6)
.MODEL DPLC APMOD D (CJO = 13.5e-1 0IS = 1e-3 0N = 10 M = 0 .85)
.MODEL MMEDMOD NMOS (VTO = 3.25 KP = 2.50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.52)
.MODEL MSTROMOD NMOS (VTO = 3.80 KP = 70.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEA KM OD NMOS (VTO = 2 . 91 K P = 0.06 IS = 1e-30 N = 10 TO X = 1 L = 1u W = 1u RG = 15.2 RS = 0 . 1 )
.MODEL RBREAK MOD RES (TC1 = 1.05e - 3TC2 = 1.94e-7)
.MODEL RDRAINMOD RES (TC1 = 8.04e-2 TC2 = 1.37e-4)
.MODEL RSLCMOD RES (TC1 = 4.83e-3 TC2 = 1.16e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RE S (TC = -3.43e-3 TC2 = -1.63e-5)
.MODEL RVTEMPMO D RE S (TC1 = -1.35e- 3TC2 = 1.16e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.90 VOFF= -4.90)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.90 VOFF= -7.90)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.50 VOFF= 2.50)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.50 VOFF= -0.50)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPI CE Sub-Circuit for the Power MOSFET Featuring Gl obal
Temperature Options; IEEE Power Electronics Special ist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF75329D3, HUF75329D3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
SABER Electrical Model
REV June 1997
template huf75329d n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 7.50e-13, cjo = 1.51e-9, tt = 4.05 e-8, m = 0.5)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 13.5e-10, is = 1e-30, n = 10, m = 0.85)
m..model mmedmod = (type=_n, vto = 3.25, kp = 2.50, is = 1e-30, tox = 1)
m..model mstrongmod = (type= _n, vto = 3.80, kp = 70, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.91, kp = 0.06, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.90, voff = -4.90)
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4.90, voff = -7.90)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 2.50)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.50, voff = -0.50)
c.ca n12 n8 = 1.72e-9
c.cb n15 n14 = 1.52e-9
c.cin n6 n8 = 9.61e-10
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dpl capmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 2.86e-9
l.lsourc e n3 n7 = 2.69e-9
k.k1 i(l.lgate) i(l.lsource) = l(l.lgat e), l(l.lsource), 0.0085
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 1.94e-7
res.rdbody n71 n5 = 5.05e-3, tc1 = 2.21e-3, tc2 = 1.02e-6
res.rdbreak n72 n5 = 2.14e-1, tc1 = 9.62e-4, tc2 = 1.23e-6
res.rdrain n50 n16 = 1e-3, tc1 = 8.04e-2, tc2 = 1.37e-4
res.rgate n9 n20 = 1.52
res.r ldrain n2 n5 = 10
res.rlgate n1 n9 = 26.9
res.rlsource n3 n7 = 28.6
res.rs lc1 n5 n51 = 1e-6, tc1 = 4.83e-3, tc2 = 1.16e-6
res.r slc2 n5 n50 = 1e3
res.rs ource n8 n7 = 13.85e-3, tc1 = 0, tc2 = 0
res.rv temp n18 n19 = 1, tc1 = -1.35e-3, tc2 = 1.16e-6
res.rvthres n22 n8 = 1, tc1 = -3.43e-3, tc2 = -1.63e-5
spe.ebreak n11 n7 n17 n18 = 58.13
spe.e ds n14 n8 n5 n8 = 1
spe.e gs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs (v(n5,n51)*1e6/135))** 3.5))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURC
E
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF75329D3, HUF75329D3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75329D3, HUF75329D3S Rev. B
SPICE Thermal Model
REV 23 February 1999
HUF75329D
CTHERM1 th 6 2.80e-3
CTHERM2 6 5 1 .00e-2
CTHERM3 5 4 6 .80e-3
CTHERM4 4 3 7 .00e-3
CTHERM5 3 2 1 .60e-2
CTHERM6 2 tl 15.55
RTHERM1 th 6 7.94e-3
RTHERM2 6 5 1 .98e-2
RTHERM3 5 4 5 .57e-2
RTHERM4 4 3 3 .13e-1
RTHERM5 3 2 4 .71e-1
RTHERM6 2 tl 6.26e-2
SABER Thermal Model
SABER thermal model HUF75329D
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm 1 t h 6 = 2.80e-3
ctherm.ctherm 2 6 5 = 1.00e-2
ctherm.ctherm 3 5 4 = 6.80e-3
ctherm.ctherm 4 4 3 = 7.00e-3
ctherm.ctherm 5 3 2 = 1.60e-2
ctherm.ctherm6 2 tl = 15.55
rtherm.rtherm1 th 6 = 7.94e-3
rtherm.rtherm2 6 5 = 1.98e-2
rtherm.rtherm3 5 4 = 5.57e-2
rtherm.rtherm4 4 3 = 3.13e-1
rtherm.rtherm5 3 2 = 4.71e-1
rtherm.rtherm6 2 t l = 6.26e- 2
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF75329D3, HUF75329D3S
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
Rev. H4
ACEx™
Bottomless™
CoolFET™
CROSSVOLT
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
STAR*POWER is used under license
VCX™