© Semiconductor Components Industries, LLC, 2009
January, 2009 Rev. 10
1Publication Order Number:
MC78LC00/D
MC78LC00 Series
Micropower Voltage
Regulator
The MC78LC00 series of fixed output low dropout linear regulators
are designed for handheld communication equipment and portable
battery powered applications which require low quiescent current. The
MC78LC00 series features an ultralow quiescent current of 1.1 mA.
Each device contains a voltage reference unit, an error amplifier, a
PMOS power transistor, and resistors for setting output voltage.
The MC78LC00 has been designed to be used with low cost ceramic
capacitors and requires a minimum output capacitor of 0.1 mF. The
device is housed in the microminiature Thin SOT235 surface mount
package and SOT89, 3 pin. Standard voltage versions are 1.5, 1.8,
2.5, 2.7, 2.8, 3.0, 3.3, 4.0, and 5.0 V. Other voltages are available in
100 mV steps.
Features
Low Quiescent Current of 1.1 mA Typical
Excellent Line and Load Regulation
Maximum Operating Voltage of 12 V
Low Output Voltage Option
High Accuracy Output Voltage of 2.5%
Industrial Temperature Range of 40°C to 85°C
Two Surface Mount Packages (SOT89, 3 Pin, or SOT23, 5 Pin)
These are PbFree Devices
Typical Applications
Battery Powered Instruments
HandHeld Instruments
Camcorders and Cameras
Fi
g
ure 1. Representative Block Dia
g
ram
23
1
This device contains 8 active transistors.
Vin
GND
VO
Vref
SOT89
H SUFFIX
CASE 1213
1
TAB
(Tab is connected to Pin 2)
1
2
3
GND
Vin
Vout
Tab
(Top View)
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
ORDERING INFORMATION
TSOP5
NTR SUFFIX
CASE 483
1
5
MARKING DIAGRAMS AND
PIN CONNECTIONS
1
3N/C
GND
2Vin
Vout 4
N/C
5
(Top View)
http://onsemi.com
XXX= Specific Device Code
A = Assembly Location
Y = Year
W = Work Week
G= PbFree Package
(Note: Microdot may be in either location)
XXX AYW G
G
XXAYW G
G
MC78LC00 Series
http://onsemi.com
2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
PIN FUNCTION DESCRIPTION
ÁÁÁÁÁ
ÁÁÁÁÁ
Pin No.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Pin Name
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Description
ÁÁÁÁÁ
ÁÁÁÁÁ
1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
GND
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Power supply ground
ÁÁÁÁÁ
ÁÁÁÁÁ
2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Vin
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Positive power supply input voltage
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Vout
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Regulated Output
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
N/C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
No Internal Connection
ÁÁÁÁÁ
ÁÁÁÁÁ
5
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
N/C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
No Internal Connection
MAXIMUM RATINGS
Rating Symbol Value Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Voltage
ÁÁÁÁÁ
ÁÁÁÁÁ
Vin
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
12
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Voltage
ÁÁÁÁÁ
ÁÁÁÁÁ
Vout
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
0.3 to Vin +0.3
V
Power Dissipation and Thermal Characteristics
Case 48301 (Thin SOT235) NTR Suffix
Power Dissipation @ TA = 85°C
Thermal Resistance, JunctiontoAmbient
Case 1213 (SOT89) H Suffix
Power Dissipation @ TA = 25°C
Thermal Resistance, JunctiontoAmbient
PD
RqJA
PD
RqJA
140
280
900
111
mW
°C/W
mW
°C/W
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Operating Junction Temperature
ÁÁÁÁÁ
ÁÁÁÁÁ
TJ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
+125
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Operating Ambient Temperature
ÁÁÁÁÁ
ÁÁÁÁÁ
TA
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
40 to +85
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Storage Temperature
ÁÁÁÁÁ
ÁÁÁÁÁ
Tstg
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
55 to +150
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Lead Soldering Temperature @ 260°C
ÁÁÁÁÁ
ÁÁÁÁÁ
Tsolder
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
10
sec
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
MC78LC00 Series
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS (Vin = Vout(nom.) + 1.0 V, Cin = 1.0 mF, C out = 1.0 mF, T J = 25°C, unless otherwise noted.) (Note 5)
NTR SUFFIX
Characteristic Symbol Min Typ Max Unit
Output Voltage (TA = 25°C, Iout = 1.0 mA)
1.5 V
1.8 V
2.5 V
2.7 V
2.8 V
3.0 V
3.3 V
4.0 V
5.0 V
Vout
1.455
1.746
2.425
2.646
2.744
2.94
3.234
3.9
4.90
1.5
1.8
2.5
2.7
2.8
3.0
3.3
4.0
5.0
1.545
1.854
2.575
2.754
2.856
3.06
3.366
4.1
5.10
V
Output Voltage (TA = 40°C to 85°C)
1.5 V
1.8 V
2.5 V
2.7 V
2.8 V
3.0 V
3.3 V
4.0 V
5.0 V
Vout
1.455
1.746
2.425
2.619
2.716
2.910
3.201
3.9
4.90
1.5
1.8
2.5
2.7
2.8
3.0
3.3
4.0
5.0
1.545
1.854
2.575
2.781
2.884
3.09
3.399
4.1
5.10
V
Line Regulation (Vin = VO(nom.) + 1.0 V to 12 V, Iout = 1.0 mA) Regline 0.05 0.2 %/V
Load Regulation (Iout = 1.0 mA to 10 mA) Regload 40 60 mV
Output Current (Note 6)
1.5 V, 1.8 V (Vin = 4.0 V)
2.5 V, 2.7 V, 2.8 V, 3.0 V (Vin = 5.0 V)
3.3 V (Vin = 6.0 V)
4.0 V (Vin = 7.0 V)
5.0 V (Vin = 8.0 V)
Iout
35
50
50
80
80
50
80
80
80
100
mA
Dropout Voltage (Iout = 1.0 mA, Measured at Vout 3.0%)
1.5 V
1.6 V3.2 V
3.3 V3.9 V
4.0 V5.0 V
VinVout
35
30
30
30
70
60
53
38
mV
Quiescent Current (Iout = 1.0 mA to IO(nom.)) IQ1.1 3.6 mA
Output Voltage Temperature Coefficient Tc"100 ppm/°C
Output Noise Voltage (f = 1.0 kHz to 100 kHz) Vn89 mVrms
1. This device series contains ESD protection and exceeds the following tests:
Human Body Model 2000 V per MILSTD883, Method 3015
Machine Model Method 200 V
2. Latch up capability (85°C) "100 mA
3. Maximum package power dissipation limits must be observed.
PD +TJ(max) *TA
RqJA
4. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
5. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
6. Output Current is measured when Vout = VO1 3% where VO1 = Vout at Iout = 0 mA.
MC78LC00 Series
http://onsemi.com
4
ELECTRICAL CHARACTERISTICS (Vin = Vout(nom.) + 1.0 V, Cin = 1.0 mF, C out = 1.0 mF, TJ = 25°C, unless otherwise noted.) (Note 11)
HT SUFFIX
Characteristic Symbol Min Typ Max Unit
Output Voltage
30HT1 Suffix (Vin = 5.0 V)
33HT1 Suffix (Vin = 5.0 V)
40HT1 Suffix (Vin = 6.0 V)
50HT1 Suffix (Vin = 7.0 V)
2.950
3.218
3.900
4.875
3.0
3.3
4.0
5.0
3.075
3.382
4.100
5.125
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Line Regulation
Vin = [VO + 1.0] V to 10 V, IO = 1.0 mA
ÁÁÁÁ
ÁÁÁÁ
Regline
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0.05
ÁÁÁÁ
ÁÁÁÁ
0.2
ÁÁÁ
ÁÁÁ
%/V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Load Regulation (IO = 1.0 to 10 mA)
30HT1 Suffix (Vin = 5.0 V)
33HT1 Suffix (Vin = 6.0 V)
40HT1 Suffix (Vin = 7.0 V)
50HT1 Suffix (Vin = 8.0 V)
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Regload
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
40
40
50
60
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
60
60
70
90
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Current (Note 12)
30HT1 Suffix (Vin = 5.0 V)
33HT1 Suffix (Vin = 6.0 V)
40HT1 Suffix (Vin = 7.0 V)
50HT1 Suffix (Vin = 8.0 V)
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
IO
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
35
35
45
55
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
50
50
65
80
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Dropout Voltage
30HT1 Suffix (IO = 1.0 mA)
33HT1 Suffix (IO = 1.0 mA)
40HT1 Suffix (IO = 1.0 mA)
50HT1 Suffix (IO = 1.0 mA)
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Vin VO
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
40
35
25
25
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
60
53
38
38
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
mV
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Quiescent Current
30HT1 Suffix (Vin = 5.0 V)
33HT1 Suffix (Vin = 5.0 V)
40HT1 Suffix (Vin = 6.0 V)
50HT1 Suffix (Vin = 7.0 V)
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ICC
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1.1
1.1
1.2
1.3
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
3.3
3.3
3.6
3.9
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Voltage Temperature Coefficient
ÁÁÁÁ
ÁÁÁÁ
TC
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
±100
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ppm/°C
7. This device series contains ESD protection and exceeds the following tests:
Human Body Model 2000 V per MILSTD883, Method 3015
Machine Model Method 200 V
8. Latch up capability (85°C) "100 mA
9. Maximum package power dissipation limits must be observed.
PD +TJ(max) *TA
RqJA
10.Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
11. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
12.Output Current is measured when Vout = VO1 3% where VO1 = Vout at Iout = 0 mA.
DEFINITIONS
Load Regulation
The change in output voltage for a change in output current
at a constant temperature.
Dropout Voltage
The input/output differential at which the regulator output
no longer maintains regulation against further reductions in
input voltage. Measured when the output drops 3% below its
nominal. The junction temperature, load current, and
minimum input supply requirements affect the dropout level.
Maximum Power Dissipation
The maximum total dissipation for which the regulator will
operate within its specifications.
Quiescent Current
The quiescent current is the current which flows through the
ground when the LDO operates without a load on its output:
internal IC operation, bias, etc. When the LDO becomes
loaded, this term is called the Ground current. It is actually the
difference between the input current (measured through the
LDO input pin) and the output current.
Line Regulation
The change in output voltage for a change in input voltage.
The measurement is made under conditions of low dissipation
or by using pulse technique such that the average chip
temperature is not significantly affected.
Line Transient Response
Typical over and undershoot response when input voltage is
excited with a given slope.
Maximum Package Power Dissipation
The maximum power package dissipation is the power
dissipation level at which the junction temperature reaches its
maximum operating value, i.e. 125°C. Depending on the
ambient power dissipation and thus the maximum available
output current.
MC78LC00 Series
http://onsemi.com
5
Vin, Input Voltage (V)
2.5
3.2
TA = 25°C
IO = 10 mA
3
2.8
2.6
2.4
2.2 2.7 3.52.9 3.1 3.3
VO, OUTPUT VOLTAGE (V)
Figure 2. Output Voltage versus Input Voltage
IO = 5 mA
2.3
2.5
2.7
2.9
3.1
IO = 1 mA
NTR Series
2.5
3.2
Figure 3. Output Voltage versus Input Voltage
TA = 25°C
IO = 1.0 mA
IO = 5.0 mA
IO = 10 mA
3.0
2.8
2.6
2.4
2.2
2.7 3.52.9 3.1 3.3
MC78LC30HT1
2.95
2.85
3
2.8
2.9
2.6
3.05
IO, Output Current (mA)
VO, OUTPUT VOLTAGE (V)
Figure 4. Output Voltage versus Output Current
0806040 10020 120
25°C
80°C
40°C
2.75
2.7
2.65
NTR Series
0
3.2
IO, Output Current (mA)
Figure 5. Output Voltage versus Output Current
TA = 80°C
TA = 30°C
TA = 25°C
3.1
3.0
2.9
2.8
2.7
0
20 40 60 80 100 120
MC78LC30HT1
0
2
1.8
1.6
1.4
403020
1.2
1
0.8
0.2
0
10 50
IO, Output Current (mA)
Figure 6. Dropout Voltage versus Output Current
Vin VO, DROPOUT VOLTAGE (V)
MC78LC30NTR
TA = 25°C
0.6
0.4
0
2.0
Figure 7. Dropout Voltage versus Output Current
1.6
1.2
0.8
0.4
0
10 20 30 40 50
MC78LC30HT1
TA = 25°C
VO, OUTPUT VOLTAGE (V) VO, OUTPUT VOLTAGE (V)
Vin, Input Voltage (V)
Vin VO, DROPOUT VOLTAGE (V)
IO, Output Current (mA)
MC78LC00 Series
http://onsemi.com
6
2.98
TA, Ambient Temperature (°C)
VO, OUTPUT VOLTAGE (V)
Figure 8. Output Voltage versus Temperature
40 40 6020020 80
2.9
3.02
2.94
3.06
3.1
MC78LC30NTR
Vin = 4.0 V
IO = 10 mA
40
3.10
Figure 9. Output Voltage versus Temperature
Vin = 5.0 V
IO = 10 mA
3.06
3.02
2.98
2.94
2.90
200 20406080
MC78LC30HT1
1.4
1.3
1.1
1.2
1
0.9
0.8
Vin, Input Voltage (V)
Figure 10. Quiescent Current versus Input Voltage
IQ, QUIESCENT CURRENT (mA)
376548912
MC78LC30NTR
TA = 25°C
IO = 0 mA
10 11 3.0
Figure 11. Quiescent Current versus Input Voltage
TA = 25°C
1.4
1.3
1.2
1.1
1.0
0.9
0.8
4.0 5.0 6.0 7.0 8.0 9.0 10
MC78LC30HT1
0.75
0.5
1
1.25
1.5
1.75
TA, Ambient Temperature (°C)
IQ, QUIESCENT CURRENT (mA)
20 604020080
Figure 12. Quiescent Current versus Temperature
MC78LC30NTR
Vin = 4.0 V
IO = 0 mA
40
Figure 13. Quiescent Current versus Temperature
Vin = 5.0 V
1.2
1.1
1.0
0.9
0.8
0.7
0.6 20 0 20 40 60 80
MC78LC30HT1
TA, Ambient Temperature (°C)
VO, OUTPUT VOLTAGE (V)
Vin, Input Voltage (V)
IQ, QUIESCENT CURRENT (mA)
TA, Ambient Temperature (°C)
IQ, QUIESCENT CURRENT (mA)
MC78LC00 Series
http://onsemi.com
7
0.0
0.7
5.0
0.6
4.01.0
Vin Vout, DROPOUT VOLTAGE (V)
0.5
Figure 14. Dropout Voltage versus Set Output Voltage
0.8
VO, Set Output Voltage (V)
2.0 3.0 6.0
0
0.4
0.3
0.2
0.1
NTR Series
0
0.8
Figure 15. Dropout Voltage versus
Set Output Voltage
IO = 10 mA
IO = 1.0 mA
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1.0 2.0 3.0 4.0 5.0 6.0
HT1 Series
4.0
200
5.0
100
300
300
6.0
Time (mS)
Figure 16. Line Transient
Input Voltage (V)
0 2.0 2.51.51.00.5
Vin = 4.5 V to 5.5 V
Vout = 3.0 V
100
200
0
Output Voltage
Deviation (mV)
RL = 3 k
Cout = 0.1 mF
NTR Series
INPUT VOLTAGE/OUTPUT VOLTAGE (V)
0
8.0
t, Time (ms)
CO = 0.1 mF
IO = 1.0 mA
Figure 17. Line Transient Response
Input Voltage
Output Voltage
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
2.0 4.0 6.0
HT1 Series
0 2.01.51.00.5 2.5
Vin, Input Voltage (V)
Figure 18. Output Voltage versus Input Voltage Figure 19. Ground Current versus Input Voltage
Vout, OUTPUT VOLTAGE (V)
3.5
3.0
2.5
2.0
0.5
0
1.5
1.0
TA = 25°C
IO = 50 mA
100 mA
200 mA
0 2.01.51.00.5 2.5
Vin, Input Voltage (V)
Ig GROUND CURRENT (mA)
TA = 25°C
IO = 0 mA
50 mA
100 mA
200 mA
1.5
1.0
0.8
0.2
0
0.6
0.4
50 mA
200 mA
NTR Series NTR Series
Vin Vout, DROPOUT VOLTAGE (V)
VO, Set Output Voltage (V)
MC78LC00 Series
http://onsemi.com
8
APPLICATIONS INFORMATION
A typical application circuit for the MC78LC00 series is
shown in Figure 20.
Input Decoupling (C1)
A 0.1 mF capacitor either ceramic or tantalum is
recommended and should be connected close to the
MC78LC00 package. Higher values and lower ESR will
improve the overall line transient response.
Output Decoupling (C2)
The MC78LC00 is a stable component and does not
require any specific Equivalent Series Resistance (ESR) or
a minimum output current. Capacitors exhibiting ESRs
ranging from a few mW up to 3.0 W can thus safely be used.
The minimum decoupling value is 0.1 mF and can be
augmented to fulfill stringent load transient requirements.
The regulator accepts ceramic chip capacitors as well as
tantalum devices. Larger values improve noise rejection and
load regulation transient response.
Hints
Please be sure the Vin and GND lines are sufficiently
wide. When the impedance of these lines is high, there is a
chance to pick up noise or cause the regulator to
malfunction.
Set external components, especially the output capacitor,
as close as possible to the circuit, and make leads as short as
possible.
Thermal
As power across the MC78LC00 increases, it might
become necessary to provide some thermal relief. The
maximum power dissipation supported by the device is
dependent upon board design and layout. Mounting pad
configuration on the PCB, the board material, and also the
ambient temperature effect the rate of temperature rise for
the part. This is stating that when the MC78LC00 has good
thermal conductivity through the PCB, the junction
temperature will be relatively low with high power
dissipation applications.
The maximum dissipation the package can handle is
given by:
PD +TJ(max) *TA
RqJA
If junction temperature is not allowed above the
maximum 125°C, then the MC78LC00NTR can dissipate
up to 357 mW @ 25°C.
The power dissipated by the MC78LC00NTR can be
calculated from the following equation:
Ptot +ƪVin *I
gnd (Iout)ƫ)[Vin *Vout]*I
out
or
VinMAX +Ptot )Vout *Iout
Ignd )Iout
If an 80 mA output current is needed then the ground
current from the data sheet is 1.1 mA. For an
MC78LC30NTR (3.0 V), the maximum input voltage will
then be 7.4 V.
Vout
C2
+
C1
+
Battery or
Unregulated
Voltage
Figure 20. Basic Application Circuit for NTR Suffixes
MC78LC00 Series
http://onsemi.com
9
Figure 21. Current Boost Circuit
23
VO
GND
Vin
GND
1
0.1 mF
0.1 mF
MC78LC00
MJD32C
100
0.033 mF
Figure 22. Adjustable VO
VO
Vin
ICC
C2
C1
MC78LC00
R1
GND
R2
23
1
Figure 23. Current Boost Circuit with
Overcurrent Limit Circuit
VO
GND
Vin
GND
0.1 mF
0.1 mF
MC78LC00
MJD32C
Q1
R1
R2
Q2
MMBT2907
ALT1
0.033 mF
23
1
IO(short circuit) [
VBE2
R2 )
VBE1 )VBE2
R1
VO+VO(Reg) ǒ1)R2
R1Ǔ)ICC R2
MC78LC00 Series
http://onsemi.com
10
ORDERING INFORMATION
Device
Nominal
Output Voltage Marking Package Shipping
MC78LC15NTR 1.5 LAG Thin SOT235
3000 Units/7 Tape & Reel
MC78LC15NTRG 1.5 LAG Thin SOT235
(PbFree)
MC78LC18NTR 1.8 LAH Thin SOT235
MC78LC18NTRG 1.8 LAH Thin SOT235
(PbFree)
MC78LC25NTR 2.5 LAI Thin SOT235
MC78LC25NTRG 2.5 LAI Thin SOT235
(PbFree)
MC78LC27NTR 2.7 LAJ Thin SOT235
MC78LC27NTRG 2.7 LAJ Thin SOT235
(PbFree)
MC78LC28NTR 2.8 LAK Thin SOT235
MC78LC28NTRG 2.8 LAK Thin SOT235
(PbFree)
MC78LC30NTR 3.0 LAL Thin SOT235
MC78LC30NTRG 3.0 LAL Thin SOT235
(PbFree)
MC78LC33NTR 3.3 LAM Thin SOT235
MC78LC33NTRG 3.3 LAM Thin SOT235
(PbFree)
MC78LC40NTR 4.0 LEC Thin SOT235
MC78LC40NTRG 4.0 LEC Thin SOT235
(PbFree)
MC78LC50NTR 5.0 LAN Thin SOT235
MC78LC50NTRG 5.0 LAN Thin SOT235
(PbFree)
MC78LC30HT1G 3.0 0C SOT89
(PbFree)
1000 Units Tape & Reel
MC78LC33HT1G 3.3 3C SOT89
(PbFree)
MC78LC40HT1G 4.0 0D SOT89
(PbFree)
MC78LC50HT1G 5.0 0E SOT89
(PbFree)
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Additional voltages in 100 mV steps are available upon request by contacting your ON Semiconductor representative.
MC78LC00 Series
http://onsemi.com
11
PACKAGE DIMENSIONS
TSOP5 (SOT235)
NTR SUFFIX
CASE 48302
ISSUE H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
5. OPTIONAL CONSTRUCTION: AN
ADDITIONAL TRIMMED LEAD IS ALLOWED
IN THIS LOCATION. TRIMMED LEAD NOT TO
EXTEND MORE THAN 0.2 FROM BODY.
DIM MIN MAX
MILLIMETERS
A3.00 BSC
B1.50 BSC
C0.90 1.10
D0.25 0.50
G0.95 BSC
H0.01 0.10
J0.10 0.26
K0.20 0.60
L1.25 1.55
M0 10
S2.50 3.00
123
54 S
A
G
L
B
D
H
C
J
__
0.7
0.028
1.0
0.039
ǒmm
inchesǓ
SCALE 10:1
0.95
0.037
2.4
0.094
1.9
0.074
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
0.20
5X
CAB
T0.10
2X
2X T0.20
NOTE 5
T
SEATING
PLANE
0.05
K
M
DETAIL Z
DETAIL Z
MC78LC00 Series
http://onsemi.com
12
PACKAGE DIMENSIONS
K
L
G
H
M
0.10 T S
BS
A
M
0.10 T S
BS
A
D
E2 PL
C
J
A
B
F
TSEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. 1213-01 OBSOLETE, NEW STANDARD 1213-02.
DIM
A
MIN MAX MIN MAX
INCHES
4.40 4.60 0.173 0.181
MILLIMETERS
B2.40 2.60 0.094 0.102
C1.40 1.60 0.055 0.063
D0.37 0.57 0.015 0.022
E0.32 0.52 0.013 0.020
F1.50 1.83 0.059 0.072
G1.50 BSC 0.059 BSC
H3.00 BSC 0.118 BSC
J0.30 0.50 0.012 0.020
K0.80 --- 0.031 ---
L--- 4.25 --- 0.167
SOT89
H SUFFIX
CASE 121302
ISSUE C
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
MC78LC00/D
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative