

## JAN Qualified N-Channel 60-V (D-S) MOSFETs

| PRODUCT SUMMARY              |                               |                         |                    |  |  |  |  |
|------------------------------|-------------------------------|-------------------------|--------------------|--|--|--|--|
| V <sub>(BR)DSS</sub> Min (V) | $r_{DS(on)}$ Max ( $\Omega$ ) | V <sub>GS(th)</sub> (V) | I <sub>D</sub> (A) |  |  |  |  |
| 60                           | 3 @ V <sub>GS</sub> = 10 V    | 0.8 to 2                | 0.99               |  |  |  |  |

### **FEATURES**

Military Qualified

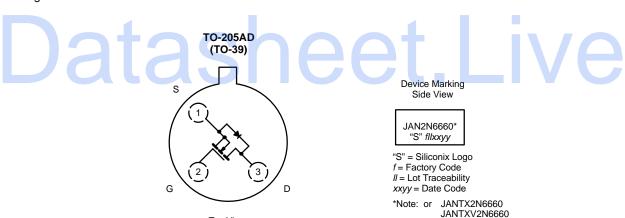
Low On-Resistance: 1.3  $\Omega$ 

Low Threshold: 1.7 V

Low Input Capacitance: 35 pF • Easily Driven Without Buffer

• Fast Switching Speed: 8 ns

Low Input and Output Leakage


### **BENEFITS**

- Guaranteed Reliability
- Low Offset Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Low Error Voltage

Top View

### **APPLICATIONS**

- Military Applications
- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Solid-State Relays



| ABSOLUTE MAXIMUM RATINGS ( $T_A = 25^{\circ}$ C UNLESS OTHERWISE NOTED) |                        |                                   |            |      |  |  |  |  |
|-------------------------------------------------------------------------|------------------------|-----------------------------------|------------|------|--|--|--|--|
| Parameter                                                               |                        | Symbol                            | Limit      | Unit |  |  |  |  |
| Drain-Source Voltage                                                    |                        | V <sub>DS</sub>                   | 60         | V    |  |  |  |  |
| Gate-Source Voltage                                                     |                        | V <sub>GS</sub>                   | ±20        |      |  |  |  |  |
| Continuous Drain Current (T <sub>J</sub> = 150°C)                       | T <sub>C</sub> = 25°C  |                                   | 0.99       |      |  |  |  |  |
|                                                                         | T <sub>C</sub> = 100°C | l <sub>D</sub>                    | 0.62       | А    |  |  |  |  |
| Pulsed Drain Current <sup>a</sup>                                       |                        | I <sub>DM</sub>                   | 3          |      |  |  |  |  |
| Power Dissipation                                                       | $T_C = 25^{\circ}C$    |                                   | 6.25       | 10/  |  |  |  |  |
|                                                                         | T <sub>A</sub> = 25°C  | P <sub>D</sub>                    | 0.725      | W    |  |  |  |  |
| Thermal Resistance, Junction-to-Ambient <sup>b</sup>                    |                        | R <sub>thJA</sub>                 | 170        | 2011 |  |  |  |  |
| Thermal Resistance, Junction-to-Case                                    |                        | R <sub>thJC</sub>                 | 20         | °C/W |  |  |  |  |
| Operating Junction and Storage Temperature Range                        |                        | T <sub>J</sub> , T <sub>stg</sub> | -55 to 150 | °C   |  |  |  |  |

Pulse width limited by maximum junction temperature.

b. Not required by Military Spec.

## 2N6660JAN/JANTX/JANTXV

# Vishay Siliconix



| SPECIFICATIONS <sup>2</sup>             |                      |                                                                                                    |     |        |      |      |  |  |
|-----------------------------------------|----------------------|----------------------------------------------------------------------------------------------------|-----|--------|------|------|--|--|
|                                         | Symbol               |                                                                                                    |     | Limits |      |      |  |  |
| Parameter                               |                      | <b>Test Conditions</b>                                                                             | Min | Typb   | Max  | Unit |  |  |
| Static                                  |                      |                                                                                                    | •   |        | •    |      |  |  |
| Drain-Source Breakdown Voltage          | V <sub>(BR)DSS</sub> | $V_{GS} = 0 \text{ V}, I_D = 10 \mu\text{A}$                                                       | 60  | 75     |      |      |  |  |
| Gate-Threshold Voltage                  |                      | $V_{DS} = V_{GS}$ , $I_D = 1 \text{ mA}$                                                           | 0.8 | 1.7    | 2    | V    |  |  |
|                                         | V <sub>GS(th)</sub>  | $T_C = -55^{\circ}C$                                                                               |     |        | 2.5  | V    |  |  |
|                                         |                      | T <sub>C</sub> = 125°C                                                                             | 0.3 |        |      |      |  |  |
| Gate-Body Leakage                       | Lea                  | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$                                                  |     |        | ±100 | nA   |  |  |
|                                         | I <sub>GSS</sub>     | T <sub>C</sub> = 125°C                                                                             |     |        | ±500 |      |  |  |
| Zoro Coto Voltago Proin Current         | 1                    | $V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$                                                      |     |        | 1    |      |  |  |
| Zero Gate Voltage Drain Current         | I <sub>DSS</sub>     | T <sub>C</sub> = 125°C                                                                             |     |        | 100  | μΑ   |  |  |
| On-State Drain Current <sup>c</sup>     | I <sub>D(on)</sub>   | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 10 V                                                     |     | 2      |      | Α    |  |  |
| Drain-Source On-Resistance <sup>c</sup> |                      | $V_{GS} = 5 \text{ V}, I_D = 0.3 \text{ A}$                                                        |     | 2      | 5    |      |  |  |
|                                         | r <sub>DS(on)</sub>  | $V_{GS} = 10 \text{ V}, I_D = 1 \text{ A}$                                                         |     | 1.3    | 3    | Ω    |  |  |
|                                         |                      | T <sub>C</sub> = 125°C                                                                             |     | 2.4    | 5.6  | ]    |  |  |
| Forward Transconductance <sup>c</sup>   | 9 <sub>fs</sub>      | $V_{DS} = 7.5 \text{ V}, I_{D} = 0.525 \text{ A}$                                                  | 170 | 350    |      | mS   |  |  |
| Diode Forward Voltage                   | V <sub>SD</sub>      | I <sub>S</sub> = 0.99 A, V <sub>GS</sub> = 0 V                                                     | 0.7 | 0.8    | 1.6  | V    |  |  |
| Dynamic                                 |                      |                                                                                                    | •   |        | •    |      |  |  |
| Input Capacitance                       | C <sub>iss</sub>     |                                                                                                    |     | 35     | 50   | pF   |  |  |
| Output Capacitance                      | C <sub>oss</sub>     | $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ $f = 1 \text{ MHz}$                                  |     | 25     | 40   |      |  |  |
| Reverse Transfer Capacitance            | C <sub>rss</sub>     |                                                                                                    |     | 7      | 10   |      |  |  |
| Drain-Source Capacitance                | C <sub>ds</sub>      |                                                                                                    |     | 30     |      |      |  |  |
| Switching <sup>d</sup>                  |                      |                                                                                                    |     |        |      |      |  |  |
| Turn-On Time                            | t <sub>ON</sub>      | $V_{DD}$ = 25 V, $R_L$ = 23 $\Omega$<br>$I_D$ $\cong$ 1 A, $V_{GEN}$ = 10 V<br>$R_G$ = 25 $\Omega$ |     | 8      | 10   | ns   |  |  |
| Turn-Off Time                           | t <sub>OFF</sub>     |                                                                                                    |     | 8.5    | 10   |      |  |  |

Notes a.  $T_A = 25\,^{\circ}\text{C}$  unless otherwise noted. b. For DESIGN AID ONLY, not subject to production testing. Pulsa test: PW  $\leq 300\,\mu\text{s}$  duty cycle  $\leq 2\%$ .

Pulse test: PW  $\leq$  300  $\mu$ s duty cycle  $\leq$  2%. Switching time is essentially independent of operating temperature. For typical characteristics curves see the 2N6659/2N6660, VQ1004J/P data sheet.

VNDQ06



Vishay

## **Disclaimer**

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000