IXYH20N120C3D1 1200V XPTTM IGBT GenX3TM w/ Diode VCES = IC110 = VCE(sat) tfi(typ) = High-Speed IGBT for 20-50 kHz Switching 1200V 17A 3.4V 108ns TO-247 AD Symbol Test Conditions Maximum Ratings VCES VCGR TJ = 25C to 150C TJ = 25C to 150C, RGE = 1M VGES VGEM Continuous Transient IC25 IC110 IF110 ICM TC TC TC TC IA EAS TC = 25C TC = 25C SSOA (RBSOA) VGE = 15V, TVJ = 150C, RG = 10 Clamped Inductive Load PC TC = 25C 1200 1200 V V 20 30 V V 36 17 20 88 A A A A 10 400 A mJ ICM = 40 @VCE VCES A 230 W -55 ... +150 150 -55 ... +150 C C C 300 260 C C 1.13/10 Nm/lb.in. 6 g = 25C = 110C = 110C = 25C, 1ms TJ TJM Tstg TL TSOLD Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s Md Mounting Torque Weight G C E G = Gate E = Emitter Tab C = Collector Tab = Collector Features Optimized for Low Switching Losses Square RBSOA Positive Thermal Coefficient of Vce(sat) Anti-Parallel Ultra Fast Diode Avalanche Rated International Standard Package Advantages High Power Density Low Gate Drive Requirement Applications Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) BVCES IC = 250A, VGE = 0V 1200 VGE(th) IC = 250A, VCE = VGE 3.0 ICES VCE = VCES, VGE = 0V VCE = 0V, VGE = 20V VCE(sat) IC = 20A, VGE = 15V, Note 1 TJ = 150C (c) 2013 IXYS CORPORATION, All Rights Reserved V 5.0 V 25 350 A A 100 nA 3.4 V V TJ = 125C IGES Characteristic Values Min. Typ. Max. 4.0 High Frequency Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts DS100485B(8/13) IXYH20N120C3D1 Symbol Test Conditions (TJ = 25C Unless Otherwise Specified) Characteristic Values Min. Typ. Max. gfs 7.0 IC = 20A, VCE = 10V, Note 1 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz Qg(on) Qge Qgc IC = 20A, VGE = 15V, VCE = 0.5 * VCES td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff Inductive load, TJ = 25C IC = 20A, VGE = 15V VCE = 0.5 * VCES, RG = 10 Note 2 Inductive load, TJ = 150C IC = 20A, VGE = 15V VCE = 0.5 * VCES, RG = 10 Note 2 RthJC RthCS TO-247 (IXYH) Outline 11.5 S 1110 120 27 pF pF pF 53 9 22 nC nC nC 20 29 1.3 90 108 0.5 ns ns mJ ns ns mJ 1.0 20 40 3.7 115 105 0.7 ns ns mJ ns ns mJ 0.21 0.54 C/W C/W 1 2 P 3 e Terminals: 1 - Gate 3 - Emitter Dim. Millimeter Min. Max. A 4.7 5.3 A1 2.2 2.54 A2 2.2 2.6 b 1.0 1.4 b1 1.65 2.13 b2 2.87 3.12 C .4 .8 D 20.80 21.46 E 15.75 16.26 e 5.20 5.72 L 19.81 20.32 L1 4.50 P 3.55 3.65 Q 5.89 6.40 R 4.32 5.49 S 6.15 BSC 2 - Collector Inches Min. Max. .185 .209 .087 .102 .059 .098 .040 .055 .065 .084 .113 .123 .016 .031 .819 .845 .610 .640 0.205 0.225 .780 .800 .177 .140 .144 0.232 0.252 .170 .216 242 BSC Reverse Diode (FRED) (TJ = 25C, Unless Otherwise Specified) Symbol Test Conditions VF IRM trr IF = 30A,VGE = 0V, Note 1 Characteristic Value Min. Typ. Max. TJ = 150C IF = 30A,VGE = 0V, -diF/dt = 100A/s, TJ = 100C VR = 600V 195 TJ = 100C RthJC Notes: 3.00 V V 9 A 1.75 ns 0.90 C/W 1. Pulse test, t 300s, duty cycle, d 2%. 2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,860,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXYH20N120C3D1 Fig. 1. Output Characteristics @ TJ = 25C Fig. 2. Extended Output Characteristics @ TJ = 25C 100 40 VGE = 15V 13V 11V 10V 35 80 13V 9V 12V 25 I C - Amperes I C - Amperes 30 VGE = 15V 8V 20 15 60 11V 10V 40 9V 7V 10 8V 20 5 7V 6V 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0 5 10 15 20 25 VCE - Volts VCE - Volts Fig. 3. Output Characteristics @ TJ = 150C Fig. 4. Dependence of VCE(sat) on Junction Temperature 2.4 40 VGE = 15V 13V 11V 10V 30 2.0 9V 25 20 8V 15 7V 10 I C = 40A 1.6 I C = 20A 1.2 0.8 I C = 10A 6V 5 5V 0 0 1 2 3 4 30 VGE = 15V VCE(sat) - Normalized 35 I C - Amperes 6V 0 6 5 6 7 0.4 -50 8 -25 0 25 VCE - Volts 50 75 100 125 150 175 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage Fig. 6. Input Admittance 50 11 TJ = - 40C 25C 150C 45 TJ = 25C 40 9 7 I C - Amperes VCE - Volts 35 I C = 40A 5 30 25 20 15 20A 3 10 5 10A 1 0 6 7 8 9 10 11 12 VGE - Volts (c) 2013 IXYS CORPORATION, All Rights Reserved 13 14 15 3.5 4.5 5.5 6.5 7.5 VGE - Volts 8.5 9.5 10.5 IXYH20N120C3D1 Fig. 7. Transconductance Fig. 8. Gate Charge 16 16 TJ = - 40C 12 10 I C = 20A I G = 10mA 12 25C 150C VGE - Volts g f s - Siemens VCE = 600V 14 14 8 6 10 8 6 4 4 2 2 0 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 I C - Amperes QG - NanoCoulombs Fig. 9. Capacitance Fig. 10. Reverse-Bias Safe Operating Area 50 55 10,000 40 1,000 I C - Amperes Capacitance - PicoFarads f = 1 MHz Cies 100 30 20 Coes 10 TJ = 150C RG = 10 dv / dt < 10V / ns Cres 10 0 0 5 10 15 20 25 30 35 40 200 400 600 800 1000 1200 VCE - Volts VCE - Volts Fig. 11. Maximum Transient Thermal Impedance (IGBT) Z (th)JC - C / W 1 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. 0.1 1 10 IXYH20N120C3D1 Fig. 13. Inductive Switching Energy Loss vs. Collector Current Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance 2 Eon - 1.6 Eoff 1.2 16 VCE = 600V 0.8 8 ---10 1.0 8 TJ = 150C 0.8 6 0.6 4 I C = 20A TJ = 25C 0.4 4 0 0.4 15 20 25 30 35 40 45 50 2 0.2 0 10 0 20 55 22 24 26 28 1.4 ---- 0.6 4 t f i - Nanoseconds Eoff - MilliJoules 6 I C = 20A 0.4 2 0.2 100 320 VCE = 600V 280 120 240 100 200 I C = 20A 80 160 I C = 40A 120 40 80 20 0 150 125 40 10 15 20 25 30 35 40 45 50 TJ - Degrees Centigrade RG - Ohms Fig. 16. Inductive Turn-off Switching Times vs. Collector Current Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature 140 160 130 td(off) - - - - 80 100 TJ = 25C 60 90 40 80 20 70 22 24 26 28 30 32 34 I C - Amperes (c) 2013 IXYS CORPORATION, All Rights Reserved 36 38 40 tfi td(off) - - - - 130 RG = 10 , VGE = 15V VCE = 600V 120 120 I C = 20A 100 110 80 100 60 90 I C = 40A 40 80 20 25 50 75 100 TJ - Degrees Centigrade 125 70 150 t d(off) - Nanoseconds 110 TJ = 150C t d(off) - Nanoseconds 100 55 140 140 120 t f i - Nanoseconds tfi RG = 10 , VGE = 15V VCE = 600V t f i - Nanoseconds td(off) - - - - 60 120 40 t d(off) - Nanoseconds 0.8 Eon - MilliJoules 8 I C = 40A 75 38 TJ = 150C, VGE = 15V 140 1.0 20 tfi 160 VCE = 600V 50 36 360 10 RG = 10 , VGE = 15V 25 34 180 12 Eon 32 Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature Eoff 30 I C - Amperes RG - Ohms 1.2 Eon - MilliJoules 12 I C = 40A Eon RG = 10 , VGE = 15V VCE = 600V Eon - MilliJoules 1.2 12 --- TJ = 150C , VGE = 15V E off - MilliJoules Eoff Eoff - MilliJoules 1.4 20 IXYH20N120C3D1 Fig. 19. Inductive Turn-on Switching Times vs. Collector Current Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance 280 td(on) - - - - I C = 40A 30 80 25 I C = 20A 23 120 22 80 21 TJ = 150C 40 40 20 TJ = 25C 20 0 0 15 10 15 20 25 30 35 40 45 50 19 20 55 22 24 26 Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature 27 32 34 36 38 40 80 td(on) - - - - RG = 10 , VGE = 15V TJ = 150C Triangular Wave 70 TC = 75C 25 VCE = 600V 60 VCE = 600V 23 80 21 I C = 20A 40 VGE = 15V I C - Amperes I C = 40A 120 t d(on) - Nanoseconds t r i - Nanoseconds 30 Fig. 21. Maximum Peak Load Current vs. Frequency 200 160 28 I C - Amperes RG - Ohms tri t d(on) - Nanoseconds 35 td(on) - - - - VCE = 600V t d(on) - Nanoseconds 40 160 120 tri RG = 10 , VGE = 15V 160 VCE = 600V 200 24 45 TJ = 150C, VGE = 15V t r i - Nanoseconds tri 240 t r i - Nanoseconds 200 50 RG = 10 D = 0.5 50 40 Square Wave 30 20 19 10 0 25 50 75 100 125 17 150 0 0.1 1 10 100 1000 fmax - KiloHertzs TJ - Degrees Centigrade Fig. 22. Maximum Transient Thermal Impedance (Diode) Z (th)JC - C / W 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 10 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: IXY_20N120C3(4L) 9-06-13-C IXYH20N120C3D1 Fig. 23. Forward Current IF vs VF 70 Fig. 24. Reverse Recovery Charge QRM vs. -diF/dt 5 TVJ = 100C 60 VR = 600V 4 50 IF = 60A TVJ = 150C IF [A] 100C 40 3 25C QRM [C] 30 30A 2 15A 20 1 10 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 100 1000 500 VF [V] -diF/dt [A/s] Fig. 26. Dynamic Parameters QRM, IRM vs. TVJ Fig. 25. Peak Reverse Current IRM vs. -diF/dt 60 2 TVJ = 100C I RM & QRM [normalized] VR = 600V 50 40 IF = 60A, 30A, 15A I RM 30 [A] 20 1.5 1 IRM 0.5 QRM 10 0 0 0 200 400 600 800 20 1000 40 60 80 -diF/dt [A/s] Fig. 27. Recovery Time trr vs. -diF/dt 220 100 120 Fig. 28. Peak Forward Voltage VFR, trr vs -diF/dt 120 IF = 30A 100 VR = 600V 1.2 1 trr 80 trr [ns] 160 TVJ = 100C TVJ = 100C 200 140 TVJ [C] 0.8 180 VFR [V] IF = 60A 30A 15A 160 140 120 0.6 trr 60 [s] VFR 40 0.4 20 0.2 0 0 200 400 600 -diF/dt [A/s] (c) 2013 IXYS CORPORATION, All Rights Reserved 800 1000 0 100 200 300 400 500 600 -diF/dt [A/s] 700 800 900 0 1000 Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.