1 of 29 February 19, 2009
© 2009 Integrated Device Technology, Inc. DSC 6929
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.Inc.
®
Device Overview
The 89HPES12NT3 is a member of the IDT PRECISE™ family of
PCI Express® switching solutions offering the next-generation I/O inter-
connect standard. The PES12NT3 is a 12-lane, 3-port peripheral chip
that performs PCI Express Base switching with a feature set optimized
for high performance applications such as servers, storage, and commu-
nications/networking. It provides high-performance I/O connectivity and
switching functions between a PCIe® upstream port, a transparent
downstream port, and a non-transparent downstream port.
With non-transparent bridging (NTB) functionality, the PES12NT3
can be used standalone or as a chipset with IDT PCIe System Intercon-
nect Switches in multi-host and intelligent I/O applications such as
communications, storage, and blade servers where inter-domain
communication is required.
Features
High Performance PCI Express Switch
Twelve PCI Express lanes (2.5Gbps), three switch ports
Delivers 48 Gbps (6 GBps) of aggregate switching capacity
Low latency cut-through switch architecture
Support for Max Payload size up to 2048 bytes
Supports one virtual channel and eight traffic classes
PCI Express Base specification Revision 1.0a compliant
Flexible Architecture with Numerous Configuration Options
Port arbitration schemes utilizing round robin
Supports automatic per port link width negotiation (x4, x2, or
x1)
Static lane reversal on all ports
Automatic polarity inversion on all lanes
Supports locked transactions, allowing use with legacy soft-
ware
Ability to load device configuration from serial EEPROM
Ability to control device via SMBus
Non-Transparent Port
Crosslink support on NTB port
Four mapping windows supported
Each may be configured as a 32-bit memory or I/O window
May be paired to form a 64-bit memory window
Interprocessor communication
Thirty-two inbound and outbound doorbells
Four inbound and outbound message registers
Two shared scratchpad registers
Allows up to sixteen masters to communicate through the non-
transparent port
No limit on the number of supported outstanding transactions
through the non-transparent bridge
Completely symmetric non-transparent bridge operation
allows similar/same configuration software to be run
Supports direct connection to a transparent or non-transparent
port of another switch
Block Diagram
Figure 1 Internal Block Diagram
12 PCI Express Lanes
x4 Upstream Port and Two x4 Downstream Ports
SerDes
Phy
Logical
Layer
SerDes
Phy
Logical
Layer
SerDes
Phy
Logical
Layer
...
Multiplexer / Demultiplexer
3-Port Switch Core
Frame Buffer Route Table Port
Arbitration Scheduler
Transaction Layer
Data Link Layer
SerDes
Phy
Logical
Layer
SerDes
Phy
Logical
Layer
SerDes
Phy
Logical
Layer
...
Multiplexer / Demultiplexer
Transaction Layer
Data Link Layer
SerDes
Phy
Logical
Layer
SerDes
Phy
Logical
Layer
SerDes
Phy
Logical
Layer
...
Multiplexer / Demultiplexer
Transaction Layer
Data Link Layer
Non-
Transparent
Bridge
89HPES12NT3
Data Sheet
12-lane 3-Port Non-Transparent
PCI Express® Switch
2 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Highly Integrated Solution
Requires no external components
Incorporates on-chip internal memory for packet buffering and
queueing
Integrates twelve 2.5 Gbps embedded full duplex SerDes,
8B/10B encoder/decoder (no separate transceivers needed)
Reliability, Availability, and Serviceability (RAS) Features
Upstream port can be dynamically swapped with non-trans-
parent downstream port to support failover applications
Internal end-to-end parity protection on all TLPs ensures data
integrity even in systems that do not implement end-to-end
CRC (ECRC)
Supports ECRC pass-through in transparent and non-trans-
parent ports
Supports Hot-Swap
Power Management
Supports PCI Power Management Interface specification,
Revision 1.1 (PCI-PM)
Unused SerDes are disabled
Testability and Debug Features
Built in SerDes Pseudo-Random Bit Stream (PRBS) generator
Ability to read and write any internal register via the SMBus
Ability to bypass link training and force any link into any mode
Provides statistics and performance counters
Two SMBus Interfaces
Slave interface provides full access to all software-visible
registers by an external SMBus master
Master interface provides connection for an optional serial
EEPROM used for initialization
Master and slave interfaces may be tied together so the switch
can act as both master and slave
Eight General Purpose Input/Output pins
Packaged in 19x19mm 324-ball BGA with 1mm ball spacing
Product Description
Utilizing standard PCI Express interconnect, the PES12NT3 provides
the most efficient high-performance I/O connectivity solution for applica-
tions requiring high throughput, low latency, and simple board layout
with a minimum number of board layers. With support for non-trans-
parent bridging, the PES12NT3, as a standalone switch or as a chipset
with IDT PCIe System Interconnect Switches, enables multi-host and
intelligent I/O applications requiring inter-domain communication. The
PES12NT3 provides 48 Gbps (6 GBps) of aggregated, full-duplex
switching capacity through 12 integrated serial lanes, using proven and
robust IDT technology. Each lane provides 2.5 Gbps of bandwidth in
both directions and is fully compliant with PCI Express Base specifica-
tion 1.0a.
The PES12NT3 is based on a flexible and efficient layered architec-
ture. The PCI Express layer consists of SerDes, Physical, Data Link and
Transaction layers in compliance with PCI Express Base specification
Revision 1.0a. The PES12NT3 can operate either as a store and
forward or cut-through switch depending on the packet size and is
designed to switch memory and I/O transactions. It supports eight Traffic
Classes (TCs) and one Virtual Channel (VC) with sophisticated resource
management. This includes round robin port arbitration, guaranteeing
bandwidth allocation and/or latency for critical traffic classes in applica-
tions such as high throughput 10 GbE I/Os, SATA controllers, and Fibre
Channel HBAs.
Switch Configuration
The PES12NT3 is a three port switch that contains 12 PCI Express
lanes. Each of the three ports is statically allocated 4 lanes with ports
labeled as A, B and C. Port A is the upstream port, port B is the trans-
parent downstream port, and port C is the non-transparent downstream
port.
During link training, link width is automatically negotiated. Each
PES12NT3 port is capable of independently negotiating to a x4, x2 or x1
width. Thus, the PES12NT3 may be used in virtually any three port
switch configuration (e.g., {x4, x4, x4}, {x4, x2, x2}, {x4, x2, x1}, etc.).
The PES12NT3 supports static lane reversal. For example, lane
reversal for upstream port A may be configured by asserting the PCI
Express Port A Lane Reverse (PEALREV) input signal or through serial
EEPROM or SMBus initialization. Lane reversal for ports B and C may
be enabled via a configuration space register, serial EEPROM, or the
SMBus.
3 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Figure 2 PCIe System Interconnect Architecture Block Diagram
Figure 3 Dual Host Storage System
PES12NT3
CPU
PCIe System Interconnect Switch
PES12NT3
CPU
PES12NT3
CPU
Embedded
FC
CPU
Embedded
SATA / SAS
CPU
Embedded
GbE / 10GigE
CPU
PCIe System Interconnect Switch
CPU
PES12N3
FC
Controller
x4 PCIe
CPU
PES12N3
FC
Controller
Storage
To Server
To Server
Cache Maint. &
Possible Data Flow
x4 PCIe
Controller 1 Controller 2
x4 PCIe
FC 2Gb/s and
4Gb/s
FC 2Gb/s and
4Gb/s
4 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Pin Description
The following tables list the functions of the pins provided on the PES12NT3. Some of the functions listed may be multiplexed onto the same pin.
The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low)
level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.
Signal Type Name/Description
PEALREV I PCI Express Port A Lane Reverse. When this bit is asserted, the lanes of
PCI Express Port A are reversed. This value may be overridden by modify-
ing the value of the PALREV bit in the PA_SWCTL register.
PEARP[3:0]
PEARN[3:0]
IPCI Express Port A Serial Data Receive. Differential PCI Express receive
pairs for port A.
PEATP[3:0]
PEATN[3:0]
OPCI Express Port A Serial Data Transmit. Differential PCI Express trans-
mit pairs for port A
PEBLREV I PCI Express Port B Lane Reverse. When this bit is asserted, the lanes of
PCI Express Port B are reversed. This value may be overridden by modify-
ing the value of the PBLREV bit in the PA_SWCTL register.
PEBRP[3:0]
PEBRN[3:0]
IPCI Express Port B Serial Data Receive. Differential PCI Express receive
pairs for port B.
PEBTP[3:0]
PEBTN[3:0]
OPCI Express Port B Serial Data Transmit. Differential PCI Express trans-
mit pairs for port B
PECLREV I PCI Express Port C Lane Reverse. When this bit is asserted, the lanes of
PCI Express Port C are reversed. This value may be overridden by modify-
ing the value of the PCLREV bit in the PA_SWCTL register.
PECRP[3:0]
PECRN[3:0]
IPCI Express Port C Serial Data Receive. Differential PCI Express receive
pairs for port C.
PECTP[3:0]
PECTN[3:0]
OPCI Express Port C Serial Data Transmit. Differential PCI Express trans-
mit pairs for port C
PEREFCLKP[1:0]
PEREFCLKN[1:0]
IPCI Express Reference Clock. Differential reference clock pair input. This
clock is used as the reference clock by on-chip PLLs to generate the clocks
required for the system logic and on-chip SerDes. The frequency of the dif-
ferential reference clock is determined by the REFCLKM signal.
REFCLKM I PCI Express Reference Clock Mode Select. These signals select the fre-
quency of the reference clock input.
0x0 - 100 MHz
0x1 - 125 MHz
Table 1 PCI Express Interface Pins
Signal Type Name/Description
MSMBADDR[4:1] I Master SMBus Address. These pins determine the SMBus address of the
serial EEPROM from which configuration information is loaded.
MSMBCLK I/O Master SMBus Clock. This bidirectional signal is used to synchronize
transfers on the master SMBus. It is active and generating the clock only
when the EEPROM is being accessed.
MSMBDAT I/O Master SMBus Data. This bidirectional signal is used for data on the mas-
ter SMBus.
Table 2 SMBus Interface Pins (Part 1 of 2)
5 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
SSMBADDR[5,3:1] I Slave SMBus Address. These pins determine the SMBus address to
which the slave SMBus interface responds.
SSMBCLK I/O Slave SMBus Clock. This bidirectional signal is used to synchronize trans-
fers on the slave SMBus.
SSMBDAT I/O Slave SMBus Data. This bidirectional signal is used for data on the slave
SMBus.
Signal Type Name/Description
GPIO[0] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PEBRSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port B
GPIO[1] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PECRSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port C
GPIO[2] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PALINKUPN
Alternate function pin type: Output
Alternate function: Port A link up status output
GPIO[3] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PBLINKUPN
Alternate function pin type: Output
Alternate function: Port B link up status output
GPIO[4] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PCLINKUPN
Alternate function pin type: Output
Alternate function: Port C link up status output
GPIO[5] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: FAILOVERP
Alternate function pin type: Input
Alternate function: NTB upstream port failover
GPIO[6] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[7] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Table 3 General Purpose I/O Pins
Signal Type Name/Description
Table 2 SMBus Interface Pins (Part 2 of 2)
6 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signal Type Name/Description
CCLKDS I Common Clock Downstream. When the CCLKDS pin is asserted, it indi-
cates that a common clock is being used between the downstream device
and the downstream port.
CCLKUS I Common Clock Upstream. When the CCLKUS pin is asserted, it indi-
cates that a common clock is being used between the upstream device and
the upstream port.
MSMBSMODE I Master SMBus Slow Mode. The assertion of this pin indicates that the
master SMBus should operate at 100 KHz instead of 400 KHz. This value
may not be overridden.
PENTBRSTN I Non-Transparent Bridge Reset. Assertion of this signal indicates a reset
on the external side of the non-transparent bridge. This signal is only used
when the switch mode selects a non-transparent mode and has no effect
otherwise.
PERSTN I Fundamental Reset. Assertion of this signal resets all logic inside the
PES12NT3 and initiates a PCI Express fundamental reset.
RSTHALT I Reset Halt. When this signal is asserted during a PCI Express fundamental
reset, the PES12NT3 executes the reset procedure and remains in a reset
state with the Master and Slave SMBuses active. This allows software to
read and write registers internal to the device before normal device opera-
tion begins. The device exits the reset state when the RSTHALT bit is
cleared in the PA_SWCTL register by an SMBus master.
SWMODE[3:0] I Switch Mode. These configuration pins determine the PES12NT3 switch
operating mode.
0x0 - Reserved
0x1 - Reserved
0x2 - Non-transparent mode
0x3 - Non-transparent mode with serial EEPROM initialization
0x4 - Non-transparent failover mode
0x5 - Non-transparent failover mode with serial EEPROM initialization
0x6 through 0xF - Reserved
Table 4 System Pins
Signal Type Name/Description
JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data
into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is
independent of the system clock with a nominal 50% duty cycle.
JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic or
JTAG Controller.
Table 5 Test Pins (Part 1 of 2)
7 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary
scan logic or JTAG Controller. When no data is being shifted out, this signal
is tri-stated.
JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the
boundary scan logic or JTAG Controller.
JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary
scan logic and JTAG TAP Controller. An external pull-up on the board is
recommended to meet the JTAG specification in cases where the tester
can access this signal. However, for systems running in functional mode,
one of the following should occur:
1) actively drive this signal low with control logic
2) statically drive this signal low with an external pull-down on the board
Signal Type Name/Description
VDDCORE I Core VDD. Power supply for core logic.
VDDIO I I/O VDD. LVTTL I/O buffer power supply.
VDDPE I PCI Express Digital Power. PCI Express digital power used by the digital
power of the SerDes.
VDDAPE I PCI Express Analog Power. PCI Express analog power used by the PLL
and bias generator.
VTTPE I PCI Express Termination Power.
VSS I Ground.
Table 6 Power and Ground Pins
Signal Type Name/Description
Table 5 Test Pins (Part 2 of 2)
8 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Pin Characteristics
Note: Some input pads of the PES12NT3 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate
levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left
floating can cause a slight increase in power consumption.
Function Pin Name Type Buffer I/O
Type
Internal
Resistor Notes
PCI Express Inter-
face
PEALREV I LVTTL Input pull-down
PEARN[3:0] I CML Serial link
PEARP[3:0] I
PEATN[3:0] O
PEATP[3:0] O
PEBLREV I LVTTL Input pull-down
PEBRN[3:0] I CML Serial link
PEBRP[3:0] I
PEBTN[3:0] O
PEBTP[3:0] O
PECLREV I LVTTL Input pull-down
PECRN[3:0] I CML Serial link
PECRP[3:0] I
PECTN[3:0] O
PECTP[3:0] O
PEREFCLKN[1:0] I LVPECL/
CML
Diff. Clock
Input
Refer to
Table 8
PEREFCLKP[1:0] I
REFCLKM I LVTTL Input pull-down
SMBus MSMBADDR[4:1] I LVTTL Input pull-up
MSMBCLK I/O STI
MSMBDAT I/O
SSMBADDR[5,3:1] I Input pull-up
SSMBCLK I/O STI
SSMBDAT I/O
General Purpose I/O GPIO[7:0] I/O LVTTL Input,
High Drive
pull-up
Table 7 Pin Characteristics (Part 1 of 2)
9 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
System Pins CCLKDS I LVTTL Input pull-up
CCLKUS I pull-up
MSMBSMODE I pull-down
PENTBRSTN I
PERSTN I
RSTHALT I pull-down
SWMODE[3:0] I pull-up
JTAG JTAG_TCK I LVTTL STI pull-up
JTAG_TDI I pull-up
JTAG_TDO O Low Drive
JTAG_TMS I STI pull-up
JTAG_TRST_N I pull-up External pull-
down
Function Pin Name Type Buffer I/O
Type
Internal
Resistor Notes
Table 7 Pin Characteristics (Part 2 of 2)
10 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Logic Diagram — PES12NT3
Figure 4 PES12NT3 Logic Diagram
Reference
Clock
PEREFCLKP
PEREFCLKN
PEATP[0]
PEATN[0]
JTAG_TCK
GPIO[7:0]
8
General Purpose
I/O
V
DD
CORE
V
DD
IO
V
DD
PE
V
DD
APE
Power/Ground
PEARP[0]
PEARN[0]
PEARP[1]
PEARN[1]
PEARP[3]
PEARN[3]
PCI Express
Switch
SerDes Input
PEATP[1]
PEATN[1]
PEATP[3]
PEATN[3]
PCI Express
Switch
SerDes Output
...
MSMBADDR[4:1]
MSMBCLK
MSMBDAT
4
SSMBADDR[5,3:1]
SSMBCLK
SSMBDAT
4
Master
SMBus Interface
Slave
SMBus Interface
CCLKUS
RSTHALT
System
Pins
JTAG_TDI
JTAG_TDO
JTAG_TMS
JTAG_TRST_N
JTAG Pins
V
SS
SWMODE[3:0]
4
2
2
Port A Port A
PEBTP[0]
PEBTN[0]
PEBRP[0]
PEBRN[0]
PEBRP[1]
PEBRN[1]
PEBRP[3]
PEBRN[3]
PCI Express
Switch
SerDes Input
PEBTP[1]
PEBTN[1]
PEBTP[3]
PEBTN[3]
PCI Express
Switch
SerDes Output
...
...
Port B Port B
PECTP[0]
PECTN[0]
PECRP[0]
PECRN[0]
PECRP[1]
PECRN[1]
PECRP[3]
PECRN[3]
PCI Express
Switch
SerDes Input
PECTP[1]
PECTN[1]
PECTP[3]
PECTN[3]
PCI Express
Switch
SerDes Output
...
Port C Port C
PES12NT3
PEALREV
CCLKDS
PEBLREV
PECLREV
PERSTN
REFCLKM
MSMBSMODE
......
V
TT
PE
PENTBRSTN
11 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
System Clock Parameters
Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 12 and 13.
AC Timing Characteristics
Parameter Description Min Typical Max Unit
RefclkFREQ Input reference clock frequency range 100 1251
1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM.
MHz
RefclkDC2
2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors.
Duty cycle of input clock 40 50 60 %
TR, TFRise/Fall time of input clocks 0.2*RCUI RCUI3
3. RCUI (Reference Clock Unit Interval) refers to the reference clock period.
VSW Differential input voltage swing4
4. AC coupling required.
0.6 1.6 V
Tjitter Input clock jitter (cycle-to-cycle) 125 ps
RTTermination Resistor 110 Ohms
Table 8 Input Clock Requirements
Parameter Description Min1Typical1Max1Units
PCIe Transmit
UI Unit Interval 399.88 400 400.12 ps
TTX-EYE Minimum Tx Eye Width 0.7 .9 UI
TTX-EYE-MEDIAN-to-
MAX-JITTER
Maximum time between the jitter median and maximum
deviation from the median
0.15 UI
TTX-RISE, TTX-FALL D+ / D- Tx output rise/fall time 50 90 ps
TTX- IDLE-MIN Minimum time in idle 50 UI
TTX-IDLE-SET-TO-
IDLE
Maximum time to transition to a valid Idle after sending
an Idle ordered set
20 UI
TTX-IDLE-TO-DIFF-
DATA
Maximum time to transition from valid idle to diff data 20 UI
TTX-IDLE-RCV-DET-
MAX
Max time spend in idle before initiating a RX detect
sequence
20 100 ms
TTX-SKEW Transmitter data skew between any 2 lanes 500 1300 ps
PCIe Receive
UI Unit Interval 399.88 400 400.12 ps
TRX-EYE (with jitter) Minimum Receiver Eye Width (jitter tolerance) 0.4 UI
Table 9 PCIe AC Timing Characteristics (Part 1 of 2)
12 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
TRX-EYE-MEDIUM TO
MAX JITTER
Max time between jitter median & max deviation 0.3 UI
TRX-IDLE-DET-DIFF-
ENTER TIME
Unexpected Idle Enter Detect Threshold Integration Time 10 ms
TRX-SKEW Lane to lane input skew 20 ns
1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a
Signal Symbol Reference
Edge Min Max Unit
Timing
Diagram
Reference
GPIO
GPIO[7:0]1
1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if
they are asynchronous.
Tpw_13b2
2. The values for this symbol were determined by calculation, not by testing.
None 50 —ns
Table 10 GPIO AC Timing Characteristics
Signal Symbol Reference
Edge Min Max Unit
Timing
Diagram
Reference
JTAG
JTAG_TCK Tper_16a none 50.0 ns See Figure 5.
Thigh_16a,
Tlow_16a
10.0 25.0 ns
JTAG_TMS1,
JTAG_TDI
1. The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N
changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK
when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.
Tsu_16b JTAG_TCK rising 2.4 ns
Thld_16b 1.0 ns
JTAG_TDO Tdo_16c JTAG_TCK falling 20 ns
Tdz_16c2
2. The values for this symbol were determined by calculation, not by testing.
—20ns
JTAG_TRST_N Tpw_16d2none 25.0 ns
Table 11 JTAG AC Timing Characteristics
Parameter Description Min1Typical1Max1Units
Table 9 PCIe AC Timing Characteristics (Part 2 of 2)
13 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Figure 5 JTAG AC Timing Waveform
Recommended Operating Supply Voltages
Recommended Operating Temperature
Symbol Parameter Minimum Typical Maximum Unit
VDDCORE Internal logic supply 0.9 1.0 1.1 V
VDDI/O I/O supply except for SerDes LVPECL/CML 3.0 3.3 3.6 V
VDDPE PCI Express Digital Power 0.9 1.0 1.1 V
VDDAPE PCI Express Analog Power 0.9 1.0 1.1 V
VTTPE PCI Express Serial Data Transmit
Termination Voltage
1.425 1.5 1.575 V
VSS Common ground 0 0 0 V
Table 12 PES12NT3 Operating Voltages
Grade Temperature
Commercial 0°C to +70°C Ambient
Industrial -40°C to +85°C Ambient
Table 13 PES12NT3 Operating Temperatures
Tpw_16d
Tdz_16cTdo_16c
Thld_16b
Tsu_16b
Thld_16b
Tsu_16b
Tlow_16aTlow_16a
Tper_16a
Thigh_16a
JTAG_TCK
JTAG_TDI
JTAG_TMS
JTAG_TDO
JTAG_TRST_N
14 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Power-Up Sequence
This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the
PES12NT3, the power-up sequence must be as follows:
1. VDDI/O — 3.3V
2. VDDCore, VDDPE, VDDAPE — 1.0V
3. VTTPE — 1.5V
When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues
are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the
power-up sequence.
Power Consumption
Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 14.
Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in
Table 14.
All power measurements assume that the part is mounted on a 10 layer printed circuit board with 0 LFM airflow.
Thermal Considerations
This section describes thermal considerations for the PES12NT3 (19mm2 BCG324 package). The data in Table 15 below contains information that
is relevant to the thermal performance of the PES12NT3 switch.
Note: The parameter θJA(eff) is not the absolute thermal resistance for the package as defined by JEDEC (JESD-51). Because resistance
can vary with the number of board layers, size of the board, and airflow, θJA(eff) is the effective thermal resistance. The values for effective
θJA given above are based on a 10-layer, standard height, full length (4.3”x12.2”) PCIe add-in card.
Number of
Connected Lanes:
Port-A/Port-B/Port-C
Core (Watts)
(1.0V supply)
PCIe Digital
(Watts)
(1.0V supply)
PCIe Analog
(Watts)
(1.0V supply)
PCIe Termin-
ation (Watts)
(1.5V supply)
I/O (Watts)
(3.3V supply)
Total (Watts)
Typ Max Typ Max Typ Max Typ Max Typ Max Typ Max
1/1/1 0.52 0.67 0.27 0.36 0.13 0.16 0.11 0.13 0.01 0.01 1.04 1.33
4/1/1 0.56 0.76 0.47 0.58 0.19 0.21 0.22 0.26 0.01 0.01 1.44 1.81
4/4/4 0.65 0.89 0.68 0.81 0.21 0.25 0.38 0.51 0.01 0.01 1.92 2.47
Table 14 PES12NT3 Power Consumption
Symbol Parameter Value Units Conditions
TJ(max) Junction Temperature 125 oCMaximum
TA(max) Ambient Temperature 70 oC Maximum for commercial-rated products
θJA(effective) Effective Thermal Resistance, Junction-to-Ambient
21.8 oC/W Zero air flow
15.1 oC/W 1 m/S air flow
13.9 oC/W 2 m/S air flow
θJB Thermal Resistance, Junction-to-Board 11.4 oC/W
θJC Thermal Resistance, Junction-to-Case 5.1 oC/W
P Power Dissipation of the Device 2.47 Watts Maximum
Table 15 Thermal Specifications for PES12NT3, 19x19mm BCG324 Package
15 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
DC Electrical Characteristics
Values based on systems running at recommended supply voltages, as shown in Table 12.
Note: See Table 7, Pin Characteristics, for a complete I/O listing.
I/O Type Parameter Description Min1Typ1Max1Unit Conditions
Serial Link PCIe Transmit
VTX-DIFFp-p Differential peak-to-peak output voltage 800 1200 mV
VTX-DE-RATIO De-emphasized differential output voltage -3 -4 dB
VTX-DC-CM DC Common mode voltage -0.1 1 3.7 V
VTX-CM-ACP RMS AC peak common mode output volt-
age
20 mV
VTX-CM-DC-
active-idle-delta
Abs delta of DC common mode voltage
between L0 and idle
100 mV
VTX-CM-DC-line-
delta
Abs delta of DC common mode voltage
between D+ and D-
25 mV
VTX-Idle-DiffP Electrical idle diff peak output 20 mV
VTX-RCV-Detect Voltage change during receiver detection 600 mV
RLTX-DIFF Transmitter Differential Return loss 12 dB
RLTX-CM Transmitter Common Mode Return loss 6 dB
ZTX-DEFF-DC DC Differential TX impedance 80 100 120 Ω
ZOSE Single ended TX Impedance 40 50 60 Ω
Transmitter Eye
Diagram
TX Eye Height (De-emphasized bits) 505 650 mV
Transmitter Eye
Diagram
TX Eye Height (Transition bits) 800 950 mV
PCIe Receive
VRX-DIFFp-p Differential input voltage (peak-to-peak) 175 1200 mV
VRX-CM-AC Receiver common-mode voltage for AC
coupling
150 mV
RLRX-DIFF Receiver Differential Return Loss 15 dB
RLRX-CM Receiver Common Mode Return Loss 6 dB
ZRX-DIFF-DC Differential input impedance (DC) 80 100 120 Ω
ZRX-COMM-DC Single-ended input impedance 40 50 60 Ω
ZRX-COMM-HIGH-
Z-DC
Powered down input common mode
impedance (DC)
200k 350k Ω
VRX-IDLE-DET-
DIFFp-p
Electrical idle detect threshold 65 175 mV
PCIe REFCLK
CIN Input Capacitance 1.5 pF
Table 16 DC Electrical Characteristics (Part 1 of 2)
16 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Other I/Os
LOW Drive
Output
IOL —2.5—mA V
OL = 0.4v
IOH —-5.5—mA V
OH = 1.5V
High Drive
Output
IOL —12.0—mA V
OL = 0.4v
IOH —-20.0—mA V
OH = 1.5V
Schmitt Trig-
ger Input
(STI)
VIL -0.3 0.8 V
VIH 2.0 VDDIO +
0.5
V—
Input VIL -0.3 0.8 V
VIH 2.0 VDDIO +
0.5
V—
Capacitance CIN ——8.5pF
Leakage Inputs + 10 μAV
DDI/O (max)
I/OLEAK W/O
Pull-ups/downs
——+ 10 μAV
DDI/O (max)
I/OLEAK WITH
Pull-ups/downs
——+ 80 μAV
DDI/O (max)
1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a.
I/O Type Parameter Description Min1Typ1Max1Unit Conditions
Table 16 DC Electrical Characteristics (Part 2 of 2)
17 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Package Pinout — 324-BGA Signal Pinout for PES12NT3
The following table lists the pin numbers and signal names for the PES12NT3 device.
Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt
A1 VSS E10 VDDPE K1 VDDCORE P10 VDDIO
A2 VSS E11 VSS K2 VSS P11 VDDIO
A3 PEARP03 E12 VDDPE K3 VTTPE P12 VDDIO
A4 VDDCORE E13 VSS K4 VDDCORE P13 VDDIO
A5 PEATN03 E14 VDDCORE K5 VDDPE P14 VDDIO
A6 VDDCORE E15 VDDAPE K6 VSS P15 VSS
A7 PEATP02 E16 VSS K7 VSS P16 VTTPE
A8 VDDCORE E17 PECTP03 K8 VSS P17 VSS
A9 PEARN02 E18 PECTN03 K9 VSS P18 VDDCORE
A10 VDDCORE F1 VDDCORE K10 VSS R1 PEBTN03
A11 PEARP01 F2 VSS K11 VSS R2 PEBTP03
A12 VDDCORE F3 VDDCORE K12 VSS R3 VSS
A13 PEATP01 F4 VDDAPE K13 VSS R4 VDDIO
A14 VDDCORE F5 VSS K14 VSS R5 VSS
A15 VDDCORE F6 VDDCORE K15 VDDPE R6 VDDCORE
A16 PEATN00 F7 VSS K16 VTTPE R7 MSMBDAT
A17 VSS F8 VDDCORE K17 VSS R8 SSMBADDR_5
A18 VSS F9 VSS K18 VDDCORE R9 PEALREV
B1 VDDCORE F10 VDDCORE L1 PEBRN02 R10 SWMODE_2
B2 VDDCORE F11 VSS L2 PEBRP02 R11 RSTHALT
B3 PEARN03 F12 VSS L3 VSS R12 GPIO_04 1
B4 VSS F13 VDDPE L4 VDDPE R13 VDDCORE
B5 PEATP03 F14 VSS L5 VSS R14 VSS
B6 VSS F15 VDDIO L6 VDDCORE R15 VDDIO
B7 PEATN02 F16 VSS L7 VDDCORE R16 VSS
B8 VSS F17 VSS L8 VDDCORE R17 PECTP00
B9 PEARP02 F18 VDDCORE L9 VDDCORE R18 PECTN00
B10 VSS G1 PEBTP01 L10 VDDCORE T1 VDDCORE
B11 PEARN01 G2 PEBTN01 L11 VDDCORE T2 VSS
B12 VSS G3 VSS L12 VDDCORE T3 VSS
B13 PEATN01 G4 VDDPE L13 VDDCORE T4 JTAG_TCK
B14 VSS G5 VDDAPE L14 VSS T5 JTAG_TDO
B15 VSS G6 VSS L15 VDDPE T6 MSMBADDR_1
B16 PEATP00 G7 VSS L16 VSS T7 MSMBCLK
Table 17 PES12NT3 324-pin Signal Pin-Out (Part 1 of 3)
18 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
B17 VDDCORE G8 VDDIO L17 PECRP01 T8 SSMBADDR_2
B18 VDDCORE G9 VSS L18 PECRN01 T9 CCLKDS
C1 PEBRP00 G10 VDDIO M1 VDDCORE T10 SWMODE_1
C2 PEBRN00 G11 VSS M2 VSS T11 PERSTN
C3 VSS G12 VDDCORE M3 VSS T12 GPIO_03 1
C4 VDDCORE G13 VSS M4 VDDAPE T13 GPIO_07
C5 VSS G14 VDDAPE M5 VSS T14 VSS
C6 VTTPE G15 VDDPE M6 VDDCORE T15 REFCLKM
C7 VSS G16 VSS M7 VSS T16 VSS
C8 VTTPE G17 PECTN02 M8 VSS T17 VSS
C9 VSS G18 PECTP02 M9 VDDCORE T18 VDDCORE
C10 VTTPE H1 VDDCORE M10 VDDCORE U1 PEBRP03
C11 VSS H2 VSS M11 VSS U2 PEBRN03
C12 VTTPE H3 VTTPE M12 VSS U3 VSS
C13 VDDCORE H4 VDDAPE M13 VDDCORE U4 JTAG_TDI
C14 PEARP00 H5 VSS M14 VSS U5 JTAG_TMS
C15 PEARN00 H6 VSS M15 VDDAPE U6 MSMBADDR_2
C16 VDDCORE H7 VDDCORE M16 VSS U7 MSMBADDR_4
C17 PECRN03 H8 VSS M17 VSS U8 SSMBADDR_3
C18 PECRP03 H9 VDDCORE M18 VDDCORE U9 CCLKUS
D1 VDDCORE H10 VDDCORE N1 PEBTP02 U10 SWMODE_0
D2 VSS H11 VSS N2 PEBTN02 U11 PECLREV
D3 VSS H12 VDDCORE N3 VTTPE U12 GPIO_00
D4 VDDCORE H13 VSS N4 VDDAPE U13 GPIO_02 1
D5 VSS H14 VDDAPE N5 VSS U14 GPIO_06
D6 VDDAPE H15 VDDPE N6 VSS U15 MSMBSMODE
D7 VSS H16 VTTPE N7 VSS U16 VSS
D8 VDDAPE H17 VSS N8 VSS U17 PECRN00
D9 VSS H18 VDDCORE N9 VSS U18 PECRP00
D10 VDDAPE J1 PEBRP01 N10 VSS V1 VDDCORE
D11 VSS J2 PEBRN01 N11 VSS V2 VSS
D12 VDDAPE J3 VSS N12 VSS V3 PEREFCLKP0
D13 VSS J4 VDDPE N13 VSS V4 PEREFCLKN0
D14 VDDCORE J5 VSS N14 VSS V5 JTAG_TRST_N
D15 VSS J6 VDDCORE N15 VDDAPE V6 MSMBADDR_3
D16 VSS J7 VSS N16 VTTPE V7 SSMBADDR_1
D17 VSS J8 VSS N17 PECTN01 V8 SSMBCLK
Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt
Table 17 PES12NT3 324-pin Signal Pin-Out (Part 2 of 3)
19 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Alternate Signal Functions
D18 VDDCORE J9 VDDCORE N18 PECTP01 V9 SSMBDAT
E1 PEBTN00 J10 VDDCORE P1 VDDCORE V10 PEBLREV
E2 PEBTP00 J11 VSS P2 VSS V11 SWMODE_3
E3 VDDCORE J12 VSS P3 VTTPE V12 PENTBRSTN
E4 VSS J13 VDDCORE P4 VSS V13 GPIO_01
E5 VDDCORE J14 VSS P5 VDDIO V14 GPIO_05 1
E6 VSS J15 VDDCORE P6 VDDIO V15 PEREFCLKP1
E7 VSS J16 VSS P7 VDDIO V16 PEREFCLKN1
E8 VDDPE J17 PECRP02 P8 VDDIO V17 VSS
E9 VSS J18 PECRN02 P9 VDDIO V18 VDDCORE
Pin GPIO Alternate
U13 GPIO[2] IOEXPINTN
T12 GPIO[3] PAABN
R12 GPIO[4] PAAIN
V14 GPIO[5] PAPIN
Table 18 PES12NT3 Alternate Signal Functions
Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt
Table 17 PES12NT3 324-pin Signal Pin-Out (Part 3 of 3)
20 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Power Pins
VDDCore VDDCore VDDCore VDDIO VDDPE VDDAPE VTTPE
A4 F3 L8 F15 E8 D6 C6
A6 F6 L9 G8 E10 D8 C8
A8 F8 L10 G10 E12 D10 C10
A10 F10 L11 P5 F13 D12 C12
A12 F18 L12 P6 G4 E15 H3
A14 G12 L13 P7 G15 F4 H16
A15H1 M1 P8H15G5 K3
B1 H7 M6 P9 J4 G14 K16
B2 H9 M9 P10 K5 H4 N3
B17 H10 M10 P11 K15 H14 N16
B18 H12 M13 P12 L4 M4 P3
C4 H18 M18 P13 L15 M15 P16
C13 J6 P1 P14 N4
C16 J9 P18 R4 N15
D1 J10 R6 R15
D4 J13 R13
D14 J15 T1
D18 K1 T18
E3 K4 V1
E5 K18 V18
E14 L6
F1 L7
Table 19 PES12NT3 Power Pins
21 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Ground Pins
Vss Vss V
ss V
ss V
ss
A1 D16 G16 K13 N12
A2 D17 H2 K14 N13
A17 E4 H5 K17 N14
A18 E6 H6 L3 P2
B4 E7 H8 L5 P4
B6 E9 H11 L14 P15
B8 E11 H13 L16 P17
B10 E13 H17 M2 R3
B12 E16 J3 M3 R5
B14 F2 J5 M5 R14
B15 F5 J7 M7 R16
C3 F7 J8 M8 T2
C5 F9 J11 M11 T3
C7 F11 J12 M12 T14
C9 F12 J14 M14 T16
C11 F14 J16 M16 T17
D2 F16 K2 M17 U3
D3 F17 K6 N5 U16
D5 G3 K7 N6 V2
D7 G6 K8 N7 V17
D9 G7 K9 N8
D11 G9 K10 N9
D13 G11 K11 N10
D15 G13 K12 N11
Table 20 PES12NT3 Ground Pins
22 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signals Listed Alphabetically
Signal Name I/O Type Location Signal Category
CCLKDS I T9 System
CCLKUS I U9
GPIO_00 I/O U12 General Purpose Input/Output
GPIO_01 I/O V13
GPIO_02 I/O U13
GPIO_03 I/O T12
GPIO_04 I/O R12
GPIO_05 I/O V14
GPIO_06 I/O U14
GPIO_07 I/O T13
JTAG_TCK I T4 JTAG
JTAG_TDI I U4
JTAG_TDO O T5
JTAG_TMS I U5
JTAG_TRST_N I V5
MSMBADDR_1 I T6 SMBus
MSMBADDR_2 I U6
MSMBADDR_3 I V6
MSMBADDR_4 I U7
MSMBCLK I/O T7
MSMBDAT I/O R7
MSMBSMODE I U15 System
PEALREV I R9 PCI Express
PEARN00 I C15
PEARN01 I B11
PEARN02 I A9
PEARN03 I B3
PEARP00 I C14
PEARP01 I A11
PEARP02 I B9
PEARP03 I A3
PEATN00 O A16
PEATN01 O B13
PEATN02 O B7
Table 21 PES12NT3 Alphabetical Signal List (Part 1 of 3)
23 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
PEATN03 O A5 PCI Express
PEATP00 O B16
PEATP01 O A13
PEATP02 O A7
PEATP03 O B5
PEBLREV I V10
PEBRN00 I C2
PEBRN01 I J2
PEBRN02 I L1
PEBRN03 I U2
PEBRP00 I C1
PEBRP01 I J1
PEBRP02 I L2
PEBRP03 I U1
PEBTN00 O E1
PEBTN01 O G2
PEBTN02 O N2
PEBTN03 O R1
PEBTP00 O E2
PEBTP01 O G1
PEBTP02 O N1
PEBTP03 O R2
PECLREV I U11
PECRN00 I U17
PECRN01 I L18
PECRN02 I J18
PECRN03 I C17
PECRP00 I U18
PECRP01 I L17
PECRP02 I J17
PECRP03 I C18
PECTN00 O R18
PECTN01 O N17
PECTN02 O G17
PECTN03 O E18
PECTP00 O R17
Signal Name I/O Type Location Signal Category
Table 21 PES12NT3 Alphabetical Signal List (Part 2 of 3)
24 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
PECTP01 O N18 PCI Express
PECTP02 O G18
PECTP03 O E17
PENTBRSTN I V12 System
PEREFCLKN0 I V4 PCI Express
PEREFCLKN1 I V16
PEREFCLKP0 I V3
PEREFCLKP1 I V15
PERSTN I T11 System
REFCLKM I T15 PCI Express
RSTHALT I R11 System
SSMBADDR_1 I V7 SMBus
SSMBADDR_2 I T8
SSMBADDR_3 I U8
SSMBADDR_5 I R8
SSMBCLK I/O V8 SMBus
SSMBDAT I/O V9
SWMODE_0 I U10 System
SWMODE_1 I T10
SWMODE_2 I R10
SWMODE_3 I V11 System
VDDCORE,
VDDAPE, VDDIO,
VDDPE, VTTPE
See Table 19 for a listing of power pins.
VSS See Table 20 for a listing of ground pins.
Signal Name I/O Type Location Signal Category
Table 21 PES12NT3 Alphabetical Signal List (Part 3 of 3)
25 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
PES12NT3 Pinout — Top View
1 2 3 4 5 6 7 8 910111213141516
Vss (Ground)
VDDCore (Power)
A
B
VDDI/O (Power)
17 18
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
VTTPE (Power)
VDDPE (Power)
VDDAPE (Power)
Signals
26 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
PES12NT3 Package Drawing — 324-Pin BC324/BCG324
27 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
PES12NT3 Package Drawing — Page Two
28 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
Revision History
April 15, 2008: Initial publication of data sheet.
January 5, 2009: On the Ordering Information page, changed silicon revision from ZA to ZB.
February 19, 2009: Added industrial temperature to Table 13 and to Order page.
29 of 29 February 19, 2009
IDT 89HPES12NT3 Data Sheet
CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
email: ssdhelp@idt.com
phone: 408-284-8208
Ordering Information
Valid Combinations
89HPES12NT3ZBBC 324-pin BC324 package, Commercial Temperature
89HPES12NT3ZBBCG 324-pin Green BC324 package, Commercial Temperature
89HPES12NT3ZBBCI 324-pin BC324 package, Industrial Temperature
89HPES12NT3ZBBCGI 324-pin Green BC324 package, Industrial Temperature
NN A AAA NNAAN AA A
Operating
Voltage
Device
Family
Product Package Temp Range
H
Blank Commercial Temperature
(0°C to +70°C Ambient)
Product
Family
89 Serial Switching Product
BC324 324-ball CABGA
BC
12NT3 12-lane, 3-port
1.0V +/- 0.1V Core Voltage
Detail
PCI Express Switch
PES
Legend
A = Alpha Character
N = Numeric Character
BCG324 324-ball CABGA, Green
BCG
AA
Revision
ID
ZB Silicon revision
IIndustrial Temperature
(-40° C to +85° C Ambient)