  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D1.8-V and 5-V Performance
DLow Offset (A Grade)
− 1.25 mV Max (255C)
− 1.7 mV Max (−405C to 1255C)
DRail-to-Rail Output Swing
DWide Common-Mode Input Voltage
Range . . . −0.2 V to (V+ − 0.5 V)
DInput Bias Current...1 pA (Typ)
DInput Offset Voltage . . . 0.3 mV (Typ)
DLow Supply Current ...70 µA/Channel
DLow Shutdown Current . . . 10 pA (Typ)
DGain Bandwidth . . . 2.3 MHz (Typ)
DSlew Rate . . . 0.9 V/µs (Typ)
DTurn-On Time From Shutdown
...5 µs (Typ)
DInput Referred Voltage Noise (at 10 kHz)
. . . 20 nV//Hz
DESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
DApplications
− Cordless/Cellular Phones
− Consumer Electronics (Laptops, PDAs)
− Audio Pre-Amp for Voice
− Portable/Battery-Powered Electronic
Equipment
− Supply Current Monitoring
− Battery Monitoring
− Buffers
− Filters
− Drivers
TLV341 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE
(TOP VIEW)
1
2
3
6
5
4
IN+
GND
IN−
V+
SHDN
OUT
1
2
3
4
8
7
6
5
1OUT
1IN−
1IN+
GND
V+
2OUT
2IN−
2IN+
TLV342 ...D (SOIC) OR DGK (MSOP) PACKAGE
(TOP VIEW)
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN−
1IN+
V+
2IN+
2IN−
2OUT
4OUT
4IN−
4IN+
GND
3IN+
3IN−
3OUT
TLV344 ...D (SOIC) OR PW (TSSOP) PACKAGE
(TOP VIEW)
TLV341 . . . DRL (SOT-563) PACKAGE
(TOP VIEW)
1
2
3
6
5
4
GND
IN+
IN−
V+
SHDN
OUT
description/ordering information
The TLV341, TLV342, and TLV344 are single, dual, and quad CMOS operational amplifiers, respectively, with
low-voltage, low-power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input
bias current of 1 pA (typ) and an of fset voltage of 0.3 mV (typ). For applications requiring excellent dc precision,
the A grade (TLV34xA) has a low offset voltage of 1.25 mV (max) at 25°C.
These single-supply amplifiers are designed specifically for ultra-low-voltage (1.5-V to 5-V) operation, with a
common-mode input voltage range that typically extends from −0.2 V to 0.5 V from the positive supply rail.
Additional features include 20-nV/Hz voltage noise at 10 kHz, 2.3-MHz unity-gain bandwidth, and 0.9-V/µs
slew rate.
Copyright 2005, Texas Instruments Incorporated
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
  !" # $%&" !#  '%()$!" *!"&+
*%$"# $ " #'&$$!"# '& ",& "&#  &-!# #"%&"#
#"!*!* .!!"/+ *%$" '$&##0 *&# " &$&##!)/ $)%*&
"&#"0  !)) '!!&"&#+
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description/ordering information (continued)
The TLV341 (single) also offers a shutdown (SHDN) pin that can be used to disable the device. In shutdown
mode, the supply current is reduced to 45 pA (typ). Offered in both the SOT-23 and smaller SC-70 packages,
the TLV341 is suitable for the most space-constrained applications. The dual TLV342 is offered in the standard
SOIC and MSOP packages.
An extended industrial temperature range from −40°C to 125°C makes the TLV34x suitable in a wide variety
of commercial and industrial applications.
ORDERING INFORMATION
TAMAX VIO
(255C) PACKAGEORDERABLE
PART NUMBER TOP-SIDE
MARKING
SOT-23 – DBV
Reel of 3000 TLV341IDBVR
YC9_
SOT-23 – DBV Reel of 250 TLV341IDBVT YC9_
Single
SC-70 – DCK
Reel of 3000 TLV341IDCKR
Y4_
Single
SC-70 – DCK Reel of 250 TLV341IDCKT Y4_
SOT-563 – DRL Reel of 4000 TLV341IDRLR Y4_
Standard
SOIC – D
Tube of 75 TLV342ID
TY342
Standard
grade: 4 mV
Dual
SOIC – D Reel of 2500 TLV342IDR TY342
grade: 4 mV
Dual
MSOP/VSSOP – DGK
Reel of 2500 TLV342IDGKR
PREVIEW
MSOP/VSSOP – DGK Reel of 250 TLV342IDGKT PREVIEW
SOIC – D
Tube of 50 TLV344ID
PREVIEW
Quad
SOIC – D Reel of 2500 TLV344IDR PREVIEW
Quad
TSSOP – PW
Tube of 90 TLV344IPWR
PREVIEW
−40°C to 125°CTSSOP – PW Reel of 2000 TLV344IPWR PREVIEW
−40 C to 125 C
SOT-23 – DBV
Reel of 3000 TLV341AIDBVR
YCG_
Single
SOT-23 – DBV Reel of 250 TLV341AIDBVT YCG_
Single
SC-70 – DCK
Reel of 3000 TLV341AIDCKR
Y5_
SC-70 – DCK Reel of 250 TLV341AIDCKT Y5_
SOIC – D
Tube of 75 TLV342AID
TY342A
A grade:
Dual
SOIC – D Reel of 2500 TLV342AIDR TY342A
A grade:
1.25 mV Dual
MSOP/VSSOP – DGK
Reel of 2500 TLV342AIDGKR
PREVIEW
1.25 mV
MSOP/VSSOP – DGK Reel of 250 TLV342AIDGKT PREVIEW
SOIC – D
Tube of 50 TLV344AID
PREVIEW
Quad
SOIC – D Reel of 2500 TLV344AIDR PREVIEW
Quad
TSSOP – PW
Tube of 90 TLV344AIPWR
PREVIEW
TSSOP – PW Reel of 2000 TLV344AIPWR PREVIEW
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
DBV/DCK/DRL: The actual top-side marking has one additional character that designates the assembly/test site.
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
symbol (each amplifier)
V+
VO
+
VI
+
C = 200 pF
V+
Sample
Clock
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V+ (see Note 1) 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (either input) 0 to 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Notes 3 and 4): D package (8 pin) 97°C/W. . . . . . . . . . . . . . . . . . . . . .
D package (14 pin) 86°C/W. . . . . . . . . . . . . . . . . . . . .
DBV package 165°C/W. . . . . . . . . . . . . . . . . . . . . . . .
DCK package 259°C/W. . . . . . . . . . . . . . . . . . . . . . . .
DGK package 172°C/W. . . . . . . . . . . . . . . . . . . . . . . .
DRL package 142°C/W. . . . . . . . . . . . . . . . . . . . . . . .
PW package 113°C/W. . . . . . . . . . . . . . . . . . . . . . . . .
Operating virtual junction temperature 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values (except differential voltages and V+ specified for the measurement of IOS) are with respect to the network GND.
2. Differential voltages are at IN+ with respect to IN−.
3. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability.
4. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
MIN MAX UNIT
V+Supply voltage (single-supply operation) 1.5 5.5 V
TAOperating free-air temperature −40 125 °C
ESD protection
TEST CONDITIONS TYP UNIT
Human-Body Model 2000 V
Machine Model 200 V
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics, V+ = 1.8 V, GND = 0, VIC = VO = V+/2, RL > 1 M (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYPMAX UNIT
Standard grade
25°C 0.3 4
Standard grade Full range 4.5
V
IO
Input offset voltage 25°C 0.3 1.25 mV
VIO
A grade 0°C to 125°C 0.3 1.5
mV
A grade
−40°C to 125°C 0.3 1.7
aVIO Average temperature coefficient
of input offset voltage Full range 1.9 mV/°C
25°C 1 100
I
IB
Input bias current −40°C to 85°C 375 pA
IIB
−40°C to 125°C 3000
pA
IIO Input offset current 25°C 6.6 fA
CMRR
0 VICR 1.2 V
25°C 60 85
dB
CMRR Common-mode rejection ratio 0 VICR 1.2 V Full range 50 dB
kSVR
1.8 V V+ 5 V
25°C 75 95
dB
kSVR Supply-voltage rejection ratio 1.8 V V+ 5 V Full range 65 dB
VICR Common-mode
input voltage range CMRR 60 dB 25°C 0 1.2 V
RL = 10 k to 1.35 V
25°C 70 110
AV
RL = 10 k to 1.35 V Full range 60
dB
AV
(see Note 5)
RL = 2 k to 1.35 V
25°C 65 100 dB
RL = 2 k to 1.35 V Full range 55
Low level
25°C 22 50
RL = 2 k to 0.9 V
Low level Full range 75
RL = 2 k to 0.9 V
High level
25°C 25 50
VO
High leve
l
Full range 75
mV
VO
(delta from supply rails)
Low level
25°C 14 20 mV
RL = 10 k to 0.9 V
Low level Full range 25
RL = 10 k to 0.9 V
High level
25°C 7 20
High leve
l
Full range 25
ICC
25°C 70 150
A
ICC Supply current (per channel) Full range 200 mA
IOS
Sourcing
25°C
6 12
mA
IOS Output short-circuit current Sinking 25°C10 20 mA
SR Slew rate RL = 10 k, Note 6 25°C 0.9 V/ms
GBW Unity-gain bandwidth RL = 100 k, CL = 200 pF 25°C 2.2 MHz
FmPhase margin RL = 100 kΩ, CL = 20 pF 25°C 55 °
GmGain margin RL = 100 kΩ, CL = 20 pF 25°C 15 dB
VnEquivalent input noise voltage f = 1 kHz 25°C 33 nV/Hz
InEquivalent input noise current f = 1 kHz 25°C 0.001 pA/Hz
THD Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 ,
VI = 1 VPP 25°C 0.015 %
Typical values represent the most likely parametric norm.
NOTES: 5. GND + 0.2 V VO VCC+ − 0.2 V
6. Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
shutdown characteristics, V+ = 1.8 V, GND = 0, VIC = VO = V+/2, RL > 1 M (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
ICC(SHDN)
Supply current in shutdown mode
VSD = 0 V
25°C 0.01 1 mA
ICC(SHDN
)
Supply current in shutdown mode VSD = 0 V Full range 1.5 mA
t(on) Amplifier turn-on time 25°C 5 ms
VSD
Shutdown pin voltage range
ON mode
25°C
1.5 to 1.8
V
V
SD
Shutdown pin voltage range
Shutdown mode
25
°
C
0 to 0.5
V
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics, V+ = 5 V, GND = 0, VIC = VO = V+/2, RL > 1 M (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYPMAX UNIT
Standard grade
25°C 0.3 4
Standard grade Full range 4.5
V
IO
Input offset voltage 25°C 0.3 1.25 mV
VIO
Input offset voltage
A grade 0°C to 125°C 0.3 1.5
mV
A grade
−40°C to 125°C 0.3 1.7
aVIO Average temperature coefficient
of input offset voltage Full range 1.9 mV/°C
25°C 1 200
I
IB
Input bias current −40°C to 85°C 375 pA
IIB
Input bias current
−40°C to 125°C 3000
pA
IIO Input offset current 25°C 6.6 fA
CMRR
Common-mode rejection ratio
0 VICR 4.4 V
25°C 75 90
dB
CMRR Common-mode rejection ratio 0 VICR 4.4 V Full range 70 dB
kSVR
Supply-voltage rejection ratio
1.8 V V+ 5 V
25°C 75 95
dB
kSVR Supply-voltage rejection ratio 1.8 V V+ 5 V Full range 65 dB
VICR Common-mode
input voltage range CMRR 70 dB 25°C 0 −0.2 to 4.5 4.4 V
RL = 10 kto 2.5 V
25°C 80 110
AV
Large-signal voltage gain
RL = 10 kto 2.5 V Full range 70
dB
AV
Large-signal voltage gain
(see Note 5)
RL = 2 kto 2.5 V
25°C 75 105 dB
(see Note 5)
RL = 2 kto 2.5 V Full range 60
Low level
25°C 40 60
RL = 2 k to 2.5 V
Low level Full range 85
RL = 2 k to 2.5 V
High level
25°C 25 60
VO
Output swing
High leve
l
Full range 85
mV
VO
Output swing
(delta from supply voltage)
Low level
25°C 18 30 mV
(delta from supply voltage)
RL = 10 k to 2.5 V
Low level Full range 40
RL = 10 k to 2.5 V
High level
25°C 7 15
High leve
l
Full range 20
ICC
Supply current (per channel)
25°C 75 150
A
ICC Supply current (per channel) Full range 200 mA
IOS
Output short-circuit current
Sourcing
25°C
60 113
mA
IOS Output short-circuit current Sinking 25°C80 115 mA
SR Slew rate RL = 10 k, Note 6 25°C 1 V/ms
GBW Unity-gain bandwidth RL = 10 k, CL = 200 pF 25°C 2.3 MHz
FmPhase margin RL = 100 kΩ, CL = 20 pF 25°C 55 °
GmGain margin RL = 100 kΩ, CL = 20 pF 25°C 15 dB
VnEquivalent input noise voltage f = 1 kHz 25°C 33 nV/Hz
InEquivalent input noise current f = 1 kHz 25°C 0.001 pA/Hz
THD Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 ,
VI = 1 VPP 25°C 0.012 %
Typical values represent the most likely parametric norm.
NOTES: 5. GND + 0.2 V VO VCC+ − 0.2 V
6. Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
shutdown characteristics, V+ = 5 V, GND = 0, VIC = VO = V+/2, RL > 1 M (unless otherwise noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
ICC(SHDN)
Supply current in shutdown mode
VSD = 0 V
25°C 0.01 1
A
ICC(SHDN
)
Supply current in shutdown mode VSD = 0 V Full range 1.5 mA
t(on) Amplifier turn-on time 25°C 5 ms
VSD
Shutdown pin voltage range
ON mode
25°C
3.1 to 5 4.5 to 5
V
V
SD
Shutdown pin voltage range
Shutdown mode
25
°
C
0 to 1 0 to 0.8
V
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 1
100
90
80
70
1.5 2 2.5 3 3.5 4 4.5
110
120
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
130
5
30
40
50
60
VCC − Supply Voltage − V
ICC − Supply Current − µA
125°C
85°C
25°C
−40°C
Figure 2
−40 −20 0 20 40 60 80 100 120 140
INPUT BIAS CURRENT
vs
TEMPERATURE
IIB − Input Bias Current − pA
TA − Free-Air Temperature − °C
V+ = 5 V
0.1
1
10
100
1,000
Figure 3
1.5 2 2.5 3 3.5 4 4.5 5
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
VO − Output Swing From Supply Voltage − mV
VCC − Supply Voltage − V
RL = 2 k
Negative Swing
Positive Swing
10
15
20
25
30
35
Figure 4
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
VO − Output Swing From Supply Voltage − mV
VCC − Supply Voltage − V
1.5 2 2.5 3 3.5 4 4.5 5
RL = 10 k
Negative Swing
Positive Swing
3
3.5
4
4.5
5
5.5
6
6.5
7
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 5
SOURCE CURRENT
vs
OUTPUT VOLTAGE
0.001 0.01 0.1 1 10
IS − Source Current − mA
VO − Output Voltage Referenced to V+ (V)
V+ = 2.7 V
125°C
−40°C
85°C
25°C
0.01
0.1
1
10
100
1000
Figure 6
SOURCE CURRENT
vs
OUTPUT VOLTAGE
0.001 0.01 0.1 1 10
IS − Source Current − mA
VO − Output Voltage Referenced to V+ (V)
V+ = 5 V
125°C
−40°C
85°C
25°C
0.01
0.1
1
10
100
1000
SINK CURRENT
vs
OUTPUT VOLTAGE
0.001 0.01 0.1 1 10
IS − Sink Current − mA
VO − Output Voltage Referenced to V− (V)
V+ = 2.7 V
125°C
−40°C
85°C
25°C
Figure 7
0.01
0.1
1
10
100
1000
SINK CURRENT
vs
OUTPUT VOLTAGE
0.001 0.01 0.1 1 10
IS − Sink Current − mA
VO − Output Voltage Referenced to V− (V)
V+ = 5 V
125°C
−40°C
85°C
25°C
Figure 8
0.01
0.1
1
10
100
1000
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
−0.2 0.8 1.8 2.
8
OFFSET VOLTAGE
vs
COMMON-MODE VOLTAGE
VIO − Offset Voltage − mV
VIC − Common-Mode Voltage − V
V+ = 2.7 V
Figure 9
−3
−2.5
−2
−1.5
−1
−0.5
0
0.5
1
−40°C
25°C
85°C
125°C
−0.2 0.8 1.8 2.8 3.8 4.8 5.8
OFFSET VOLTAGE
vs
COMMON-MODE VOLTAGE
VIO − Offset Voltage − mV
VIC − Common-Mode Voltage − V
V+ = 5 V
Figure 10
−3
−2.5
−2
−1.5
−1
−0.5
0
0.5
1
−40°C
25°C
85°C
125°C
INPUT VOLTAGE
vs
OUTPUT VOLTAGE
VI − Input Voltage − µV
VO − Output Voltage − V
−3 −2 −1 0 1 2 3
V+ /GND = ±2.5 V
RL = 2 k
RL = 10 k
Figure 11
−300
−200
−100
0
100
200
300
INPUT VOLTAGE
vs
OUTPUT VOLTAGE
VI − Input Voltage − µV
VO − Output Voltage − V
−1.5 −1 −0.5 0 0.5 1 1.5
V+ /GND = ±1.35 V
RL = 2 k
RL = 10 k
Figure 12
−300
−200
−100
0
100
200
300
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
SLEW RATE
vs
SUPPLY VOLTAGE
SR − Slew Rate − V/µs
VCC − Supply Voltage − V
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
1.5 2 2.5 3 3.5 4 4.5 5
Rising Edge
Falling Edge
RL = 10 k
AV = 1
VI = 0.8 VPP for V+ < 2.7 V
VI = 2 VPP for V+ > 2.7 V
Figure 13
SLEW RATE
vs
TEMPERATURE
SR − Slew Rate − V/µs
VCC − Supply Voltage − V
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
−40 −20 0 20 40 60 80 100 120 140
RL = 10 k
AV = 1
VI = 2 VPP
V+ = 2.7 V
Rising Edge
Falling Edge
Figure 14
SLEW RATE
vs
TEMPERATURE
SR − Slew Rate − V/µs
VCC − Supply Voltage − V
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
−40 −20 0 20 40 60 80 100 120 140
RL = 10 k
AV = 1
VI = 2 VPP
V+ = 5 V
Rising Edge
Falling Edge
Figure 15
CMRR
vs
FREQUENCY
0
10
20
30
40
50
60
70
80
90
100
100 1K 10K 100K 1M
Gain − dB
f − Frequency − Hz
5 V
VI = V+ /2
RL = 5 k
2.7 V
Figure 16
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
PSRR
vs
FREQUENCY
0
10
20
30
40
50
60
70
80
90
100
100 1K 10K 100K 1M
Gain − dB
f − Frequency − Hz 10M
+PSRR (5 V)
+PSRR (2.7 V)
−PSRR (5 V)
RL = 5 k
Figure 17
−PSRR (2.7 V)
INPUT VOLTAGE NOISE
vs
FREQUENCY
VI − Input Voltage Noise − nV/
f − Frequency − Hz
0
20
40
60
80
100
120
140
160
180
200
220
10 100 1K 10K
2.7 V
5 V
Figure 18
Hz
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
THD+N − Total Harmonic Distortion + Noise − %
f − Frequency − Hz
10 100 1K 10K 100K
RL = 600
VO = 1 VPP for V+ = 2.7 V
VO = 2.5 VPP for V+ = 5 V
2.7 V
AV = 10
5 V
AV = 10
5 V
AV = 1
2.7 V
AV = 1
Figure 19
0.0001
0.001
0.01
0.1
1
10
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT VOLTAGE
THD+N − Total Harmonic Distortion + Noise − %
VO − Output Voltage − VPP
0.001 0.01 0.1 1 10
f = 10 kHz
RL = 600
5 V
AV = 10
5 V
AV = 1 2.7 V
AV = 1
2.7 V
AV = 10
Figure 20
0.01
0.1
1
10
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
FREQUENCY RESPONSE
vs
TEMPERATURE
Gain − dB
f − Frequency − kHz
Phase Margin − Deg
110 100 1K 10K0
20
40
60
80
100
120
140
160
V+ = 5 V
RL = 2 k
125°C
Figure 21
−40°C
25°C
Gain
Phase
−20
0
20
40
60
80
100
120
140
125°C
−40°C
25°C
FREQUENCY RESPONSE
vs
RL
Gain − dB
f − Frequency − kHz
Phase Margin − Deg
1 10 100 1K 10K0
20
40
60
80
100
120
140
160
V+ = 2.7 V
Closed-Loop
Gain = 60 dB
RL = 100 k
RL = 2 kRL = 600
Figure 22
Gain
Phase
−20
0
20
40
60
80
100
120
140
RL = 600
RL = 100 k
RL = 2 k
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
FREQUENCY RESPONSE
vs
RL
Gain − dB
f − Frequency − kHz
1 10 100 1K 10K 0
20
40
60
80
100
120
140
160
V+ = 5 V
Closed-Loop
Gain = 60 dB
RL = 600
RL = 2 k
RL = 100 k
RL = 2 k
RL = 600
Figure 23
Phase Margin − Deg
Gain
Phase
−20
0
20
40
60
80
100
120
140
RL = 100 k
FREQUENCY RESPONSE
vs
CL
Gain − dB
f − Frequency − kHz
Phase Margin − Deg
1 10 100 1K 10K −80
−60
−40
−20
0
20
40
60
80
100
CL = 0 pF
CL = 100 pF
CL = 500 pF
CL = 1000 pF
V+ = 5 V
RL = 600
Closed-Loop Gain = 60 dB
CL = 1000 pF
CL = 0 pF
CL = 500 pF
Figure 24
Gain
Phase
−20
0
20
40
60
80
100
120
140
−40 CL = 100 pF
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
SMALL-SIGNAL NONINVERTING RESPONSE
−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
VO − Output Voltage − V
VI − Input Voltage − V
Input
TA = −40°C
RL = 2 k
V+/GND = ±2.5 V
Output
−0.1
−0.05
0
0.05
0.1
0.15
0.2
0.25
4 µs/div"
Figure 25
LARGE-SIGNAL NONINVERTING RESPONSE
VO − Output Voltage − V
VI − Input Voltage − V
−6
−5
−4
−3
−2
−1
0
2
1
Input
Output
TA = −40°C
RL = 2 k
V+/GND = ±2.5 V
−2
−1
0
1
2
3
4
5
6
4 µs/div"
Figure 26
SMALL-SIGNAL NONINVERTING RESPONSE
−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
VO − Output Voltage − V
VI − Input Voltage − V
Input
TA = 25°C
RL = 2 k
V+/GND = ±2.5 V
Output
Figure 27
−0.1
−0.05
0
0.05
0.1
0.15
0.2
0.25
4 µs/div"
LARGE-SIGNAL NONINVERTING RESPONSE
VO − Output Voltage − V
VI − Input Voltage − V
−6
−5
−4
−3
−2
−1
0
2
1
Input
Output
TA = 25°C
RL = 2 k
V+/GND = ±2.5 V
−2
−1
0
1
2
3
4
5
6
4 µs/div"
Figure 28
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
SMALL-SIGNAL NONINVERTING RESPONSE
−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
VO − Output Voltage − V
VI − Input Voltage − V
Input
TA = 125°C
RL = 2 k
V+/GND = ±2.5 V
Output
−0.1
−0.05
0
0.05
0.1
0.15
0.2
0.25
4 µs/div"
Figure 29
LARGE-SIGNAL NONINVERTING RESPONSE
VO − Output Voltage − V
VI − Input Voltage − V
−6
−5
−4
−3
−2
−1
0
2
1
Input
Output
TA = 125°C
RL = 2 k
V+/GND = ±2.5 V
−2
−1
0
1
2
3
4
5
6
4 µs/div"
Figure 30
SMALL-SIGNAL INVERTING RESPONSE
−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
VO − Output Voltage − V
VI − Input Voltage − V
Input
TA = −40°C
RL = 2 k
V+/GND = ±2.5 V
Output
−0.1
−0.05
0
0.05
0.1
0.15
0.2
0.25
4 µs/div"
Figure 31
LARGE-SIGNAL INVERTING RESPONSE
VO − Output Voltage − V
VI − Input Voltage − V
−6
−5
−4
−3
−2
−1
0
2
1
Input
Output
TA = −40°C
RL = 2 k
V+/GND = ±2.5 V
−2
−1
0
1
2
3
4
5
6
Figure 32
4 µs/div"
  
     
 
SLVS568B − JANUAR Y 2005 − REVISED DECEMBER 2005
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
SMALL-SIGNAL INVERTING RESPONSE
−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
VO − Output Voltage − V
VI − Input Voltage − V
Input
TA = 25°C
RL = 2 k
V+/GND = ±2.5 V
Output
−0.1
−0.05
0
0.05
0.1
0.15
0.2
0.25
4 µs/div"
Figure 33
LARGE-SIGNAL INVERTING RESPONSE
VO − Output Voltage − V
VI − Input Voltage − V
−6
−5
−4
−3
−2
−1
0
2
1
Input
Output
TA = 25°C
RL = 2 k
V+/GND = ±2.5 V
−2
−1
0
1
2
3
4
5
6
4 µs/div"
Figure 34
SMALL-SIGNAL INVERTING RESPONSE
−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
VO − Output Voltage − V
4 µs/div"
VI − Input Voltage − V
Input
TA = 125°C
RL = 2 k
V+/GND = ±2.5 V
Output
Figure 35
−0.1
−0.05
0
0.05
0.1
0.15
0.2
0.25
LARGE-SIGNAL INVERTING RESPONSE
VO − Output Voltage − V
VI − Input Voltage − V
−6
−5
−4
−3
−2
−1
0
2
1
Input
Output
TA = 125°C
RL = 2 k
V+/GND = ±2.5 V
−2
−1
0
1
2
3
4
5
6
4 µs/div"
Figure 36
PACKAGING INFORMATION
Orderable Device Status (1) Package
Type Package
Drawing Pins Package
Qty Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)
TLV341AIDBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341AIDBVRE4 ACTIVE SOT-23 DBV 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341AIDBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341AIDBVTE4 ACTIVE SOT-23 DBV 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341AIDCKR ACTIVE SC70 DCK 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341AIDCKRE4 ACTIVE SC70 DCK 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341AIDCKT ACTIVE SC70 DCK 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341AIDCKTE4 ACTIVE SC70 DCK 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDBVRE4 ACTIVE SOT-23 DBV 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDBVTE4 ACTIVE SOT-23 DBV 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDCKR ACTIVE SC70 DCK 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDCKRE4 ACTIVE SC70 DCK 6 3000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDCKT ACTIVE SC70 DCK 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDCKTE4 ACTIVE SC70 DCK 6 250 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV341IDRLR ACTIVE SOP DRL 6 4000 Green (RoHS &
no Sb/Br) Call TI Level-1-260C-UNLIM
TLV342AID ACTIVE SOIC D 8 75 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV342AIDE4 ACTIVE SOIC D 8 75 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV342AIDR ACTIVE SOIC D 8 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV342AIDRE4 ACTIVE SOIC D 8 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV342ID ACTIVE SOIC D 8 75 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV342IDE4 ACTIVE SOIC D 8 75 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV342IDR ACTIVE SOIC D 8 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV342IDRE4 ACTIVE SOIC D 8 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 13-Dec-2005
Addendum-Page 1
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 13-Dec-2005
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’ s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of T I products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2005, Texas Instruments Incorporated