This is information on a product in full production.
June 2017 DocID028553 Rev 3 1/49
L5963
Automotive dual monolithic switching regulator with LDO and HSD
Datasheet - production data
Featuress
AEC-Q100 qualified
Two step-down synchronous switching voltage
regulators with internal power switches:
Wide input voltage range (from 3.5 V to 26 V)
Internal high-side/ low-side NDMOS
1 V minimum output
3.0 A load current
250 kHz free-run frequency
250 kHz < f < 2 MHz synchronization range
Integrated soft-start
Independent hardware enable pins
Independent power supply
180° PWM output phase shift
Programmable switching frequency divider
by 1, 2, 4 or 8 between the two DC/DC
regulators
Power good function
One standby / linear regulator
Output voltage programmable with external
resistor divider
250 mA maximum current capability
Backup function
Power good function
One high side driver
0.5 V max drop @ 0.5 A
Protected against short to ground and
battery, loss of ground and battery,
unsupplied short to battery
Programmable under voltage battery detector
Under voltage threshold adjustable through
dedicated pin (VDIN)
Load dump protection
Independent thermal protection on all
regulators
Independent current limit on all regulators
Extremely low quiescent current in standby
conditions
Power good / adjustable voltage detector
outputs to realize customized power up/down
sequences
Description
L5963 is a dual step-down switching regulator
with internal power switches, high side driver and
a low drop-out linear regulator that can operate as
standby regulator or normal LDO.
All the regulators can be connected directly to the
vehicle battery. In addition to an adjustable
voltage detector, voltage supervisors are
available.
The two DC-DC converters can work in free-run
condition or synchronize themselves to an
external clock. DC/DCs' PWM outputs have a
180° phase shift.
The high operating frequency allowed by the
synchronization input helps to reduce AM and FM
interferences and grants the use of small and low
cost inductors and capacitors.
This IC finds application in the automotive
segment, where load dump protection and wide
input voltage range are mandatory.
A slug-up package option is available for
applications which require heatsink use.
In standby condition the device guarantees
extremely low quiescent current (25 μA typical @
-40 °C < T < 85 °C)
'!0'03
'!0'03
PowerSSO-36
(exposed pad)
PowerSSO-36
(slug-up)
*$3*36
VQFPN-48
Table 1. Device summary
Order code Package Packing
L5963DN-EHX PowerSSO36
(exposed pad)
Tube
L5963DN-EHT Tape & Reel
L5963U-KBX PowerSSO36
(slug-up)
Tube
L5963U-KBT Tape & Reel
L5963Q-V0Y VQFPN-48 Tray
L5963Q-V0T Tape & Reel
www.st.com
Contents L5963
2/49 DocID028553 Rev 3
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Application diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 Operative modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Blocks functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.1 Unregulated supply input voltage (VINLDO) . . . . . . . . . . . . . . . . . . . . . 19
6.2.2 Low voltage warning monitor (related pins: VDIN, VDOUT, VDDLY) . . . 19
6.2.3 Power-good reset (related pins: LDOOK, LDOOKDLY) . . . . . . . . . . . . . 20
6.2.4 Power-good function of DC/DC1 (related pins: SW1OK, SW1OKDLY) . 20
6.2.5 Over voltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.6 Power ground (PGND1 and PGND2) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.7 Signal ground (SGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.8 PWM signal ground (SWGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.9 TAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.10 Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.11 High-side driver (HSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.12 Switching regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1 Output inductor (Lo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Output capacitors (COUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Input capacitors (CIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 Bootstrap capacitor (CBOOT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
DocID028553 Rev 3 3/49
L5963 Contents
3
7.5 Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8 Thermal design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1 Package variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 PowerSSO-36 (exposed pad) package information . . . . . . . . . . . . . . . . . 40
9.3 PowerSSO-36 (slug-up) package information . . . . . . . . . . . . . . . . . . . . . 43
9.4 VFQFPN-48 (7x7x1.0 - opt. D) package information . . . . . . . . . . . . . . . . 45
9.5 Package marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
List of tables L5963
4/49 DocID028553 Rev 3
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. PowerSSO-36 pins description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. VQFPN-48 pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 4. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Thermal data (PowerSSO-36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Thermal data (VQFPN-48) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 7. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Components value for different output voltage cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 9. Maximum suggested power for L5963 in PSSO36 slug-down package. . . . . . . . . . . . . . . 37
Table 10. Maximum suggested power for L5963 in QFN48 package. . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 11. PowerSSO-36 exposed pad package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 12. PowerSSO-36 slug-up package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 13. VFQFPN-48 (7x7x1.0 - opt. D) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 14. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DocID028553 Rev 3 5/49
L5963 List of figures
5
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Example of a typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Example of usage of two regulators in the same application . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. PowerSSO-36 pinout configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. VQFPN-48 pinout configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 6. PSRR LDO 50 mA load vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. Efficiency vs. output current (VIN = 14 V, fsw = 2 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 8. Efficiency vs. output current (VIN = 14 V, fsw = 250 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. Low voltage warning monitor & delay schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10. Linear regulator diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 11. Enable timing for standby regulator (ENLDO pin connect to supply directly) . . . . . . . . . . . 22
Figure 12. Enable timing for linear regulator (pin ENLDO isn't connected to VINLDO) . . . . . . . . . . . . 23
Figure 13. Switching regulators diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14. Closed loop system with TYPE III network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 15. TYPE III compensated network diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 16. PowerSSO-36 (exposed pad) package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 17. PowerSSO-36 (slug-up) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 18. VFQFPN-48 (7x7x1.0 - opt. D) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 19. PowerSSO-36 (exp. pad) marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 20. PowerSSO-36 (slug up) marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 21. VFQFPN-48 (7x7x1.0) marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Overview L5963
6/49 DocID028553 Rev 3
1 Overview
The L5963 integrates two switching mode synchronous step down converters, a linearly
regulated power supply, a protected high side driver and voltage detectors. To guarantee a
robust operation, all the outputs have independent thermal protection and current limitation.
The two switching mode synchronous step-down converters employ voltage mode control
and feed forward functions to provide good load regulation and line regulation. Each
converter has its own enable. The users can adjust the output voltage of the two converters
by an external resistor divider. If the converters need to work with a frequency different from
the free running frequency, in order to consider EMC performance in system level, they can
be synchronized to an external clock by applying it on the SYNCIN pin. The frequency
should be higher than half of the free running frequency. If there are more than one L5963 in
the system they can work in Master-Slave configuration, to make sure all L5963 have the
same operating frequency of the Master device. This Master-Slave function is implemented
by a dedicated pin SYNCOUT which always gives the operating frequency of DC/DC1.
A dedicated voltage detector is integrated in the first switching converter to monitor DC/DC1
output. When the output voltage of DC/DC1 goes above the threshold, SW1OK is released
and goes back to high with configurable delay set by a capacitor on the SW1OKDLY pin.
The linear regulator can work as standby regulator with low Iq or as a non-standby regulator.
Connecting its enable ENLDO to its supply VINLDO the regulator works as a standby
regulator, while connecting ENLDO to a voltage lower than 5 V the regulator works as non-
standby regulator, with higher load capability but also higher quiescent current.
In standby state, i.e. only the linear regulator is powered and works as a standby regulator,
with a load below 100 μA the device has a quiescent current of just 25 μA.
The small drop-out voltage of the linear regulator allows its use with low operating supply
voltage.
In many cases, the linear regulator has to provide voltages to devices which need the reset
function, like a MCU: this is provided by the LDOOK output, that is pulled low when
VOUTLDO goes below a threshold. Once VOUTLDO returns above that threshold, with a
specified hysteresis, LDOOK goes back to high with a configurable delay set by a capacitor
on pin LDOOKDLY.
The high side driver is enabled by a dedicated pin and has a very low drop-out voltage.
Protection circuits, like independent thermal protection, OCP, OVP and some special
protections (loss of GND, SPU, short to supply and so on), are implemented to make it very
robust.
L5963 also embeds a voltage monitor (VDOUT), adjustable by means of an external resistor
divider, that can be used to sense the battery or other voltages in the system. Sensing
voltage is fed to pin VDIN. For instance, VDOUT might be used to monitor the output of
DC/DC2, realizing in this way the Power Good function for that block. VDOUT is pulled low
when voltage on VDIN goes below the specified threshold. Once VDIN returns above that
threshold, with a specified hysteresis, VDOUT goes back to high with a configurable delay
set by a capacitor on pin LDOOKDLY
Two different packages are available. The PowerSSO-36 slug-down allows to dissipate the
heat on the board and reduce the application size. The slug has to be connected to the
ground plane. This is the package suggested for standard applications. When this is not
enough, because the L5963 is used as pre-regulator for high consuming applications and
both the 2 DC-DC are working at high currents, the PSSO36 slug-up allows the use of a
heat-sink to make easier power dissipation.
DocID028553 Rev 3 7/49
L5963 Block diagram
48
2 Block diagram
Figure 1. Block diagram
'!0'03
"ANDGAP 2EF
)NTERNALREGULATOR
6).,$/
,INEARREGULATOR
&",$/
6/54,$/
2ESET$ELAY
,$//+
,$//+$,9
6OLTAGESUPERVISORY
WITH0/2DELAY
6$).
6$/54
6$$,9
6"!4 )NTERNALREGULATOR
/SCILLATOR
&REQ,OGIC
3YNC,OGIC #,/#+
39.#).
39.#/54
&2$)6
#,+
#,+
%.,$/
%.(3$
%.37
%.37
3WITCHING2EGULATOR
6).37
"3
07-
&"37
0OWER'OOD
$ELAY07-
37/+
37/+$,9
#/-0
3WITCHING2EGULATOR
6).37
"3
07-
&"37
#/-0
,OGIC
#ONTROL
#,+
#,+
(IGH3IDEDRIVER (3$
6).(3$
0'.$0'.$37'.$
3'.$
4!"
'.$
2EF?6
2EF?6
2EF?6
6BG
6BG
2EF?6
Application diagrams L5963
8/49 DocID028553 Rev 3
3 Application diagrams
Figure 2. Example of a typical application diagram
287B/'2
9',1
+6'B287
287B6:
S9
&
Q
&
Q
&
Q)9
&
X9
&
Q9
5 
733
X+
5
&
X9
9%DWW
W
9%DWW
9%$7 
7$%


1&

6*1'

6:*1'

7$%
*$3*36
5
'
9,1B/'2
X)9
X)9
&


&
Q
&
/'2B9287B2.
(1B/'2


(1+6'
9,1+6'
9''/<
9'287
/'22.'/<
/'22.
6:2.'/<
6:2.
)5',9
6<1&B287
6<1&B,1
(16:
(16:
9,16:
9,16:
(1/'2
9,1/'2
Q
&
6:B9287B2.
(1B6:


5
6,1.B&/.B287
6,1.B&/.B,1



(1B6:
X)9
&
9,1B6:
X)9
&
Q)9
&
9%DW
X)9
&
Q)9
&


Q
&
9',1B2.
(1B+6'
+6'B,1
 +6'
9',1
9287/'2
)%/'2
&203
&203
3*1'
3*1'
%6
%6
3:0
3:0
)%6:
)%6:
/
8




5.
S
&
5 .
5 .
.
5
X
&
9 Q
&
5
5

. Q
&
X9
&
287B6:
X9
&
Q
&
/ X+
Q9
&
S9
&





Q)
&
S
&
5 .
5
&
.
5
5. Q
&

/
DocID028553 Rev 3 9/49
L5963 Application diagrams
48
Figure 3. Example of usage of two regulators in the same application
287B6:B
287B/'2B
287B6:B
&
S9
&
Q
5 .
5 .
&
X9
&
Q)9
5 
5 
&
Q
&
X9
5 .
5
.
&
X9
&
Q
&
X9
/ X+
&
Q
5 
&
Q
/ X+
&
S9
5 
&
X9
9%$7 


7$%
















 

 
1&

6*1'

6:*1'

7$%
287B6:
287B/'2
287B6:
&
S9
&
Q
5 .
5
5 .
&
X9
5 
5 
&
Q
&
X9
5 .
5
.
&
X9
&
Q
&
X9
/ X+
&
Q
5 
&
Q
/ X+
&
S9
5 
&
X9
W
&
9%$7 


7$%
















 

 
1&

6*1'

6:*1'

7$%
*$3*36
287/'2
5.
X)9
&
9%DWW
9%DWW
X)9
&
9,1B6:
X)9
&
Q)9
&
Q)9
&
'
X)9
&
9%DWW
9,1B6:
X)9
&
Q)9
&
9%DWW
X)9
&
Q)9
&
X)9
5
X)9
&
Q
&
Q
&
Q
&
6:B9287B2.
/'2B9287B2.
6,1.B&/.B287
(1B+6'
+6'B,1
9',1B2.
6,1.B&/.B,1
(1B6:
(1B6:
(1B/'2
&
9%DWW
733
Q)9
&
X)9
5
Q
&
Q
&
Q
&
9,1B/'2
6:B9287B2.
/'2B9287B2.
6,1.B&/.B287
(1B+6'
+6'B,1
9',1B2.
6,1.B&/.B,1
(1B6:
(1B6:
(1B/'2
9%DW
X)9
&
733
Q)9
&
(1+6'
9,1+6'
9''/<
9'287
/'22.'/<
/'22.
6:2.'/<
6:2.
)5',9
6<1&B287
6<1&B,1
(16:
(16:
9,16:
9,16:
(1/'2
9,1/'2
(1+6'
9,1+6'
9''/<
9'287
/'22.'/<
/'22.
6:2.'/<
6:2.
)5',9
6<1&B287
6<1&B,1
(16:
(16:
9,16:
9,16:
(1/'2
9,1/'2
+6'
9',1
9287/'2
)%/'2
&203
&203
3*1'
3*1'
%6
%6
3:0
3:0
)%6:
)%6:
+6'
9',1
9287/'2
)%/'2
&203
&203
3*1'
3*1'
%6
%6
3:0
3:0
)%6:
)%6:
/
8
5.
S
&
Q9
&
S
&
Q9
&
Q)
& 5.
5.
5.
Q
&
+6'B287
9',1
/
8
5.
S
&
Q9
&
S
&
Q9
&
Q)
& 5.
5.
5.
Q
&
+6'B287
9',1
Pins description L5963
10/49 DocID028553 Rev 3
4 Pins description
Figure 4. PowerSSO-36 pinout configuration
Table 2. PowerSSO-36 pins description
Pin # Name Type Function
1 TAB n.a. Device slug terminal. To be connected to ground
2 PGND1 Ground Switching regulator 1 power ground
3 ENSW1 Input Switching regulator 1 enable. 1.8/3.3 V compatible
4 BS1 Supply Switching regulator 1 boosted supply

















 






 
4! "
0'.$
%.37
"3
07-
%.(3$
6).37
39.#/54
39.#).
&2$)6
6$/54
&"37
#/-0
3'.$
6$).
6).(3$
6$$,9
(3$
0'.$
%.37
"3
07-
%.,$/
6).37
37/+
4%34
37/+$,9
6"!4
37'.$
&"37
#/-0
6).,$/
,$//+$,9
,$//+
6/54,$/
&",$/
'!0'03
3LUGDOWN
'!0'03

























4!"
0'.$
%.37
"3
07-
%.(3$
6).37
39.#/54
39.#).
&2$)6
6$/54
&"37
#/-0
3'.$
6$).
6).(3$
(3$
6$$,9
0'.$
%.37
"3
07-
%.,$/
6).37
37/+
4%34
37/+$,9
6"!4
37'.$
&"37
#/-0
6).,$/
,$//+$,9
,$//+
6/54,$/
&",$/
3LUGUP
DocID028553 Rev 3 11/49
L5963 Pins description
48
5 PWM1 Output Switching regulator 1 switching output
6 ENHSD Input Enable for High Side Driver. 1.8/3.3 V compatible
7 VINSW1 Supply Switching regulator 1 supply voltage
8 SYNCOUT Output External synchronization output (push-pull)
9 SYNCIN Input External synchronization input
10 FRDIV Input/output Switching frequency divider setting
11 VDOUT Output Voltage detector output (open drain)
12 FBSW1 Input/output Switching regulator 1 feedback voltage
13 COMP1 Input/output Switching regulator 1 compensation
14 SGND Ground Ground for linear blocks
15 VDIN Input Voltage detector threshold setting
16 VINHSD Supply High Side Driver supply
17 HSD Output High Side Driver output
18 VDDLY Input/output Voltage Detector delay setting
19 FBLDO Input/output LDO feedback voltage
20 VOUTLDO Output LDO output
21 LDOOK Output LDO voltage detector output (open drain)
22 LDOOKDLY Input/output LDOOK delay setting
23 VINLDO Supply LDO supply
24 COMP2 Input/output Switching regulator 2 compensation
25 FBSW2 Input/output Switching regulator 2 feedback voltage
26 SWGND Ground Low-power switching ground
27 VBAT Supply Common linear blocks supply voltage
28 SW1OKDLY Input/output SW1OK delay setting
29 TEST n.a. Pin for testing purposes. To be left unconnected
30 SW1OK Output Switching regulator 1 voltage detector output (open drain)
31 VINSW2 Supply Switching regulator 2 supply voltage
32 ENLDO Input LDO enable. 1.8/3.3 V compatible
33 PWM2 Output Switching regulator 2 switching output
34 BS2 Supply Switching regulator 2 boosted supply
35 ENSW2 Input Switching regulator 2 enable. 1.8/3.3 V compatible
36 PGND2 Ground Switching regulator 2 power ground
Table 2. PowerSSO-36 pins description (continued)
Pin # Name Type Function
Pins description L5963
12/49 DocID028553 Rev 3
Figure 5. VQFPN-48 pinout configuration
Table 3. VQFPN-48 pins description
Pin # Name Type Function
1 BS2 Supply Switching regulator 2 boosted supply
2 ENSW2 Input Switching regulator 2 enable. 1.8/3.3 V compatible
3 NC N.C. Not connected
4 NC N.C. Not connected
5 PGND2 Ground Switching regulator 2 power ground
6 PGND2 Ground Switching regulator 2 power ground
7 PGND1 Ground Switching regulator 1 power ground
8 PGND1 Ground Switching regulator 1 power ground
9 NC N.C. Not connected
10 ENSW1 Input Switching regulator 1 enable. 1.8/3.3 V compatible
11 NC N.C. Not connected
12 BS1 Supply Switching regulator 1 boosted supply
13 PWM1 Output Switching regulator 1 switching output
14 ENHSD Input Enable for High Side Driver. 1.8/3.3 V compatible
15 SYNCOUT Output External synchronization output (push-pull)







%6
(16:
1&
1&
3*1'
3*1'
3*1'
3*1'
1&
(16:
1&
%6
3:0
(1/'2
9,16:
9,16:
6:2.
7(67
6:2.'/<
9%$7
6:*1'
)%6:
&203
9,1/'2
3:
(1+6'
6<1&287
6<1&,1
9,16:
9,16:
)5',9
9'287
)%6:
&203
6*1'
9',1
/'22.'/<
/'22.
1&
9287/'2
9287/'2
)%/'2
9''/<
+6'
+6'
9,1+6'
9,1+6'
1&
*$3*36
DocID028553 Rev 3 13/49
L5963 Pins description
48
16 SYNCIN Input External synchronization input
17 VINSW1 Supply Switching regulator 1 supply voltage
18 VINSW1 Supply Switching regulator 1 supply voltage
19 FRDIV Input/output Switching frequency divider setting
20 VDOUT Output Voltage detector output (open drain)
21 FBSW1 Input/output Switching regulator 1 feedback voltage
22 COMP1 Input/output Switching regulator 1 compensation
23 SGND Ground Ground for linear blocks
24 VDIN Input Voltage detector threshold setting
25 NC N.C. Not connected
26 VINHSD Supply High Side Driver supply
27 VINHSD Supply High Side Driver supply
28 HSD Output High Side Driver output
29 HSD Output High Side Driver output
30 VDDLY Input/output Voltage Detector delay setting
31 FBLDO Input/output LDO feedback voltage
32 VOUTLDO Output LDO output
33 VOUTLDO Output LDO output
34 NC N.C. Not connected
35 LDOOK Output LDO voltage detector output (open drain)
36 LDOOKDLY Input/output LDOOK delay setting
37 VINLDO Supply LDO supply
38 COMP2 Input/output Switching regulator 2 compensation
39 FBSW2 Input/output Switching regulator 2 feedback voltage
40 SWGND1 Ground Low-power switching ground
41 VBAT Supply Common linear blocks supply voltage
42 SW1OKDLY Input/output SW1OK delay setting
43 TEST n.a. Pin for testing purposes. To be left unconnected
44 SW1OK Output Switching regulator 1 voltage detector output (open drain)
45 VINSW2 Supply Switching regulator 2 supply voltage
46 VINSW2 Supply Switching regulator 2 supply voltage
47 ENLDO Input LDO enable. 1.8/3.3 V compatible
48 PWM2 Output Switching regulator 2 switching output
Table 3. VQFPN-48 pins description (continued)
Pin # Name Type Function
Electrical specifications L5963
14/49 DocID028553 Rev 3
5 Electrical specifications
5.1 Absolute maximum ratings
5.2 Thermal data
Table 4. Absolute maximum ratings
Pin name /
symbol Parameter Value Unit
VBATOP
VINOP
Operating input voltage -0.3 to +26 V
VBATMAX
VINMAX
Maximum transient supply voltage -0.3 to +40 V
PGND1/2,
SGND,
SWGND, TAB
Ground pins voltage -0.3 to +0.3 V
ENLDO LDO enable pin voltage -0.3 to +40 V
Vpinop Other pins operating voltage -0.3 to +3.6 V
Vpinmax Other pins voltage -0.3 to +4.6 V
Top
Operating ambient temperature
range -40 to +105 °C
Tstg Storage temperature range -55 to +150 °C
TjJunction temperature 150 °C
Table 5. Thermal data (PowerSSO-36)
Symbol Parameter Board Value Unit
Rth j-a-2s
Thermal resistance junction-to-ambient (Max)
(slug down configuration)
2s 53 °C/W
Rth j-a-2s2p 2s2p 27 °C/W
Rth j-a-2s2pv 2s2p+vias 22 °C/W
Rth j-case Thermal resistance junction-to-case (Max) 1.5 °C/W
Table 6. Thermal data (VQFPN-48)
Symbol Parameter Board Value Unit
Rth j-a-2s
Thermal resistance junction-to-ambient (Max)
2s 66 °C/W
Rth j-a-2s2p 2s2p 32 °C/W
Rth j-a-2s2pv 2s2p+vias 26 °C/W
Rth j-case Thermal resistance junction-to-case (Max) 2.2 °C/W
DocID028553 Rev 3 15/49
L5963 Electrical specifications
48
5.3 Electrical characteristics
VBAT = VIN = 14.4 V, Tamb = 25 °C unless otherwise specified.
Table 7. Electrical characteristics
Symbol Parameter Test conditions Min Typ Max Unit
Inputs and controls
VBATOP VBAT operating range
Standby mode
VOUTLDO = 1.2 V/100 mA
VOUTLDO = 3.3 V/100 mA
3.5
4
-
-
26
26
V
V
IqTotal quiescent current Shutdown mode - 1.5 2 μA
Standby mode; IloadLDO = 100 μA - 23 28
OVVBAT
Overvoltage shut-down
threshold on VBAT VBAT rising 27 29 31 V
UVVBAT Undervoltage shut-down
threshold on VBAT
VBAT falling
VDOUT forced to 0 V 2.7 3 3.3 V
HysUV Hysteresis on UVVBAT - - 0.1 0.5 V
ENmin Min voltage for enable pins
high level - 1.6 - - V
ENmax Max voltage for enable pins
low level ---1V
RFRDIV
Thresholds of value of resistor
connected between FRDIV pin
and ground
fswSW2 = fswSW1 0-30
kΩ
fswSW2 = fswSW1/2 60 - 70
fswSW2 = fswSW1/4 110 - 115
fswSW2 = fswSW1/8 180 -
Voltage detector
THRVDIN
Voltage Detector input voltage
threshold - 0.9 0.94 0.98 V
HysVDIN
Voltage Detector input voltage
hysteresis - - 30 40 mV
VmaxVDOUT VDOUT saturation voltage I = 1 mA in VDOUT pin - - 0.1 V
IVDDLY VDDLY output current - 6 9 12 μA
THRVDDLY VDDLY threshold - 2.1 2.3 2.5 V
Linear regulator
VFBLDO Feedback voltage Iload = 100 mA 990 1000 1010 mV
UVLDO
Undervoltage shut-down
threshold on LDO VINLDO decreasing - 2.2 2.4 V
HysLDO Hysteresis on UVLDO - - - 100 mV
LdRLDO FBLDO load regulation 10 mA < Iload < 250 mA - 5 - mV
LnRLDO FBLDO line regulation 3.5 < VINLDO < 26 V
Iload = 100 mA - 1 - mV
Electrical specifications L5963
16/49 DocID028553 Rev 3
ΔVFBLDO /
VFBLDO
FBLDO
Undershoot/overshoot(1)
5 mA 250 mA Iload transition -5 - 5 %
8 18 V VINLDO transition -5 - 5
VdoLDO Drop-out voltage
VOUTLDO = 3.3 V
Iload = 250 mA
VOUTLDO decreasing of 100 mV
- 270 320 mV
IshortLDO
Short circuit current limit
VOUTLDO shorted to ground - 350 420 mA
IshortST-BY
VOUTLDO (st-by) shorted to
ground -6580mA
PSRRLDO Power supply rejection ratio Iload = 50 mA, 10 Hz < f < 10 kHz
1 Vacpp on VINLDO -70-dB
nLDO Output noise 20 Hz < f < 20 kHz
Iload = 5 mA - 100 - μV
TSDLDO
Thermal shut-down
temperature Temperature rising 150 160 - °C
HysTSDLDO
Hysteresis on thermal
shutdown temperature -5-15°C
Co Output capacitance(1) -3--μF
ESR Output capacitor ESR(1) - - - 0.2
Voltage detector on LDO
THRLDOOK /
VFBLDO
LDOOK threshold as
percentage of FBLDO voltage - 919497%
HysLDOOK Hysteresis on LDOOK - - 90 - mV
VmaxLDOOK LDOOK saturation voltage I = 1 mA in LDOOK pin - - 0.2 V
TglitchLDOOK Glitch filter time for LDO-OK - 5 12 20 μs
ILDOOKDLY LDOOKDLY output current - 7 10 13 μA
THRLDOOKDLY
LDOOKDLY threshold - 2 2.2 2.4 V
Switching regulators(2)
VFBSWx Feedback voltage Iload = 100 mA 980 1000 1020 mV
LdRSWx FBSWx load regulation(3) 50 mA < Iload < 1 A - 1 - mV
LnRSWx FBSWx line regulation(3) 3.5 V < VINSWx < 26 V - 1 - mV
UVSW1 Undervoltage shut-down
threshold on SW1 VINSWx decreasing - 2.8 3 V
HysSW1 Hysteresis on UVSW1 (3) - - 0.15 - V
UVSW2 Undervoltage shut-down
threshold on SW2 VINSWx decreasing - 2.8 3 V
HysSW2 Hysteresis on UVSW2 (3) - - 0.15 - V
ΔVFBSWx /
VFBSWx
FBSWx pin
undershoot/overshoot(3)
500 mA 1.5 A Iload transition -5 - 5 %
8 18 V VINSWx transition -5 - 5 %
Table 7. Electrical characteristics (continued)
Symbol Parameter Test conditions Min Typ Max Unit
DocID028553 Rev 3 17/49
L5963 Electrical specifications
48
IlimSW1 Peak current limitation on sw1 - 2.5 3 3.5 A
IlimSW2 Peak current limitation on sw2 - 3 3.5 4 A
fsw Free-run switching frequency - 225 250 275 kHz
fsync Switching frequency range(3) 50% duty-cycle wave on SYNC pin 250 - 2000 kHz
RonHS
High side MOS on
resistance(3)
VINSWx > 3.5 V; including bonding
wires -85-mΩ
RonLS Low side MOS on resistance(3) Including bonding wires - 105 - mΩ
Efficiency(3)
Free run frequency
VOUTSW1/2 = 5 V; Iload = 2.5 A
VOUTSW1/2 = 5 V; Iload = 1 A
-90
93
-%
ΔVFBSWx / Δt FB pin slope at turn-on(3) Including bonding wires - 0.95 - V/ms
TSDSWx
Thermal shutdown temperature
Temperature rising 150 160 - °C
HysTSDSWx Hysteresis on thermal
shutdown temperature - 5 - 15 °C
THRSW1OK /
VFBSW1
SW1OK threshold as
percentage of FBSW1 voltage - 919497%
HysSW1OK Hysteresis on SW1OK - - 35 50 mV
VmaxSW1OK SW1OK saturation voltage I = 1 mA in SW1OK pin - - 0.2 V
TglitchSW1OK Glitch filter time for SW1-OK - 9 13 17 μs
ISW1OKDLY SW1OKDLY output current - 6 10 13 μA
THRSW1OKDLY
SW1OKDLY threshold - 2 2.2 2.4 V
ton-min
Minimum on time(3) - - 20 - ns
High side driver
VdropHSD Output saturation Iload = 0.5 A - 140 170 mV
IshortHSD Short circuit current limit - 0.7 1 1.3 A
TSDHSD Thermal shut-down
temperature Temperature rising 150 160 - °C
HysTSDHSD
Hysteresis on thermal
shutdown temperature - 5 - 15 °C
1. Not tested at ATE.
2. Tests involving switching frequencies higher than 1 MHz are guaranteed by design.
3. Test guaranteed by application measurements.
Table 7. Electrical characteristics (continued)
Symbol Parameter Test conditions Min Typ Max Unit
Electrical specifications L5963
18/49 DocID028553 Rev 3
Figure 6. PSRR LDO 50 mA load vs. frequency Figure 7. Efficiency vs. output current
(VIN = 14 V, fsw = 2 MHz)
Figure 8. Efficiency vs. output current
(VIN = 14 V, fsw = 250 kHz)





     N
+]
G%
N N N N







*$3*36








     
(IILFLHQF\
/RDGP$
9
9
*$3*36








     
(IIL
F
L
HQF\

/RDGP$
9
9
*$3*36
DocID028553 Rev 3 19/49
L5963 Functional Description
48
6 Functional Description
6.1 Operative modes
L5963 has three main operative modes:
Shutdown mode: all enable pins are low and the device is completely off. In this
condition the quiescent current is typically 1.5 μA.
Standby mode: the linear regulator is configured as stand-by regulator by connecting
ENLDO directly to VINLDO. In this condition the quiescent current is typically 25 μA.
Normal mode: the linear regulator works as LDO and/or other blocks (DC/DC or HSD)
are turned on.
6.2 Blocks functional description
6.2.1 Unregulated supply input voltage (VINLDO)
This terminal provides the power for internal circuitry to bias band-gap reference, standby
regulator and other circuitry in the device.
If backup function is needed, an external capacitor connected to this pin shall be charged
through an external diode which is used to block reverse discharging. With backup function,
when the system battery is removed or drops too low suddenly, the internal bias and
regulator can operate correctly for a certain time, which avoids MCU to work abnormally and
allows MCU to have enough time to turn-off.
6.2.2 Low voltage warning monitor (related pins: VDIN, VDOUT, VDDLY)
An external voltage can be sensed through the VDIN pin. This voltage is scaled using an
external resistor network and compared with an internal threshold to detect a low voltage
condition (Figure 9.). Once the input voltage is below the threshold, the low voltage warning
output terminal (VDOUT) is pulled low after the designed glitch-filtering (~12 μs). VDOUT is
an open drain output. If the input returns above the threshold with the specified hysteresis,
VDOUT is released after a defined delay, determined by the capacitor on pin VDDLY. The
threshold is fixed to 0.95 V typ.
The capacitor on VDDLY pin sets VDOUT delay. A current source (~9 μA) on this pin
charges the external capacitor to generate the required delay, programmable by adjusting
the value of the capacitor.
This voltage monitor can also be used to monitor DC/DC2 output. Changing the ratio of the
external resistor divider the low voltage warning threshold can be adjusted.
Functional Description L5963
20/49 DocID028553 Rev 3
Figure 9. Low voltage warning monitor & delay schematic
6.2.3 Power-good reset (related pins: LDOOK, LDOOKDLY)
LDOOK monitors the regulator output VOUTLDO. Its circuit topology is the same as the
voltage detector one (Figure 9). Its threshold is fixed to 95% typ of the feedback voltage,
and the hysteresis is always ~2% typ. Pin LDOOK is an open drain output, and pin
LDOOKDLY is used to adjust the delay in the release of LDOOK output.
6.2.4 Power-good function of DC/DC1 (related pins: SW1OK, SW1OKDLY)
SW1OK monitors DC/DC1 output. Its circuit topology is the same as the voltage detector
one (Figure 9). Its threshold can't be adjusted, it is always 95% typ of the feedback voltage,
and the hysteresis is ~35mV typ. Pin SW1OK is an open drain output, and pin SW1OKDLY
is used to adjust its delay.
6.2.5 Over voltage shutdown
Two internal over voltage shutdown (OV) blocks are included in L5963. One (OV1) senses
VBAT pin, the other (OV2) detects VINLDO pin.
If VBAT gets too high, to prevent any damage, DC/DC1, DC/DC2 and the high-side driver
are disabled by OV1. They will be turned on once VBAT returns below the detection
threshold with the specified hysteresis.
If the linear regulator works as a non-standby regulator and VINLDO gets too high, to
prevent any damage the LDO is disabled by OV2. It is turned on once VINLDO returns
below the detection threshold with the specified hysteresis.
On the contrary, the linear regulator works as a standby regulator, OV2 doesn't intervene
and the regulator continues to work even if VINLDO increases.
*$3*36
6
5
4
4
6
5
4
4
%DWWHU\
)%6:SLQ
JRRGIXQFWLRQ
SZPSRZHU
RSWLRQDO 9',1
97+
&203
GHJOLWFK
YGG
54
64
ODWFKODWFK
:LQGRZFRPS
ODWFK
YGG
([WHUQDOFDSDFLWRU
9Y
.([WHUQDOUHVLVWRU
9'287'/<
9'287
DocID028553 Rev 3 21/49
L5963 Functional Description
48
6.2.6 Power ground (PGND1 and PGND2)
PGND1 pin and PGND2 pin are power ground references for the DC/DC1 and DC/DC2
respectively. All switching nodes are referred to these two pins.
6.2.7 Signal ground (SGND)
This pin is the ground reference for standby regulator, HSD and internal bias.
6.2.8 PWM signal ground (SWGND)
This pin is the ground reference for signal part of DC/DC1 and DC/DC2.
6.2.9 TAB
TAB is connected to the device substrate.
This pin must be connected to GND to guarantee the substrate is always at the lowest
potential to avoid parasitic activation.
6.2.10 Linear regulator
Figure 10. Linear regulator diagram
The linear regulator has two operative modes: standby mode and non-standby mode. Its
output voltage is set by an external resistor divider through the feedback pin FBLDO.
As a standby regulator, the current capability is reduced to 50 mA and the quiescent current
minimized.
In this case, the external resistor divider should be in the Mega ohm order to reduce total
quiescent current.
As a non standby regulator, it has higher load capability (up to 250 mA).
*$3*36
(1/'2
5()
5()
(1
(1
(1B&RQWURO
C
(1
(1
&RPPRQ/'2
($
6WDQGE\UHJXODWRU
($
5
5
([WHUQDOUHVLVWRU
9,1/'2
'ULYHU
9287/'2
9,1/'2
)%/'2
'ULYHU
Functional Description L5963
22/49 DocID028553 Rev 3
Connecting ENLDO pin directly to its supply VINLDO (it should be higher than 5 V), the
regulator works as a standby regulator. Once ENLDO is ever higher than 5 V, the regulator
works as a standby regulator till VINLDO is powered down, to reset a flag stored in an
internal register.
Figure 11. Enable timing for standby regulator (ENLDO pin connect to supply directly)
The linear regulator works as a non-standby regulator if ENLDO is <5 V.
'!0'03
%.
T
%.
T
64(
64(
%NABLE
COMMON,$/
6).,$/%.,$/
T
%NBLEPINTHRESHOLD
6THRESHOLD
64(
56,/THRESHOLD
%NABLESTANDBY
REGULATOR
3HUTDOWN
.ORMALMODE
3TANDBYMODE
.ORMALMODE
3TANDBYMODE
.ORMALMODE
3HUTDOWN
DocID028553 Rev 3 23/49
L5963 Functional Description
48
Figure 12. Enable timing for linear regulator (pin ENLDO isn't connected to VINLDO)
The linear regulator operates with output voltages down to 1.2 V, and offers a maximum
dropout voltage of 500 mV at rated load current.
This regulator has an independent thermal protection and a current-limiting circuit.
It should be always supplied (by VINLDO) with a voltage not lower than 3.5 V because, even
if not used, it gives the common supply to all internal blocks which have to stay alive when
the battery drops too low (backup functionality).
6.2.11 High-side driver (HSD)
The HSD pin is the output of the high side driver. It has a dedicated enable pin ENHSD.
Following protections are implemented:
Over-current protection
Short to supply
Short to ground
Short through the load to -1 V
Unpowered short to supply
Loss of ground
Over voltage protection
'!0'03
%.,$/
T
%.
T
%.
T
64(
64(
%NABLESTANDBY
REGULATOR
%NABLE
COMMON,$/
6).,$/
T
.ORMALMODE 3TANDBYMODE
3HUTDOWN 3HUTDOWN
Functional Description L5963
24/49 DocID028553 Rev 3
Thermal protection
The HSD has an independent thermal shutdown protection.
If the local die temperature exceeds the thermal shutdown detection threshold, the HSD is
disabled. It is enabled once the local die temperature falls below the detection threshold with
the specified hysteresis. The invoking of thermal shut down on HSD does not directly affect
any other outputs or circuitry in the IC.
Short to ground
The high side driver output is protected against shorts to ground. The faulted output returns
to its pre-fault operating condition once the fault is removed.
Short to supply
The high-side driver is protected against shorts to battery. In such an event, the IC is not
damaged. External components connected directly to the IC are not damaged by such
exposure.
Loss of ground protection
The high side driver is protected against excessive leakage current to an external ground
during a loss of supply ground (i.e. ground is open). During this event, the HSD is disabled
and the IC is not damaged.
Loss of battery protection (Unpowered shorts to battery, SPU)
The high-side driver is protected against unpowered shorts to battery. In such an event, in
typical applicative conditions, the IC will not suffer any damage.
Below-ground protection
The HSD output can be brought below ground by the inductive load. In this case, Power
PMOS is turned on to charge the output, protecting itself.
DocID028553 Rev 3 25/49
L5963 Functional Description
48
6.2.12 Switching regulators
Figure 13. Switching regulators diagram
L5963 embeds two synchronous DC/DC converters that incorporate all the control and
necessary protection circuitries to satisfy a wide range of applications. DC/DC1 and
DC/DC2 are enabled by pin ENSW1 and pin ENSW2 respectively. The two switching
converters employ voltage mode control and feed forward function to provide good load
regulation and line regulation.
'!0'03
%22/2
!-0
62%&
07-
#/-0
2
3
/#0!MP
6&"37
1
3OFT3TART
6#
$RIVER
$RIVER
?
1
$-$!MP
"3
)2%&
Pȍ
Pȍ
M:
/3#
39.#). 39.#
07-#,+
&REQUENCY$IVIDER
BY
&2$)6
07-#,+
PHASESHIFT
6).373AWTOOTHGENERATOR
WITHFEEDFORWARD
07-
&"37
#/-0
6).37
6"!4
2EGULATOR 6607-
%.37
%22/2
!-0
62%&
07-
#/-0
2
3
/#0!MP
6&"37
1
3OFT3TART
6#
$RIVER
$RIVER
?
1
$-$!MP
"3
)2%&
 M:
07-#,+
6).37
3AWTOOTHGENERATOR
WITHFEEDFORWARD
07-
&"37
#/-0
6).37
2EGULATOR 6607-
%.37
39.#/54
0'.$
0'.$
37'.$
6607-
6607-
0ROTECT"LOCKS
56,/ $UMP34'/40
0ROTECT"LOCKS
56,/ $UMP34'/40
39.# FOSC
FOSC
Functional Description L5963
26/49 DocID028553 Rev 3
Both switching regulators can operate up to a 100% duty cycle. Once every four switching
periods, the PWM output is forced low for 100ns typ to refresh the bootstrap capacitor.
Their features include:
Wide input voltage range (from 3.5 V to 26 V)
Min output of 1 V
250 kHz free-run frequency and synchronization range from 250 kHz to 2 MHz. The
voltage feed forward is implemented in all frequency range
Internal 85 mΩ high-side and 105 mΩ low-side switching MOSFET
Up to 3 A load current capability
Power ok (SW1OK) output
Internal soft start function to minimize startup inrush current
Pulse-by-pulse current limiting (OCP)
Discontinuous mode detection (DMC)
Over temperature protection (OTP)
UVLO with stop threshold at 2.8 V (typ)
Load dump protection
Externally adjustable compensation
Stable with ceramic output capacitors
Oscillator/switching frequency
The internal oscillator provides a constant frequency clock of 250 kHz. The switching
frequency of DC/DC1 and DC/DC2 are determined by the internal frequency clock and the
external synchronization clock.
When no clock is applied to the SYNCIN pin or the synchronization clock is lower than
125 kHz (half of the internal clock), the two switching regulators work both with the internal
250 kHz clock. When the SYNCIN pin has a synchronization clock larger than 125 kHz, the
external synchronization clock is adopted.
There is a phase shift of 180° between PWM1 and PWM2, and the frequency of PWM2 can
be the same, 1/2, 1/4, 1/8 of PWM1 one. The division factor is programmed by FRDIV pin.
The switching clock of DC/DC1 can be sent out by pin SYNCOUT to synchronize another
device, in view of reducing EM disturbance.
Internal high-side and low-side Power MOSFET / Bootstrap structure
The two synchronous switching regulators don't need the external Schottky diode. Each of
them integrates a high-side and a low-side n-channel Power MOSFET, which allows a very
low drop voltage under high load current operation (up to 3 A).
The Bootstrap structure is used to drive the high-side n-channel Power MOSFET. A
Bootstrap capacitor of about 47 nF is needed.
Internal soft start function (SS)
To reduce the inrush current during startup, an internal soft start is implemented. The total
soft start time is about 400 μs and it doesn't change with operating frequency.
DocID028553 Rev 3 27/49
L5963 Functional Description
48
Pulse-by-pulse current limiting (OCP)
The current in the upper MOSFET is monitored and if it exceeds the pulse-by-pulse over-
current threshold (ILIM) then the upper MOSFET is turned off. Normal PWM operation
resumes on the next oscillator clock pulse. DC/DCs’ embed leading edge blanking to
prevent falsely triggering the pulse-by-pulse current limit when the upper MOSFET is turned
on. The blanking time is about 100 ns, so the minimum switching on time should be bigger
than 100 ns:
Equation 1
From the above equation, when the input and output voltage are already known, the
switching frequency should be within the range of the above equation, otherwise the OCP
function is not guaranteed. Pulse-by-pulse current limiting is always active. The threshold of
OCP is about 3.5 A for dc-dc1 and 4A for dc-dc2.
Low-Side Over Current Protection (LS OCP)
LS OCP protects DC/DCs by limiting inductor current, when either the load is too high at
high frequency or when the output of the converter is shorted to ground.
The current in the low-side MOSFET is monitored and, if it exceeds the pulse-by-pulse
overcurrent threshold (ILIM), it prevents the turning on of the high-side MOSFET in the
successive switching period.
In high frequency and high load conditions, the inductor current cannot decrease even if HS
OCP is triggered due to the blanking time, which results in the inductor current getting
higher and higher every switching period. If inductor current reaches LS OCP threshold, that
is set to a level higher than HS OCP one, PWM switching is stopped, waiting for the inductor
current to decrease to a lower value. PWM switching will recover as soon as LS OCP is
released.
If high load and high frequency conditions remain, for instance in case of a short circuit
being present on the regulator output, another LS OCP will occur. Upon removal of the short
circuit PWM switching will immediately recover, bringing the regulator back to normal
operation.
Discontinuous Mode Detection (DMD)
In order to save quiescent current when switching regulators are working in light load
condition, L5963 embeds a Discontinuous Mode Detection (DMD) circuit: DMD prevents
inductor current to continuously flow to ground during Toff by turning off LS MOSFET and
leaving PWM in tristate.
Over temperature protection (OTP)
Each DC/DC has its own OTP, which detects the local temperature and shuts down the
regulator when temperature reaches the specified threshold.
Dump protection
If the voltage on VBAT supply exceeds the over-voltage shut-down threshold, DC/DCs are
disabled. Once VBAT returns to working conditions, the output recovers to the normal state.
$
INS I$
NS
6
6NS
37
37
/54
).
!  

Functional Description L5963
28/49 DocID028553 Rev 3
Under voltage lock out (UVLO)
The UVLO circuit generates the shutdown signal to turn off DC/DCs when VBAT is lower
than the specified threshold. They are turned back on once VBAT goes above the detection
threshold with the specified hysteresis.
DocID028553 Rev 3 29/49
L5963 Application information
48
7 Application information
7.1 Output inductor (Lo)
The value of the output inductor (Lo) is usually calculated to satisfy the peak-to-peak ripple
current requirement. For the best compromise of cost, size and performance, it is suggested
to keep the inductor current ripple between 20% and 40% of the maximum current.
For example, if IL = IRipple = 0.3 x IOUT(max).
Where, IOUT(max) is the maximum output current.
Then, the inductor value can be estimated by the following equation:
Equation 2
Where, fSW is the switching frequency, VIN(max) is the maximum input voltage.
If VOUT = 3.3 V, VIN(max) = 26 V, fSW = 250 kHz, IL = 0.3 x 3 A = 0.9 A
Equation 3
The next higher available value should be used, so L = 15 μH.
The peak current flowing in Inductor is IL(peak) = IOUT(max) + IL / 2.
If the Inductor value decreases, the peak current increases. The peak current has to be
lower than the current limit of the device.
An inductor having saturation current higher than the device current limit has to be chosen.
,6
I)
6
6
/54
37 ,
/54
).
tu
§
©
¨·
¹
¸
'
MAX
,((tuu u
§
©
¨·
¹
¸

  
 
Application information L5963
30/49 DocID028553 Rev 3
7.2 Output capacitors (COUT)
Output capacitors are selected to support load transients and output ripple current, as well
as to get loop stability.
The amount of voltage ripple can be calculated by the output ripple current flowing in the
Inductor:
Equation 4
Usually the first term is dominant. However, if a ceramic capacitor (which is recommended)
is adopted, the first term on the above equation can be neglected as the ESR value is very
low.
For example, in case Vout = 3.3 V, Vin = 14 V, fSW = 250 kHz, IL = 0.3 x 3 A = 0.9 A, in order
to have a Vout = 5%* Vout =0.165 V, a 4.7 μF ceramic capacitor is needed. In case of not
negligible ESR (electrolytic or tantalum capacitors), the capacitor is chosen taking into
account its ESR value.
In the above example, if a 100 μF with ESR = 100 mΩ electrolytic capacitor is chosen, the
voltage drop on ESR dominates and the voltage ripple is 90 mV.
The output capacitor is also important to sustain the output voltage during a load transient.
In general, minimizing the ESR value and increasing the output capacitance results in a
better transient response. The ESR can be minimized by simply adding more capacitors in
parallel, or by using higher quality capacitors. If ceramic capacitors are chosen, in presence
of a fast load transient the output voltage will change by the amount.
Equation 5
Where:
Iout(max), Iout(min) refer to the worst case load in the system and Vout is the tolerance of the
regulated output voltage, 5% of Vout.
For example, Vout = 5 V, Vin = 14 V, Iout(max) =1.5 A, Iout(min) = 0.5 A, L = 22 μH
Equation 6
So two 10 μF ceramic capacitors in parallel are needed.
The output capacitor is also important for loop stability: it fixes the double LC filter pole and
the zero due to its ESR. In Section 7.5: Compensation network, it will be illustrated how to
consider its effect in the system stability.
''
'
6%32) )
 # F
OUT ,
,
OUT SW
u
uu
'6))
OUT
OUT MAX OUT MIN
OUT
u
u
,
#6
OUT


#OUT ,
6OUT
& u
u

)OUTMAX)OUTMIN
6OUT
'
DocID028553 Rev 3 31/49
L5963 Application information
48
7.3 Input capacitors (CIN)
The input capacitors must be chosen to support the maximum input operating voltage and
the maximum RMS input current required by the device.
The input capacitors must deliver the RMS current according to below equation:
Equation 7
Where Io is the maximum DC output current and D is the duty cycle. This function has a
maximum at D = 0.5 and it is equal to Io/2.
Equation 8
Vdl is the voltage drop across the low side DMOS, and Vdh is the voltage drop across the
high side DMOS.
For example, with 20% duty cycle, the input/output current multiplier is 0.400. Therefore, if
the regulator is delivering 3 A of steady-state load current, the input capacitor(s) must
support 0.400 × 3 A or 1.2 Arms.
Ceramic capacitors can deliver quite a bit of current but their total capacitance is relatively
low. Electrolytic capacitors typically offer much more capacitance than ceramic capacitors,
but can typically deliver a current of 100 to 500 mArms. So a good design will employ both
types of capacitors with the ceramic capacitors placed closest to the input pins of the device.
As a result, ceramic capacitors which have very low ESR and inductance are the best for
filtering the high frequency switching noise, and electrolytic capacitors are typically able to
provide more current over extended periods of time where VIN would otherwise droop.
7.4 Bootstrap capacitor (CBOOT)
A bootstrap capacitor must be connected between the BOOT and SW pins to provide
floating gate drive to the high-side MOSFET. For most applications 47 nF is sufficient. This
should be a ceramic capacitor with a voltage rating of at least 6 V.
7.5 Compensation network
The compensation network has to assure stability and good dynamic performance. The loop
of the device is based on the voltage mode control, compatible with TYPE III compensation
network (Figure 14). The error amplifier is a voltage operational amplifier with large
bandwidth, which is much larger than the closed-loop one.
)RMS )O$$ u
$
6DH
6OUT 6DL
6IN 6DL
Application information L5963
32/49 DocID028553 Rev 3
Figure 14. Closed loop system with TYPE III network
The above figure shows the closed loop system with a TYPE III compensation network and
presents the closed loop transfer function. See the guidelines for calculation of TYPE III
network below:
1. Choose a value for R1, usually between 2 k and 5 kΩ.
2. Choose a gain (R2/R1) that shifts the Open Loop Gain up to give the desired
bandwidth. This allows the 0 dB crossover to occur in the frequency range where the
Type III network has its second plateau in the gain. The following equation calculates
an R2 that accomplishes this, given the system parameters and a chosen R1.
Equation 9
3. C2 is calculated by placing the zero at 50% of the output filter double pole frequency:
Equation 10
4. C1 can be calculated by placing the first pole at the ESR zero frequency:
Equation 11
5. Set the second pole at half the switching frequency and also set the second zero at the
output filter double pole. This combination brings the following equation:
0(!3%
$2)6%2
$2)6%2
2%&%2%.#%2%&%2%.#%
07-
#/-0!2!4/2
/3#
'6/3#
$#2
%32
,O
#O
VOUT
6IN
#
#
#
#
6#/-0
6#/-0
#
#
22
2
2
2
2
2
'!0'03
uu'!). 22
22#
S2# S22#
3934%- u
uuu
§
©
¨·
¹
¸u

u
§
©
¨·
¹




¸¸
u
uu
§
©
¨·
¹
¸uu
§
©
¨·
¹
¸
u u
SS ##
2## S2#
6
6
S%32
IN
/3#


'
#
S %32 $#2 # S , #
/54
/54 /54 /54

u

u
u u

2$7 "
&
6
62
,#
OSC
).

uu
'
#2&
,#
uu
S
##
2#&
%32

uu u u 
S
DocID028553 Rev 3 33/49
L5963 Application information
48
Equation 12
The figure below shows the asymptotic Bode gain plot for the TYPE III compensated system
and the gain and phase equations for the compensated system
Figure 15. TYPE III compensated network diagram
Here an example of calculating the external components network step by step.
Suppose the requirements for a dc-dc regulator are the following:
Input voltage minimum Vin(min) 8 V
Input voltage maximum Vin(max) 26 V
Input voltage typical Vin(typ) 14 V
Output voltage buck regulator 1- VBUCK 1 Min = 4.75 V, Max = 5.25 V
Converter switching frequency, fsw 250 kHz
Maximum output current on buck regulator 1-VBUCK 1 3 A
Maximum ripple current IRipple 0.3* Iout
Load transition requirement 500 mA 1.5 A in Δt = TBD
Assume TYPE III Compensation network.
STEP 1 - Calculate the inductor value
Using Equation 13, to find the inductor value, assume inductor ripple current of 0.9 A.
Equation 13
22
&
&
37
,#
u
# 2&
37
uu
S
'!0'03
%22/2!-0
$#'!).
#/.6%24%2'!).
/0%.,//0
%22/2!-0'!).
#/-0%.3!4)/.
'!).
&,#
&,#
&:
&37
&0
&,#
&:
&%32
&0
&%32
'!).
$"
&2%15%.#9
-/$5,!4/2
&),4%2'!).
"!.$7)$4(
D"$%#
'!)."!.$7)$4(
02/$5#4
,6
&)
6
6
OUT
37 ,
OUT
IN
tu
§
©
¨·
¹
¸ uu
§
©
¨·
¹
¸
'
 

MAX ( |(
Application information L5963
34/49 DocID028553 Rev 3
The next higher available value should be used, so L = 22 μH.
STEP 2 - Inductor peak current
Using Equation 14, the peak inductor current is:
Equation 14
STEP 3 - Calculate the output capacitance
Using Equation 15, the output capacitance is:
Equation 15
So choose two 10 μF ceramic capacitors in parallel, and the voltage ripple is within the spec.
Equation 16
(ESR can be neglect due to ceramic cap)
IL(peak) = Iout(max) + IL /2 = 3 A + (0.9/2) A= 3.45 A
#OUT
,
6OUT
X
u
u u
 
 

)OUTMAX
)OUTMIN
6OUT
'
XX &
'
'6 %32u')
OUT ,
uu
)
# F XX XX M6
,
OUT SW
 
DocID028553 Rev 3 35/49
L5963 Application information
48
STEP 4 - Calculate loop compensation values.
Using Equation 17 to determine the "double pole":
Equation 17
Using Equation 18 to determine the zero due to the ESR of the output capacitor Cout with
ESR = 10 m:
Equation 18
DBW = fc = 0.14 x fsw = 35kHz
Choose R1 = 5 k, using Equation 19:
Equation 19
R4 =1.24 kΩ
PWM modulator gain.
Equation 20
Where VIN is the typical input operating voltage, VOSC is the saw-tooth peak-to-peak value.
Using Equation 21:
Equation 21
R2 = 2.4 kΩ
Using Equation 22:
Equation 22
Choose C2 = 16 nF
Using Equation 23:
Equation 23
F,#
,#
OUT
u uuuuu

     K(Z

S
F#%32 K(Z
%32
OUT
uu uuuuu

     

S
22
6
6
KK
OUT
2%&

:
'AIN 6
6
ULATOR
).
/3#
MOD
'


2 $"7
F
6
62 K
K
,#
/3#
).



 K
K
uuuu '
#2§F &
,#

  

§ uuu u u
S

#2#F
%32

 
     

§§§ u
uuuuuuu
S
 
u
&
Application information L5963
36/49 DocID028553 Rev 3
Choose C1= 82 nF.
Using Equation 24:
Equation 24
Choose R3 = 330 Ω.
Using Equation 25:
Equation 25
Choose C3 = 3.9 nF.
This is a table to summarize components value for different output voltage cases:
22
F
F
K
37
,#
 
 

§
u
uu
:
#2 &
37
F
   
§§ uuu u
S
Table 8. Components value for different output voltage cases
VOUT(V) Fsw (Hz) Lo (μH) Co (μF) R1 (kΩ) R2 (kΩ) R3 (Ω) R4 (kΩ) C1 (pF) C2 (nF) C3 (nF)
5
2M 2.7 4.7 4.99 1.2 220 1.24 33 5.6 0.68
250k 22 2x10 4.99 2.4 390 1.24 82 16 3.9
3.3
2M 2.2 10 4.99 1.5 180 2.15 56 6.2 0.82
250k 15 2x10 4.99 2 470 2.15 100 16 3.3
1.2
2M 1.5 2x10 4.99 1.8 160 24.9 100 5.6 1
250k 6.8 2x10 4.99 1.2 680 24.9 150 16 2.2
DocID028553 Rev 3 37/49
L5963 Thermal design
48
8 Thermal design
The PCB design should take into account also thermal aspects.
The maximum power manageable by the IC depends on how the board is designed and on
the package junction to ambient thermal resistance.
The temperature inside the IC (junction temperature) should not exceed 150 °C or one or
more thermal shut-down protections intervene.
The total power dissipation is approximately given by the sum of the power dissipation of the
two dc-dc regulators and the linear regulator:
Pd = Pdpwm1 + Pdpwm2 + Pdldo
Where:
PdissDC/DC = IloadDC/DC x VoutDC/DC x (1-)/;
is the efficiency, as shown in Figure 7 and 8.
PdissLDO = IloadLDO x (VINLDO-VOUTLDO)
The junction temperature is estimated in this way:
Tj = Ta + Pd x Rthj-a
Where:
Ta is the maximum ambient temperature;
Rthj-amb is the junction to ambient thermal resistance, as defined in Table 5 and Table 6.
The slug has to be connected to the ground plane, whenever possible.
According to below formula and considering TSD_TH thermal shutdown minimum threshold
at 150 °C, maximum suggested power dissipation, for a slug-down configuration, can be
easily retrieved:
PDISS_suggested = (TSHD - Tamb) / Rthj-a
Table 9. Maximum suggested power for L5963 in PSSO36 slug-down package
Symbol Tamb 105 °C Tamb 80 °C
Rth j-a-2s 0.85 W 1.32 W
Rth j-a-2s2p 1.66 W 2.6 W
Rth j-a-2s2pvias 2.05 W 3.2 W
Table 10. Maximum suggested power for L5963 in QFN48 package
Symbol Tamb 105 °C Tamb 80 °C
Rth j-a-2s 0.68 W 1.06 W
Rth j-a-2s2p 1.41 W 1.19 W
Rth j-a-2s2pvias 1.73 W 2.7 W
Thermal design L5963
38/49 DocID028553 Rev 3
It is possible to improve performance and application thermal behavior, adopting some
expedients:
Use the bottom layer as heat-sink,
Shield inner layer tracks with ground planes,
Use large paths for ground connections, instead of narrow and long paths with sharp
corners, and transfer all ground connections to other layers by a proper number of vias,
Place compensation network very close to the chip to reduce noise,
Put coils and capacitors close to the pins, and build output path with large and short
tracks.
DocID028553 Rev 3 39/49
L5963 Package information
48
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
9.1 Package variation
This device use package Variations Option B to define exposed pad (see Table 11) or
slug-up (see Table 12) dimensions.
Package information L5963
40/49 DocID028553 Rev 3
9.2 PowerSSO-36 (exposed pad) package information
Figure 16. PowerSSO-36 (exposed pad) package outline
Table 11. PowerSSO-36 exposed pad package mechanical data
Ref
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
Ө - -
Ө1 - 10° - 10°
Ө20°- -0°- -
A 2.15 - 2.45 0.0846 - 0.0965
B,B(+
E
FF
E
%$6(0(7$/
:,7+3/$7,1*
+
(
'
JJJ &$% '
JJJ &$% '
ș
*$8*(3/$1(
/
6
ș
/
/
%
%
K
K
ș
ș
(
'
$$
$
H
E
GGG &'
&
FFF &
6($7,1*3/$1(
 HHH &
'
III &$%
[
$
(
'
EEE &
[17,36
(
$
$
1
1
%
DDD &'
[
(
'
LQGH[DUHD
'[(
SLQLQGLFDWRU
5
5
*[
*
*
*
*
%RWWRPYLHZ
7RSYLHZ
*$3*36
6HFWLRQ$$
6HFWLRQ%%
VHH6HFWLRQ$$
VHH6HFWLRQ%%
0
0
0
DocID028553 Rev 3 41/49
L5963 Package information
48
A1 0.0 - 0.1 0.0 - 0.0039
A2 2.15 - 2.35 0.0846 - 0.0925
b 0.18 - 0.32 0.0071 - 0.0126
b1 0.13 0.25 0.3 0.0051 0.0098 0.0118
c 0.23 - 0.32 0.0091 - 0.0126
c1 0.2 0.2 0.3 0.0079 0.0079 0.0118
D(2) 10.30 BSC 0.4055 BSC
D1 VARIATION
D2 - 3.65 - - 0.1437 -
D3 - 4.3 - - 0.1693 -
e 0.50 BSC 0.0197 BSC
E 10.30 BSC 0.4055 BSC
E1(2) 7.50 BSC 0.2953 BSC
E2 VARIATION
E3 - 2.3 - - 0.0906 -
E4 - 2.9 - - 0.1142 -
G1 - 1.2 - - 0.0472 -
G2 - 1 - - 0.0394 -
G3 - 0.8 - - 0.0315 -
h 0.3 - 0.4 0.0118 - 0.0157
L 0.55 0.7 0.85 0.0217 - 0.0335
L1 1.40 REF 0.0551 REF
L2 0.25 BSC 0.0098 BSC
N 36 1.4173
R 0.3 - - 0.0118 - -
R1 0.2 - - 0.0079 - -
S 0.25 - - 0.0098 - -
Table 11. PowerSSO-36 exposed pad package mechanical data (continued)
Ref
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
Package information L5963
42/49 DocID028553 Rev 3
Tolerance of form and position
aaa 0.2 0.0079
bbb 0.2 0.0079
ccc 0.1 0.0039
ddd 0.2 0.0079
eee 0.1 0.0039
ffff 0.2 0.0079
ggg 0.15 0.0059
VARIATIONS
Option A
D1 6.5 - 7.1 0.2559 - 0.2795
E2 4.1 - 4.7 0.1614 - 0.1850
Option B
D1 4.9 - 5.5 0.1929 - 0.2165
E2 4.1 - 4.7 0.1614 - 0.1850
Option C
D1 6.9 - 7.5 0.2717 - 0.2953
E2 4.3 - 5.2 0.1693 - 0.2047
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimensions D and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is ‘0.25
mm’ per side D and ‘0.15 mm’ per side E1. D and E1 are Maximum plastic body size dimensions including
mold mismatch.
Table 11. PowerSSO-36 exposed pad package mechanical data (continued)
Ref
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
DocID028553 Rev 3 43/49
L5963 Package information
48
9.3 PowerSSO-36 (slug-up) package information
Figure 17. PowerSSO-36 (slug-up) package outline
Table 12. PowerSSO-36 slug-up package mechanical data
Ref
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
A 2.15 - 2.45 0.0846 - 0.0965
A2 2.15 - 2.35 0.0846 - 0.0925
a1 0 - 0.10 - 0.0039
b 0.18 - 0.36 0.0071 - 0.0142
c 0.23 - 0.32 0.0091 - 0.0126
D(2) 10.10 - 10.50 0.3976 - 0.4134
E(2) 7.4 - 7.6 0.2913 - 0.2992
e - 0.5 - - 0.0197 -
e3 - 8.5 - - 0.3346 -
B(B.%
$
$
&
&
$
%
%$0
&/($'&203/$1$5,7<
7239,(:
<
0
/
N
1
1
DVWDQGRII
*DXJHSODQH
'%RG\OHQJWK
(%RG\ZLGWK
H
7
)
H
E
+
6
;
8
8
2
*
*$3*36
Package information L5963
44/49 DocID028553 Rev 3
F - 2.3 - - 0.0906 -
G - - 0.10 - - 0.0039
H 10.10 - 10.50 0.3976 - 0.4134
h - - 0.40 - - 0.0157
k - -
L 0.55 - 0.85 0.0217 - 0.0335
M - 4.3 - - 0.1693 -
N - - 10° - - 10°
O - 1.2 - - 0.0472 -
Q - 0.8 - - 0.0315 -
S - 2.9 - - 0.1142 -
T - 3.65 - - 0.1437 -
U - 1.0 - - 0.0394 -
XSee VARIATIONS
YSee VARIATIONS
VARIATIONS
Option A
X 4.1 - 4.7 0.1614 - 0.1850
Y 6.5 - 7.1 0.2559 - 0.2795
Option B
X 4.1 - 4.7 0.1614 - 0.1850
Y 4.9 - 5.5 0.1929 - 0.2165
Option C
X 4.3 - 5.2 0.1693 - 0.2047
Y 6.9 - 7.5 0.2717 - 0.2953
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. "D” and “E" do not include mold flash or protrusions Mold flash or protrusions shall not exceed 0.15 mm per
side (0.006”)
Table 12. PowerSSO-36 slug-up package mechanical data (continued)
Ref
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
DocID028553 Rev 3 45/49
L5963 Package information
48
9.4 VFQFPN-48 (7x7x1.0 - opt. D) package information
Figure 18. VFQFPN-48 (7x7x1.0 - opt. D) package outline
B*B92SW&
&23/$1$5,7<6+$//127(;&(('PP
$//',0(16,216$5(,1PP$1*/(6,1'(*5((6
:$53$*(6+$//127(;&(('PP
&23/$1$5,7<$33/,(6727+((;326('3$'$6:(//$67+(7(50,1$/6
127(
5()(5-('(&02




(
$
$
'
,1'(;$5($
&
GGG
;
&
 &
%
$
$
'(7$,/$
5HI
5HI
5HI
7HUPLQDO/HQJWK
'(7$,/$

5HI

7HUPLQDO7KLFNQHVV
E




/
H
5
5HI
'
((
&
5HI
5HI
5HI
$ 0 & %
;
*$3*36
Package information L5963
46/49 DocID028553 Rev 3
9.5 Package marking information
Figure 19. PowerSSO-36 (exp. pad) marking information
Table 13. VFQFPN-48 (7x7x1.0 - opt. D) package mechanical data
Ref
Dimensions
Millimeters Inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min. Typ. Max. Min. Typ. Max.
A 0.85 0.95 1.05 0.0335 0.0374 0.0413
A1 - - 0.05 - - 0.0020
A2 - 0.75 - - 0.0295 -
A3 - 0.200 - - 0.0079 -
b 0.15 0.25 0.35 0.0059 0.0098 0.0138
D 6.80 7.00 7.15 0.2697 0.2756 0.2815
D2 5.15 5.30 5.45 0.2028 0.2087 0.2146
E 6.85 7.00 7.15 0.2697 0.2756 0.2815
E2 5.15 5.30 5.45 0.2028 0.2087 0.2146
e 0.45 0.50 0.55 0.0177 0.0197 0.0217
L 0.45 0.50 0.55 0.0177 0.0197 0.0217
ddd - - 0.08 - - 0.0031
3RZHU6627239,(:
QRWLQVFDOH
/DVWWZRGLJLWV
(6(QJLQHHULQJVDPSOH
EODQN!&RPPHUFLDOVDPSOH
0DUNLQJDUHD
*$3*36B(6
DocID028553 Rev 3 47/49
L5963 Package information
48
Figure 20. PowerSSO-36 (slug up) marking information
Figure 21. VFQFPN-48 (7x7x1.0) marking information
Parts marked as ‘ES’ are not yet qualified and therefore not approved for use in production.
ST is not responsible for any consequences resulting from such use. In no event will ST be
liable for the customer using any of these engineering samples in production. ST’s Quality
department must be contacted to run a qualification activity prior to any decision to use
these engineering samples.
3RZHU6627239,(:
QRWLQVFDOH
0DUNLQJDUHD
/DVWWZRGLJLWV
(6(QJLQHHULQJVDPSOH
EODQN!&RPPHUFLDOVDPSOH
*$3*36B(6
0DUNLQJDUHD
/DVWWZRGLJLWV
(6(QJLQHHULQJVDPSOH
EODQN!&RPPHUFLDOVDPSOH
*$3*36
Revision history L5963
48/49 DocID028553 Rev 3
10 Revision history
“Automotive” in the title, AEC-Q100 qualifed in the feature and car
icon, in cover page,
Two order codes in Table 1: Device summary on page 1.
Figure 5: VQFPN-48 pinout configuration on page 12,
Table 3: VQFPN-48 pins description on page 12,
Table 6: Thermal data (VQFPN-48) on page 14
Chapter 9.4: VFQFPN-48 (7x7x1.0 - opt. D) package information
on page 45
Figure 21: VFQFPN-48 (7x7x1.0) marking information on page 47.
Section 1: Overview on page 6,
Section 3: Application diagrams,Table 2: PowerSSO-36 pins
description,
Table 7: Electrical characteristics
Section 6.2.2 on page 19,
Section 6.2.5 on page 20,
Pulse-by-pulse current limiting (OCP) on page 27,
Figure 8: Thermal design on page 37,
Section 8: Thermal design.
.Table 14. Document revision history
Date Revision Changes
29-Oct-2015 1 Initial release.
21-Nov-2016 2
Added:
Updated:
16-Jun-2017 3 Updated order codes in Table 1: Device summary on page 1
DocID028553 Rev 3 49/49
L5963
49
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved