NTC thermistors for temperature measurement Miniature sensors with bendable wires Series/Type: B57861S Date: December 2010 (c) EPCOS AG 2010. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited. Temperature measurement B57861S Miniature sensors with bendable wires Applications Temperature measurement Features Short response time High measuring accuracy Tight B value tolerances available Epoxy resin encapsulation PTFE-insulated leads of silver-plated nickel wire, AWG 30 Different lead length available (50 mm and 350 mm) UL approval (E69802) S861 Dimensional drawings Length 50 mm 350 mm Options Alternative lead lengths on request Delivery mode Bulk Dimensions in mm General technical data Climatic category Max. power Resistance tolerance Rated temperature Dissipation factor Thermal cooling time constant Heat capacity Please read Cautions and warnings and Important notes at the end of this document. (IEC 60068-1) (at 25 C) (in air) (in air) P25 RR/RR TR th c Cth Page 2 of 14 55/155/56 60 1, 3, 5 25 approx. 1.5 approx. 15 approx. 22.5 mW % C mW/K s mJ/K Temperature measurement B57861S Miniature sensors with bendable wires S861 Electrical specification and ordering codes R25 Component length mm No. of R/T characteristic B25/100 K B value tolerance = 0.3%, resistance tolerance = 1% 5k 50 8016 3988 0.3% 10 k 50 8016 3988 0.3% 30 k 50 8018 3964 0.3% B value tolerance = 1%, resistance tolerance = 1% 10 k 350 8016 3988 1% B value tolerance = 1.0%, resistance tolerance = 1%, 3% or 5% 2k 50 1008 3560 1% 3k 50 8016 3988 1% 5k 50 8016 3988 1% 10 k 50 8016 3988 1% 30 k 50 8018 3964 1% 50 k 50 2901 3760 1% 100 k 50 2014 4540 1% Ordering code B57861S0502F045 B57861S0103F045 B57861S0303F045 B57861S0103A039 B57861S0202+040 B57861S0302+040 B57861S0502+040 B57861S0103+040 B57861S0303+040 B57861S0503+040 B57861S0104+040 + = Resistance tolerance F = 1% H = 3% J = 5% Reliability data Test Standard Storage in dry heat IEC 60068-2-2 Storage in damp heat, steady state Rapid temperature cycling Long-term stability (empirical value) Test conditions Storage at upper category temperature T: 155 C t: 1000 h IEC Temperature of air: 40 C 60068-2-78 Relative humidity of air: 93% Duration: 56 days IEC Lower test temperature: 55 C 60068-2-14 Upper test temperature: 155 C Number of cycles: 100 Temperature: 70 C t: 10000 h Please read Cautions and warnings and Important notes at the end of this document. Page 3 of 14 R25/R25 (typical) < 2% Remarks < 1% No visible damage < 1% No visible damage < 2% No visible damage No visible damage Temperature measurement B57861S Miniature sensors with bendable wires S861 R/T characteristics R/T No. T (C) 1008 2014 2901 B25/100 = 3560 K B25/100 = 4540 K B25/100 = 3760 K RT/R25 (%/K) RT/R25 (%/K) RT/R25 (%/K) 55.0 50.0 45.0 40.0 35.0 53.104 39.318 29.325 22.03 16.666 6.1 6.0 5.8 5.7 5.5 30.0 25.0 20.0 15.0 10.0 12.696 9.7251 7.5171 5.8353 4.5686 5.4 5.2 5.1 4.9 4.8 5.0 0.0 5.0 10.0 15.0 3.605 2.8665 2.2907 1.8438 1.492 20.0 25.0 30.0 35.0 40.0 7.8 7.6 7.3 7.1 6.9 63.969 46.179 33.738 24.927 18.611 6.7 6.4 6.2 6.0 5.8 23.302 16.77 12.186 8.937 6.6125 6.7 6.5 6.3 6.1 5.9 14.033 10.679 8.198 6.3123 4.9014 5.6 5.4 5.3 5.2 5.1 4.7 4.5 4.4 4.3 4.1 4.9342 3.712 2.8145 2.15 1.6544 5.8 5.6 5.5 5.3 5.2 3.821 3.0027 2.3801 1.9 1.5257 4.9 4.7 4.6 4.5 4.3 1.2154 1.0000 0.82976 0.68635 0.57103 4.0 3.9 3.8 3.7 3.6 1.2819 1.0000 0.78514 0.62031 0.49304 5.0 4.9 4.8 4.7 4.5 1.233 1.0000 0.81679 0.67166 0.55527 4.3 4.1 4.0 3.9 3.8 45.0 50.0 55.0 60.0 65.0 0.48015 0.40545 0.3417 0.28952 0.24714 3.5 3.4 3.3 3.2 3.1 0.39417 0.3169 0.25616 0.20815 0.17 4.4 4.3 4.2 4.1 4.0 0.46095 0.38459 0.32184 0.27068 0.22907 3.8 3.7 3.6 3.5 3.3 70.0 75.0 80.0 85.0 90.0 0.21183 0.18194 0.1568 0.13592 0.11822 3.1 3.0 2.9 2.8 2.8 0.13952 0.11505 0.095302 0.079296 0.066263 3.9 3.8 3.7 3.6 3.5 0.19468 0.16607 0.14221 0.12218 0.10533 3.2 3.1 3.1 3.0 2.9 95.0 100.0 105.0 110.0 115.0 0.1034 0.090741 0.079642 0.070102 0.061889 2.7 2.6 2.6 2.5 2.4 0.055601 0.046843 0.039618 0.033634 0.028658 3.5 3.4 3.3 3.2 3.2 0.09123 0.079284 0.069062 0.06034 0.052886 2.8 2.8 2.7 2.7 2.6 120.0 125.0 130.0 135.0 140.0 0.054785 0.048706 0.043415 0.038722 0.034615 2.4 2.3 2.3 2.2 2.2 0.024505 0.021026 0.018101 0.015633 0.013544 3.1 3.0 3.0 2.9 2.8 0.046482 0.040985 0.036233 0.032101 0.02851 2.5 2.5 2.5 2.4 2.4 145.0 150.0 155.0 0.031048 0.02791 0.025193 2.1 2.1 2.0 0.011769 0.010258 0.0089659 2.8 2.7 2.7 0.025373 0.022633 0.020231 2.3 2.3 2.3 Please read Cautions and warnings and Important notes at the end of this document. 142 96.615 66.562 46.4 32.708 Page 4 of 14 Temperature measurement B57861S Miniature sensors with bendable wires R/T No. T (C) 160.0 165.0 S861 1008 2014 2901 B25/100 = 3560 K RT/R25 (%/K) 0.02279 2.0 0.020667 2.0 B25/100 = 4540 K RT/R25 (%/K) B25/100 = 3760 K RT/R25 (%/K) 170.0 175.0 180.0 185.0 190.0 0.01878 0.01709 0.015582 0.014227 0.013012 1.9 1.9 1.8 1.8 1.8 195.0 200.0 205.0 210.0 215.0 0.011934 0.010964 0.0101 0.0093191 0.0085949 1.7 1.7 1.7 1.6 1.6 220.0 225.0 230.0 235.0 240.0 0.0079384 0.0073411 0.006798 0.0063087 0.0058623 1.6 1.5 1.5 1.5 1.5 245.0 250.0 0.0054487 0.0050705 1.4 1.4 Please read Cautions and warnings and Important notes at the end of this document. Page 5 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 R/T characteristics R/T No. T (C) 8016 8018 55.0 50.0 45.0 40.0 35.0 96.3 67.01 47.17 33.65 24.26 7.4 7.2 6.9 6.7 6.4 30.24 22.1 6.3 6.1 30.0 25.0 20.0 15.0 10.0 17.7 13.04 9.707 7.293 5.533 6.2 6.0 5.8 5.6 5.5 16.32 12.17 9.153 6.945 5.313 5.9 5.8 5.6 5.4 5.2 5.0 0.0 5.0 10.0 15.0 4.232 3.265 2.539 1.99 1.571 5.3 5.1 5.0 4.8 4.7 4.097 3.183 2.491 1.963 1.557 5.1 4.9 4.8 4.7 4.6 20.0 25.0 30.0 35.0 40.0 1.249 1.0000 0.8057 0.6531 0.5327 4.5 4.4 4.3 4.1 4.0 1.244 1.0000 0.8083 0.6572 0.5373 4.4 4.3 4.2 4.1 4.0 45.0 50.0 55.0 60.0 65.0 0.4369 0.3603 0.2986 0.2488 0.2083 3.9 3.8 3.7 3.6 3.5 0.4418 0.365 0.303 0.2527 0.2118 3.9 3.7 3.7 3.6 3.5 70.0 75.0 80.0 85.0 90.0 0.1752 0.1481 0.1258 0.1072 0.09177 3.4 3.3 3.2 3.2 3.1 0.1783 0.1508 0.128 0.1091 0.0933 3.4 3.3 3.2 3.2 3.1 95.0 100.0 105.0 110.0 115.0 0.07885 0.068 0.05886 0.05112 0.04454 3.0 2.9 2.9 2.8 2.7 0.08016 0.0691 0.05974 0.05183 0.04512 3.0 2.9 2.9 2.8 2.8 120.0 125.0 130.0 135.0 140.0 0.03893 0.03417 0.03009 0.02654 0.02348 2.6 2.6 2.5 2.5 2.4 0.0394 0.0345 0.03032 0.02672 0.02361 2.7 2.6 2.6 2.5 2.5 145.0 150.0 155.0 0.02083 0.01853 0.01653 2.4 2.3 2.3 0.02091 0.01857 0.016537 2.4 2.4 2.3 B25/100 = 3988 K B25/100 = 3964 K RT/R25 (%/K) RT/R25 (%/K) Please read Cautions and warnings and Important notes at the end of this document. Page 6 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 Mounting instructions 1 Soldering 1.1 Leaded NTC thermistors Leaded thermistors comply with the solderability requirements specified by CECC. When soldering, care must be taken that the NTC thermistors are not damaged by excessive heat. The following maximum temperatures, maximum time spans and minimum distances have to be observed: Dip soldering Iron soldering Bath temperature max. 260 C max. 360 C Soldering time max. 4 s max. 2 s Distance from thermistor min. 6 mm min. 6 mm Under more severe soldering conditions the resistance may change. 1.2 Leadless NTC thermistors In case of NTC thermistors without leads, soldering is restricted to devices which are provided with a solderable metallization. The temperature shock caused by the application of hot solder may produce fine cracks in the ceramic, resulting in changes in resistance. To prevent leaching of the metallization, solder with silver additives or with a low tin content should be used. In addition, soldering methods should be employed which permit short soldering times. 2 Clamp contacting Pressure contacting by means of clamps is particularly suitable for applications involving frequent switching and high turn-on powers. 3 Robustness of terminations (leaded types) The leads meet the requirements of IEC 60068-2-21. They may not be bent closer than 4 mm from the solder joint on the thermistor body or from the point at which they leave the feedthroughs. During bending, any mechanical stress at the outlet of the leads must be removed. The bending radius should be at least 0.75 mm. Tensile strength: Test Ua1: Leads 0.25 < 0.35 < 0.50 < 0.80 < Please read Cautions and warnings and Important notes at the end of this document. 0.25 mm = 1.0 N 0.35 mm = 2.5 N 0.50 mm = 5.0 N 0.80 mm = 10.0 N 1.25 mm = 20.0 N Page 7 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 Bending strength: Test Ub: Two 90-bends in opposite directions at a weight of 0.25 kg. Torsional strength: Test Uc: severity 2 The lead is bent by 90 at a distance of 6 to 6.5 mm from the thermistor body. The bending radius of the leads should be approx. 0.75 mm. Two torsions of 180 each (severity 2). When subjecting leads to mechanical stress, the following should be observed: Tensile stress on leads During mounting and operation tensile forces on the leads are to be avoided. Bending of leads Bending of the leads directly on the thermistor body is not permissible. A lead may be bent at a minimum distance of twice the wire's diameter +2 mm from the solder joint on the thermistor body. During bending the wire must be mechanically relieved at its outlet. The bending radius should be at least 0.75 mm. Twisting of leads The twisting (torsion) by 180 of a lead bent by 90 is permissible at 6 mm from the bottom of the thermistor body. 4 Sealing and potting When thermistors are sealed, potted or overmolded, there must be no mechanical stress caused by thermal expansion during the production process (curing / overmolding process) and during later operation. The upper category temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing / potting compound and plastic material) are chemically neutral. 5 Cleaning If cleaning is necessary, mild cleaning agents such as ethyl alcohol and cleaning gasoline are recommended. Cleaning agents based on water are not allowed. Ultrasonic cleaning methods are permissible. 6 Storage In order to maintain their solderability, thermistors must be stored in a non-corrosive atmosphere. Humidity, temperature and container materials are critical factors. Do not store SMDs where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or SMDs may stick together, causing problems during mounting. After opening the factory seals, such as polyvinyl-sealed packages, use the SMDs as soon as possible. Please read Cautions and warnings and Important notes at the end of this document. Page 8 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 The components should be left in the original packing. Touching the metallization of unsoldered thermistors may change their soldering properties. Storage temperature: 25 C up to 45 C Relative humidity (without condensation): 75% annual mean <95%, maximum 30 days per annum Solder the thermistors listed in this data book after shipment from EPCOS within the time specified: SMDs: 12 months Leaded components: 24 months Please read Cautions and warnings and Important notes at the end of this document. Page 9 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 Cautions and warnings General See "Important notes" at the end of this document. Storage Store thermistors only in original packaging. Do not open the package prior to storage. Storage conditions in original packaging: storage temperature 25 C ... +45 C, relative humidity 75% annual mean, <95% maximum 30 days per annum, dew precipitation is inadmissible. Do not store thermistors where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or components may stick together, causing problems during mounting. Avoid contamination of thermistor surface during storage, handling and processing. Avoid storage of thermistors in harmful environments like corrosive gases (SOx, Cl etc). Use the components as soon as possible after opening the factory seals, i.e. the polyvinyl-sealed packages. Solder thermistors within the time specified after shipment from EPCOS. For leaded components this is 24 months, for SMDs 12 months. Handling NTC thermistors must not be dropped. Chip-offs or any other damage must not be caused during handling of NTCs. Do not touch components with bare hands. Gloves are recommended. Avoid contamination of thermistor surface during handling. Bending / twisting leads A lead (wire) may be bent at a minimum distance of twice the wire's diameter plus 4 mm from the component head or housing. When bending ensure the wire is mechanically relieved at the component head or housing. The bending radius should be at least 0.75 mm. Twisting (torsion) by 180 of a lead bent by 90 is permissible at 6 mm from the bottom of the thermistor body. Soldering Use resin-type flux or non-activated flux. Insufficient preheating may cause ceramic cracks. Rapid cooling by dipping in solvent is not recommended. Complete removal of flux is recommended. Please read Cautions and warnings and Important notes at the end of this document. Page 10 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 Mounting Ensure that no thermo-mechanical stress occurs due to production processes (curing or overmolding processes) when thermistors are sealed, potted or overmolded or during their subsequent operation. The maximum temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing/potting compound and plastic material) are chemically neutral. Electrodes/contacts must not be scratched or damaged before/during/after the mounting process. Contacts and housing used for assembly with the thermistor must be clean before mounting. Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of the thermistor. Be sure that surrounding parts and materials can withstand the temperature. Avoid contamination of the thermistor surface during processing. The connections of sensors (e.g. cable end, wire end, plug terminal) may only be exposed to an environment with normal atmospheric conditions. Tensile forces on cables or leads must be avoided during mounting and operation. Bending or twisting of cables or leads directly on the thermistor body is not permissible. Avoid using chemical substances as mounting aids. It must be ensured that no water or other liquids enter the NTC thermistors (e.g. through plug terminals). In particular, water based substances (e.g. soap suds) must not be used as mounting aids for sensors. Operation Use thermistors only within the specified operating temperature range. Use thermistors only within the specified power range. Environmental conditions must not harm the thermistors. Only use the thermistors under normal atmospheric conditions or within the specified conditions. Contact of NTC thermistors with any liquids and solvents should be prevented. It must be ensured that no water enters the NTC thermistors (e.g. through plug terminals). For measurement purposes (checking the specified resistance vs. temperature), the component must not be immersed in water but in suitable liquids (e.g. Galden). Avoid dewing and condensation unless thermistor is specified for these conditions. Bending or twisting of cables and/or wires is not permissible during operation of the sensor in the application. Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by malfunction. This listing does not claim to be complete, but merely reflects the experience of EPCOS AG. Please read Cautions and warnings and Important notes at the end of this document. Page 11 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 Symbols and terms Symbol English German A AWG Area American Wire Gauge Flache Amerikanische Norm fur Drahtquerschnitte B B25/100 B value B value determined by resistance measurement at 25 C and 100 C B-Wert B-Wert, ermittelt durch Widerstandsmessungen bei 25 C und 100 C Cth Heat capacitance Warmekapazitat I Current Strom N Number (integer) Anzahl (ganzzahliger Wert) P25 Pdiss Pel Pmax Maximum power at 25 C Power dissipation Electrical power Maximum power within stated temperature range Maximale Leistung bei 25 C Verlustleistung Elektrische Leistung Maximale Leistung im angegebenenTemperaturbereich RB/RB Resistance tolerance caused by spread of B value Insulation resistance Parallel resistance Rated resistance Resistance tolerance Series resistance Resistance at temperature T (e.g. R25 = resistance at 25 C) Widerstandstoleranz, die durch die Streuung des B-Wertes verursacht wird Isolationswiderstand Parallelwiderstand Nennwiderstand Widerstandstoleranz Serienwiderstand Widerstand bei Temperatur T (z.B. R25 = Widerstand bei 25 C) T T t TA Tmax Temperature Temperature tolerance Time Ambient temperature Upper category temperature Tmin Lower category temperature Temperatur Temperaturtoleranz Zeit Umgebungstemperatur Obere Grenztemperatur (Kategorietemperatur) Untere Grenztemperatur (Kategorietemperatur) Top TR Tsurf Operating temperature Rated temperature Surface temperature Betriebstemperatur Nenntemperatur Oberflachentemperatur V Vins Vop Vtest Voltage Insulation test voltage Operating voltage Test voltage Spannung Isolationsprufspannung Betriebsspannung Prufspannung Rins RP RR RR/RR RS RT Please read Cautions and warnings and Important notes at the end of this document. Page 12 of 14 Temperature measurement B57861S Miniature sensors with bendable wires S861 Symbol English German Temperature coefficient Temperaturkoeffizient Tolerance, change Toleranz, Anderung th Dissipation factor Warmeleitwert c a Thermal cooling time constant Thermal time constant Thermische Abkuhlzeitkonstante Thermische Zeitkonstante Abbreviations / Notes Symbol English German Surface-mounted devices Oberflachenmontierbares Bauelement * To be replaced by a number in ordering Platzhalter fur Zahl im Bestellnummerncodes, type designations etc. code oder fur die Typenbezeichnung. + To be replaced by a letter. Platzhalter fur einen Buchstaben. All dimensions are given in mm. Alle Mae sind in mm angegeben. The commas used in numerical values denote decimal points. Verwendete Kommas in Zahlenwerten bezeichnen Dezimalpunkte. Please read Cautions and warnings and Important notes at the end of this document. Page 13 of 14 Important notes The following applies to all products named in this publication: 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application. 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. 3. The warnings, cautions and product-specific notes must be observed. 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices. 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products. 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI). 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FormFit, MiniBlue, MiniCell, MKK, MKD, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks. Page 14 of 14