V23990-P540-A-PM
final datasheet
flowPIM 01200V / 15A
 Tyco clip-in housing
 Trench Fieldstop IGBT's for low saturation losses
 Optional w/o BRC
 Industrial Drives
 Embedded Generation
 V23990-P540-A-PM
 V23990-P540-C-PM
Parameter Symbol Value Unit
Input Rectifier Bridge
Repetitive peak reverse voltage VRRM 1600 V
Th=80°C 30
Tc=80°C 40
Tj=25°C 200
Tj=25°C 200
Th=80°C 37
Tc=80°C 54
Maximum junction temperature Tjmax 150 °C
Transistor Inverter
VCE 1200 V
Th=80°C 16
Tc=80°C 20
Repetitive peak collector current Icpuls
tp limited by
Tjmax 32 A
Th=80°C 39
Tc=80°C 58,6
Gate-emitter peak voltage VGE ±20 V
Tj150°C
VCC=900V
VGE=15V
Maximum junction temperature Tjmax 150 °C
* It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits
10
Types
Condition
DC current
IFSM
IFAV
Tj=Tjmax
Features flow0 housing
Target Applications
Schematic
W
I2t-value
Power dissipation per Diode
Collector-emitter break down voltage
ICTj=Tjmax
Tj=Tjmax
tp=10ms
Ptot
I2t
A
A
A2s
W
Maximum Ratings
Forward current per diode
Surge forward current
Ps
tSC
DC collector current
Power dissipation per IGBT
SC withstand time*
Ptot
A
copyright Tyco Electronics 1 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Parameter Symbol Value Unit
Condition
Maximum Ratings
Diode Inverter
Th=80°C 16
Tc=80°C 20
Repetitive peak forward current IFRM
tp limited by
Tjmax 31 A
Th=80°C 27
Tc=80°C 40,3
Maximum junction temperature Tjmax 150 °C
Transistor BRC
Collector-emitter break down voltage VCE 1200 V
Th=80°C 11
Tc=80°C 14
Repetitive peak collector current Icpuls
tp limited by
Tjmax Th=80°C 22 A
Th=80°C 27
Tc=80°C 41
Gate-emitter peak voltage VGE ±20 V
Tj150°C
VCE=900V
VGE=15V
Maximum junction temperature Tjmax 150 °C
* It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits
Diode BRC
Th=80°C 12
Tc=80°C 16
Repetitive peak forward current IFRM
tp limited by
Tjmax Th=80°C 24 A
Th=80°C 23
Tc=80°C 35
Maximum junction temperature Tjmax 150 °C
Thermal properties
Storage temperature Tstg -40…+125 °C
Operation temperature Top -40…+125 °C
Insulation properties
Insulation voltage Vis t=1min 4000 Vdc
Creepage distance min 12,7 mm
min 12,7 mm
Tj=TjmaxIF
DC forward current
Clearance
Ptot Tj=Tjmax
Tj=Tjmax
DC forward current IF
Power dissipation per Diode
SC withstand time* tSC
W
W
A
A
10 Ps
Power dissipation per IGBT
DC collector current ICTj=Tjmax
Tj=TjmaxPtot
W
A
Tj=Tjmax
Power dissipation per Diode Ptot
copyright Tyco Electronics 2 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Parameter Symbol Unit
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
IC(A) or
IF(A) or
ID(A) T(C°) Min Typ Max
Input Rectifier Bridge
Tj=25°C 1,22 1,45
Tj=125°C 1,21
Tj=25°C 0,91
Tj=125°C 0,81
Tj=25°C 0,01
Tj=125°C 0,013
Tj=25°C 0,01
Tj=150°C 4
Thermal resistance chip to heatsink per chip RthJH 1,95 K/W
Thermal resistance chip to case per chip RthJC 1,287 K/W
Transistor Inverter
Tj=25°C 5 5,8 6,5
Tj=125°C
15 Tj=25°C 1,89 2,35
Tj=125°C 2,19
Tj=25°C 0,1
Tj=125°C 2
Tj=25°C 200
Tj=125°C
Integrated Gate resistor Rgint - Ohm
Tj=25°C
Tj=125°C 32
Tj=25°C
Tj=125°C 20
Tj=25°C
Tj=125°C 451
Tj=25°C
Tj=125°C 276
Tj=25°C
Tj=125°C 1,61
Tj=25°C
Tj=125°C 2,19
Tj=25°C 1,1
Tj=125°C
Tj=25°C 0,058
Tj=125°C
Tj=25°C 0,048
Tj=125°C
960 15 Tj=25°C 85
Tj=125°C
Thermal resistance chip to heatsink per chip RthJH 1,67 K/W
Thermal resistance chip to case per chip RthJC K/W
Diode Inverter
Tj=25°C 2,32 3
Tj=125°C 1,78
Tj=25°C
Tj=125°C 31
Tj=25°C
Tj=125°C 355
Tj=25°C
Tj=125°C 3,5
Tj=25°C
Tj=125°C 1,32
Thermal resistance chip to heatsink per chip RthJH 2,64 K/W
Thermal resistance chip to case per chip RthJC 1,7424 K/W
Thermal grease
thickness50um 
= 0,61 W/mK
Thermal grease
thickness50um 
= 0,61 W/mK
V
A
ns
Ohm
mA1500
Reverse recovery energy
VF
IRM
mWs
PC
Thermal grease
thickness50um
 = 0,61 W/mK
Reverse leakage current
Characteristic Values
Forward voltage
Threshold voltage (for power loss calc. only)
Slope resistance (for power loss calc. only)
VF
Vto
rt
ValueConditions
V
V
Reverse recovery charge
Crss
QGate
Turn-on energy loss per pulse
Turn-off energy loss per pulse
Qrr
Diode forward voltage
Peak reverse recovery current
Reverse recovery time trr
Rgoff=20Ohm
td(on)
0
0
0
nF
nF
f=1MHz
Erec
nC
25
25
25
15
15
V
mA
nA
ns
ns
ns
ns
mWs
nF
VGE(th)
VCE(sat)
ICES
VCE=VGE
0
30
30
30
1200
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off
Gate-emitter leakage current IGES
Cies
Coss
tr
Eoff
td(off)
Eon
0
Ir
20
tf
Gate charge
Turn-on delay time
Rise time
Turn-off delay time
V
mWs
15
0,0006
Reverse transfer capacitance
Rgon=40Ohm
Input capacitance
Output capacitance
Fall time
copyright Tyco Electronics 3 Revision: 1
Copyright by Vincotech Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Parameter Symbol Unit
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
IC(A) or
IF(A) or
ID(A) T(C°) Min Typ Max
Characteristic Values
ValueConditions
Transistor BRC
Tj=25°C 5 5,8 6,5
Tj=125°C
Tj=25°C 1,87 2,7
Tj=125°C 2,19
Tj=25°C 0,05
Tj=125°C 2
Tj=25°C 200
Tj=125°C
Tj=25°C
Tj=125°C 34
Tj=25°C
Tj=125°C 20
Tj=25°C
Tj=125°C 442
Tj=25°C
Tj=125°C 284
Tj=25°C
Tj=125°C 0,917
Tj=25°C
Tj=125°C 1,47
#BEZUG! Tj=25°C
#BEZUG! Tj=125°C #BEZUG!
Tj=25°C 0,037
Tj=125°C
Tj=25°C 0,029
Tj=125°C
f=1MHz Tj=25°C 53
Tj=125°C
Thermal resistance chip to heatsink per chip RthJH 2,56 K/W
Thermal resistance chip to case per chip RthJC 1,6896 K/W
Diode BRC
Tj=25°C 1,8 2,5
Tj=125°C 1,79
Tj=25°C 250
Tj=125°C 700
Tj=25°C
Tj=125°C 423
Tj=25°C
Tj=125°C 2,1
Tj=25°C
Tj=125°C 0,88
Thermal resistance chip to heatsink per chip RthJH 3,05 K/W
Thermal resistance chip to case per chip RthJC 2,013 K/W
NTC Thermistor
Rated resistance R25 Tj=25°C 17,522 29 kOhm
Deviation of R100 DR/R R100=1503 Tc=100°C 2,9 %/K
Power dissipation given Epcos-Type P Tj=25°C 210 mW
B-value B(25/100) Tol. ±3% Tj=25°C 4000 K
Rgon=80Ohm 15 600
Rgon=80Ohm 15 600
Thermal grease
thickness50um
 = 0,61 W/mK
Rgon=80Ohm 15 600
Thermal grease
thickness50um 
= 0,61 W/mK
15
Rgoff=40Ohm
0,0003
#BEZUG!
Rgon=80Ohm
PWs
PC
V
PA
ns
Gate emitter threshold voltage VCE=VGE
Collector-emitter saturation voltage
VGE(th)
VCE(sat) 15
Collector-emitter cut-off
Gate-emitter leakage current
Turn-on delay time
Integrated Gate resistor
Turn-off energy loss per pulse
Input capacitance
Output capacitance
Rise time
Turn-off delay time
Fall time
Turn-on energy loss per pulse
ICES
IGES
Cies
Eon
Eoff
Rgint
td(on)
tr
td(off)
tf
Reverse transfer capacitance
Gate charge
Coss
Crss
QGate
#BEZUG!
1200
0
600
0
20
10
ns
ns
10
Ohm
V
V
mA
nA
nF
nF
nF
ns
ns
PWs
PWs
nC
Diode forward voltage
Reverse leakage current
10
025
1200
Reverse recovered charge
Reverse recovery energy
VF
Ir
trr
Qrr
Erec
Reverse recovery time
copyright Tyco Electronics 4 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Package Outline and Pinout
Outline
Pinout
copyright Tyco Electronics 5 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
PRODUCT STATUS DEFINITIONS
Formative or In Design
First Production
Full Production
DISCLAIMER
LIFE SUPPORT POLICY
As used herein:
Preliminary
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Tyco Electronics reserves the right to make changes at
any time without notice in order to improve design. The
data contained is exclusively intended for te
Final
This datasheet contains final specifications. Tyco
Electronics reserves the right to make changes at any
time without notice in order to improve design. The
data contained is exclusively intended for technically
trained staff.
Target
Product StatusDatasheet Status Definition
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice. The data contained is
exclusively intended for technically trained staff.
Tyco Electronics reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Tyco Electronics does not assume any liability arising out of the application or use of any product or circuit de
Tyco Electronics products are not authorised for use as critical components in life support devices or systems without the express
written approval of Tyco Electronics.
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support
or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in la
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected
to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Tyco Electronics 6 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverter
Fi
gure
1
.
T
yp
i
ca
l
ou
t
pu
t
c
h
arac
t
er
i
s
ti
c
s
Fi
gure
2
.
T
yp
i
ca
l
ou
t
pu
t
c
h
arac
t
er
i
s
ti
c
s
Output inverter IGBT Output inverter IGBT
Ic= f(VCE) Ic= f(VCE)
parameter: tp = 250 ms Tj = 25 °C parameter: tp = 250 ms Tj = 125 °C
VGE parameter: from: 7 V to 17 V VGE parameter: from: 7 V to 17 V
in 1 V steps in 1 V steps
Fi
gure
3
.
T
yp
i
ca
lt
rans
f
er c
h
arac
t
er
i
s
ti
c
s
Fi
gure
4
.
T
yp
i
ca
ldi
o
d
e
f
orwar
d
curren
t
a
s
Output inverter IGBT a
f
unc
ti
on o
ff
orwar
d
vo
lt
age
Ic= f(VGE) Output inverter FRED IF=f(VF)
parameter: tp = 250 ms VCE = 10 V parameter: tp = 250 ms
0
5
10
15
20
25
30
35
40
012345
VCE (V)
IC (A)
0
2
4
6
8
10
12
14
16
18
20
22
24
0 2 4 6 8 10 12 14
VGE (V)
IC (A)
125 oC
25 oC
0
5
10
15
20
25
30
35
40
0 0,5 1 1,5 2 2,5 3 3,5VF (V)
IF (A)
25 oC
125 oC
0
5
10
15
20
25
30
35
40
012345
VCE (V)
IC (A)
copyright Tyco Electronics 7 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverter
Figure 5. Typical switching energy losses Figure 6. Typical switching energy losses
as a function of collector current as a function of gate resistor
Output inverter IGBT Output inverter IGBT
E = f (Ic) E = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =600 V VCE =600 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =40 W Ic = 15 A
Figure 7. Typical switching times as a Figure 8. Typical switching times as a
function of collector current function of gate resistor
Output inverter IGBT Output inverter IGBT
t = f (Ic) t = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =600 V VCE =600 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =40 W Ic = 15 A
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 5 10 15 20 25 30
IC (A)
t (Ps)
Eoff Eon
Erec
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
0 5 10 15 20 25 30
IC (A)
E (mWs )
Eoff
Eon
Erec
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
0 50 100 150 200
RG(
:
)
E (mWs)
tdoff
tftdon
tr
0,001
0,01
0,1
1
0 50 100 150 200
RG (
:
)
t (Ps)
copyright Tyco Electronics 8 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverter
Figure 9. Typical reverse recovery time as a Figure 10. Typical reverse recovery current as a
function of IGBT turn on gate resistor function of IGBT turn on gate resistor
Output inverter FRED diode Output inverter FRED diode
trr = f (Rgon) IRRM = f (Rgon)
Tj = 125 °C Tj = 125 °C
VR =600 V VR =600 V
IF=15 A IF=15 A
Figure 11. Typical reverse recovery charge as a Figure 12. Typical rate of fall of forward
function of IGBT turn on gate resistor and reverse recovery current as a
Output inverter FRED diode function of IGBT turn on gate resistor
Qrr = f (Rgon) Output inverter FRED diode
dI0/dt,dIrec/dt= f (Rgon)
Tj = 125 °C Tj = 125 °C
VR =600 V VR =600 V
IF=15 A IF=15 A
0
0,05
0,1
0,15
0,2
0,25
0,3
0,35
0,4
0,45
0,5
0,55
0,6
0 50 100 150 200
RGon (
:
)
trr(Ps)
0
5
10
15
20
25
30
35
40
45
50
0 50 100 150 200
RGon (
:
)
IrrM (A)
0
1
2
3
4
5
0 50 100 150 200
RGon (:)
Qrr (PC)
dI0/dt
dIrec/dt
0
200
400
600
800
1000
1200
1400
1600
1800
0 50 100 150 200
RGon (:)
direc / dt (A/Ps)
copyright Tyco Electronics 9 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverter
Figure 13. IGBT transient thermal impedance Figure 14. FRED transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
Parameter: D = tp / T RthJH
=
1,81 K/W Parameter: D = tp / T RthJH= 2,64 K/W
IGBT thermal model values FRED thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
0,03 5,5E+01 0,04 5,2E+01
0,09 2,7E+00 0,16 1,8E+00
0,32 4,6E-01 0,74 2,4E-01
0,82 1,4E-01 1,17 6,3E-02
0,34 2,8E-02 0,41 5,8E-03
0,12 5,5E-03 0,14 7,8E-04
0,10 6,2E-04
tp(s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5 tp(s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
copyright Tyco Electronics 10 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverte
Fi
gure
15
.Power dissipation as a
Fi
gure
16
.Collector current as a
function of heatsink temperature function of heatsink temperature
Output inverter IGBT Output inverter IGBT
Ptot = f (Th) Ic = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
VGE=15 V
Fi
gure
17
.Power dissipation as a
Fi
gure
18
.Forward current as a
function of heatsink temperature function of heatsink temperature
Output inverter FRED Output inverter FRED
Ptot = f (Th) IF = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
0
10
20
30
40
50
60
70
80
90
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
25
0 50 100 150 200
Th (oC)
IC(A)
0
5
10
15
20
25
30
35
40
45
50
55
60
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
25
0 50 100 150 200
Th (oC)
IF(A)
copyright Tyco Electronics 11 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Brake
Fi
gure
19
.
T
yp
i
ca
l
ou
t
pu
t
c
h
arac
t
er
i
s
ti
c
s
Fi
gure
20
.
T
yp
i
ca
l
ou
t
pu
t
c
h
arac
t
er
i
s
ti
c
s
Brake IGBT Brake IGBT
Ic= f(VCE) Ic= f(VCE)
parameter: tp = 250 ms Tj = 25 °C parameter: tp = 250 ms Tj = 125 °C
VGE parameter: from: 7 V to 17 V VGE parameter: from: 7 V to 17 V
in 1 V steps in 1 V steps
Figure 21. Typical transfer characteristics Figure 22. Typical diode forward current as
Brake IGBT a function of forward voltage
Ic= f(VGE) Brake FRED IF=f(VF)
parameter: tp = 250 ms VCE = 10 V parameter: tp = 250 ms
0
5
10
15
20
25
30
012345
VCE (V)
IC (A)
0
5
10
15
20
25
0 2 4 6 8 10 12 14
VGE (V)
IC (A)
125 oC
25
o
C
0
5
10
15
20
25
30
35
40
0 0,5 1 1,5 2 2,5 3 3,5 4
VF (V)
IF (A)
125 oC
25 oC
0
5
10
15
20
25
30
012345
VCE (V)
IC (A)
copyright Tyco Electronics 12 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Brake
Figure 23. Typical switching energy losses Figure 24. Typical switching energy losses
as a function of collector current as a function of gate resistor
Brake IGBT Brake IGBT
E = f (Ic) E = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =600 V VCE =600 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =80 W Ic = 10 A
Figure 25. Typical switching times as a Figure 26. Typical switching times as a
function of collector current function of gate resistor
Brake IGBT Brake IGBT
t = f (Ic) t = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =600 V VCE =600 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =80 W Ic = 10 A
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 5 10 15 20
IC (A)
t (Ps)
Eoff
Eon
Erec
0
0,5
1
1,5
2
2,5
3
0 5 10 15 20
IC (A)
E (mWs )
Eoff
Eon
Erec
0
0,5
1
1,5
2
2,5
3
0 50 100 150 200
RG (
:
)
E (mWs)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 50 100 150 200
RG (
:
)
t (Ps)
copyright Tyco Electronics 13 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Brake
Figure 27. IGBT transient thermal impedance Figure 28. FRED transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
Parameter: D = tp / T RthJH
=
2,56 K/W Parameter: D = tp / T RthJH= 3,05 K/W
Figure 29. Power dissipation as a Figure 30. Collector current as a
function of heatsink temperature function of heatsink temperature
Brake IGBT Brake IGBT
Ptot = f (Th) Ic = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
VGE=15 V
tp(s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5 tp(s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
0
10
20
30
40
50
60
70
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
0 50 100 150 200
Th (oC)
IC(A)
copyright Tyco Electronics 14 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Brake
Figure 31. Power dissipation as a Figure 32. Forward current as a
function of heatsink temperature function of heatsink temperature
Brake FRED Brake FRED
Ptot = f (Th) IF = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
0
5
10
15
20
25
30
35
40
45
50
55
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
0 50 100 150 200
Th (oC)
IF(A)
copyright Tyco Electronics 15 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Input rectifier bridge
Figure 33. Typical diode forward current as Figure 34. Diode transient thermal impedance
a function of forward voltage as a function of pulse width
Rectifier diode IF=f(VF)ZthJH = f(tp)
parameter: tp = 250 ms Parameter: D = tp / T RthJH= 1,95 K/W
Figure 35. Power dissipation as a Figure 36. Forward current as a
function of heatsink temperature function of heatsink temperature
Rectifier diode Rectifier diode
Ptot = f (Th) IF = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
0
10
20
30
40
50
60
70
80
0 0,5 1 1,5 2
VF (V)
IF (A)
25°C
125°C
tp(s)
ZthJC (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
0
10
20
30
40
50
60
70
80
90
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
25
30
35
40
45
0 50 100 150 200
Th (oC)
IF(A)
copyright Tyco Electronics 16 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Thermistor
Figure 37. Typical NTC characteristic
as afunction of temperature
RT = f (T)
NTC-typical temperature characteristic
0
2
4
6
8
10
12
14
16
18
20
22
24
25 35 45 55 65 75 85 95 105 115 125
T (°C)
RT
k
:
copyright Tyco Electronics 17 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverter application
General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= 40 ohms Rgoff= 20 ohms
Figure 1. Typical avarage static loss Figure 2. Typical avarage static loss
as a function of output current as a function of output current
IGBT Ploss=f(Iout) FRED Ploss=f(Iout)
Conditions: Tj=125°C Conditions: Tj=125°C
Modulation index * cosfi Modulation index * cosfi
parameter Mi*cosfi from -1,00 to 1,00 parameter Mi*cosfi from -1,00 to 1,00
in 0,20 steps in 0,20 steps
Figure 3. Typical avarage switching loss Figure 4. Typical avarage switching loss
as a function of output current as a function of output current
IGBT Ploss=f(Iout) FRED Ploss=f(Iout)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 600 V DC link= 600 V
Switching freq. fsw from 2 kHz to 16 kHz Switching freq. fsw from 2 kHz to 16 kHz
parameter in * 2 steps parameter in * 2 steps
Mi*cosfi=-1
0
2
4
6
8
10
12
14
16
18
20
0 5 10 15 20
Iout (A)
Ploss ( W)
Mi*cosfi=1
0
3
6
9
12
15
0 5 10 15 20
Iout (A)
Ploss ( W)
fsw=2kHz
0,0
2,0
4,0
6,0
8,0
10,0
12,0
14,0
16,0
18,0
20,0
0 5 10 15 20
Iout (A)
Ploss ( W)
fsw=2kHz
0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
0 5 10 15 20
Iout (A)
Ploss (W)
copyright Tyco Electronics 18 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverter application
General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= 40 ohms Rgoff= 20 ohms
Figure 5. Typical available 50Hz output current Figure 6. Typical available 50Hz output current
as a function of Mi*cosfi as a function of switching frequency
Phase Iout=f(Mi*cosfi) Phase Iout=f(fsw)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 600 V DC link= 600 V
fsw= 4 kHz Mi*cosfi= 0,8
Heatsink temp. Th from 60 °C to 100 °C Heatsink temp. Th from 60 °C to 100 °C
parameter in 5 °C steps parameter in 5 °C steps
Figure 7. Typical available 50Hz output current Figure 8. Typical available 0Hz output current
as a function of Mi*cosfi and fsw as a function of switching frequency
Phase Iout=f(fsw,Mi*cosfi) Phase Ioutpeak=f(fsw)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 600 V DC link= 600 V
Th= 80 °C Heatsink temp. Th from 60 °C to 100 °C
parameter in 5 °C steps
Th=60°C
Th=100°C
0
2
4
6
8
10
12
14
16
18
20
22
-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
Mi*cosfi
Iout (A)
Th=60°C
Th=100°C
0
2
4
6
8
10
12
14
16
18
20
22
1 10 100
f
sw (kHz)
Iout (A)
Th=60°C
Th=100°C
0
5
10
15
20
1 10 100
f
sw (kHz)
Iout (Apeak)
1 2 4 8 16 32
-1
-0,8
-0,6
-0,4
-0,2
0
0,2
0,4
0,6
0,8
1
Iout (A)
18-20
16-18
14-16
12-14
10
-
12
Mi*cosfi
fsw (kHz)
copyright Tyco Electronics 19 Revision: 1
Copyright by Vincotech Revision: 1
V23990-P540-A-PM
final datasheet
Output inverter application
General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= 40 ohms Rgoff= 20 ohms
Figure 9. Typical available electric Figure 10. Typical efficiency
peak output power as a as a function of output power T
h
function of heatsink temperature
Inverter Pout=f(Th) Inverter efficiency=f(Pout)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 600 V DC link= 600 V
Modulation index Mi= 1 Modulation index Mi= 1
cosfi= 0,80 cosfi= 0,80
Switching freq. fsw from 2 kHz to 16 kHz Switching freq. fsw from 2 kHz to 16 kHz
parameter in * 2 steps parameter in * 2 steps
Figure 11. Typical available overload factor
as a function of motor power
and switching frequency
m
Inverter Ppeak/Pnom=f(Pnom,fsw)
Conditions: Tj=125C
DC link= 600 V
Modulation index Mi= 1
cosfi= 0,8
Switching freq. fsw from 1 kHz to 16 kHz
parameter in * 2 steps
Heatsink temperature= 80 °C
Motor efficiency= 0,85
2kHz
16kHz
0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
60 65 70 75 80 85 90 95 100
Th (oC)
Pout (kW)
95,0
95,5
96,0
96,5
97,0
97,5
98,0
98,5
99,0
99,5
100,0
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0
Pout (kW)
efficiency (%)
Switching fre que nc y (kHz)
100
150
200
250
300
350
400
Motor nominal power (HP/kW)
Overload (%)
11059 706 530 353 212 141 0
21044 696 522 348 209 139 0
4931 621 466 310 186 124 0
8750 500 375 250 150 0 0
16 516 344 258 172 0 0 0
001 / 001 002 / 001 002 / 001 003 / 002 005 / 004 008 / 006 010 / 007
copyright Tyco Electronics 20 Revision: 1
Copyright by Vincotech Revision: 1