PROFETTM+ 12 V BTS5200-1ENA Smart High-Side Power Switch Single Channel, 200 m 1 Package PG-TDSO-8-31 Marking 5200-ENA Overview Application * Suitable for resistive, inductive and capacitive loads * Replaces electromechanical relays, fuses and discrete circuits * Most suitable for loads with high inrush current, such as lamps VBAT Voltage Regulator OUT T1 VS GND CVDD Z CVS ROL VS VDD GPIO RDEN DEN Microcontroller GPIO RIN D OUT OUT4 IN RPD ADC IN COUT Bulb IS RSENSE GND GND CSENSE RIS RGND Application Diagram with BTS5200-1ENA Data Sheet www.infineon.com 1 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Overview Basic Features * Single channel device * Very low stand-by current * 3.3 V and 5 V compatible logic inputs * Electrostatic discharge protection (ESD) * Optimized electromagnetic compatibility * Logic ground independent from load ground * Very low power DMOS leakage current in OFF state * Green product (RoHS compliant) and AEC qualified Description The BTS5200-1ENA is a 200 m single channel Smart High-Side Power Switch, embedded in a PG-TDSO-8-31, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 1x R10W 12V, as well as LEDs in the harsh automotive environment. Table 1 Product Summary Parameter Symbol Value Operating voltage range VS(OP) 5 V ... 28 V Maximum supply voltage VS(LD) 41 V Maximum ON state resistance at TJ = 150C RDS(ON) 400 m Nominal load current IL(NOM) 1.5 A Typical current sense ratio kILIS 300 Minimum current limitation IL5(SC) 9A Maximum standby current with load at TJ = 25C IS(OFF) 500 nA Diagnostic Functions * Proportional load current sense * Open load detection in ON and OFF * Short circuit to battery and ground indication * Overtemperature switch off detection * Stable diagnostic signal during short circuit * Enhanced kILIS dependency with temperature and load current Protection Functions * Stable behavior during undervoltage * Reverse polarity protection with external components * Secure load turn-off during logic ground disconnection with external components * Overtemperature protection with restart * Overvoltage protection with external components * Enhanced short circuit operation Data Sheet 2 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Block Diagram 2 Block Diagram VS voltage sen sor int ern al power supply driver logic IN DEN IS over temper atu re gat e cont rol & charge p ump ESD prot ec tion Data Sheet over cur rent switch limit load cu rrent sense and open load detection OUT forwar d voltage drop detection GND Figure 1 T clamp for ind uctive load Block diagram.emf Block Diagram for the BTS5200-1ENA 3 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Pin Configuration 3 Pin Configuration 3.1 Pin Assignment GND 1 8 OUT IN 2 7 OUT DEN 3 6 OUT IS 4 5 NC Pinout Sing le.vsd Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Table 2 Pin Definitions and Functions Pin Symbol Function 1 GND GrouND; Ground connection 2 IN INput channel; Input signal for channel activation 3 DEN Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device 4 IS Sense; Sense current of the selected channel 5 NC Not Connected; No internal connection to the chip 6, 7, 8 OUT OUTput; Protected high side power output channel1) Cooling Tab VS Voltage Supply; Battery voltage 1) All output pins must be connected together on the PCB. All pins of the output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. Data Sheet 4 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Pin Configuration 3.3 Voltage and Current Definition Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IVS VS IIN IN VIN IDEN VS VDS DEN VDEN IIS IS VIS IOUT OUT GND VOUT IGND voltage and current convention single.vsd Figure 3 Data Sheet Voltage and Current Definition 5 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 3 Absolute Maximum Ratings1) TJ = -40C to 150C; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number P_4.1.1 Supply Voltages Supply voltage VS -0.3 - 28 V - Reverse polarity voltage -VS(REV) 0 - 16 V t < 2 min P_4.1.2 TA = 25C RL 25 ZGND= Diode // 1 k Supply voltage for short circuit protection VBAT(SC) 0 - 24 V P_4.1.3 RSupply = 10 m LSupply = 5 H RECU= 20 m RCable= 16 m/m LCable= 1 H/m, l = 0 or 5 m See Chapter 6 and Figure 28 Supply voltage for Load dump protection VS(LD) - - 41 V 2) RI = 2 RL = 25 P_4.1.12 nRSC1 - - 100 k cycles 3) P_4.1.4 Voltage at INPUT pin VIN -0.3 - - 6 7 V - t < 2 min P_4.1.13 Current through INPUT pin IIN -2 - 2 mA - P_4.1.14 Voltage at DEN pin VDEN -0.3 - - 6 7 V - t < 2 min P_4.1.15 Current through DEN pin IDEN -2 - 2 mA - P_4.1.16 Voltage at IS pin VIS -0.3 - VS V - P_4.1.19 Current through IS pin IIS -25 - 50 mA - P_4.1.20 Load current | IL | - - IL5(SC) A - P_4.1.21 Power dissipation (DC) PTOT - - 1.8 W TA = 85C TJ < 150C P_4.1.22 Short Circuit Capability Permanent short circuit IN pin toggles tON = 300 ms Input Pins Sense Pin Power Stage Data Sheet 6 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA General Product Characteristics Table 3 Absolute Maximum Ratings1) TJ = -40C to 150C; (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Maximum energy dissipation EAS Single pulse - - 40 mJ IL(0) = 1 A TJ(0) = 150C VS = 13.5 V P_4.1.23 Maximum Energy dissipation EAR repetitive pulse - - 50 mJ 1Mio cycles TA < 105C VS = 13.5 V IL(0) = 350 mA P_4.1.25 Voltage at power transistor - - 41 V - P_4.1.26 -20 -150 - 20 20 mA - t < 2 min P_4.1.27 VDS Currents Current through ground pin I GND Temperatures Junction temperature TJ -40 - 150 C - P_4.1.28 Storage temperature TSTG -55 - 150 C - P_4.1.30 VESD -2 - 2 kV 4) HBM P_4.1.31 HBM P_4.1.32 ESD Susceptibility ESD susceptibility (all pins) ESD susceptibility OUT Pin vs. GND and VS connected VESD -4 - 4 kV 4) ESD susceptibility VESD -500 - 500 V 5) CDM P_4.1.33 ESD susceptibility pin (corner pins) VESD -750 - 750 V 5) CDM P_4.1.34 1) Not subject to production test. Specified by design. 2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1. 3) EOL tests according to AECQ100-012. Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit capability on the Back Cover of this document. 4) ESD susceptibility, Human Body Model "HBM", according to AEC Q100-002. 5) ESD susceptibility, Charge Device Model "CDM", according to AEC Q100-011. Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 7 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA General Product Characteristics 4.2 Functional Range Table 4 Functional Range TJ = -40C to 150C; (unless otherwise specified) Parameter Nominal operating voltage Symbol VNOM Values Unit Min. Typ. Max. 8 13.5 18 Note or Test Condition Number V - P_4.2.1 2) Extended operating voltage VS(OP) 5 - 28 V VIN = 4.5 V RL = 25 VDS < 0.5 V P_4.2.2 Minimum functional supply voltage VS(OP)_MIN 3.8 4.3 5 V 1) VIN = 4.5 V RL = 25 From IOUT = 0 A to VDS < 0.5 V; see Figure 15 P_4.2.3 Undervoltage shutdown VS(UV) 3 3.5 4.1 V 1) VIN = 4.5 V P_4.2.4 VDEN = 0 V RL = 25 From VDS < 1 V; to IOUT = 0 A See Chapter 9.1 and Figure 15 Undervoltage shutdown hysteresis VS(UV)_HYS - 850 - mV 2) Operating current channel active IGND_1 - 6 9 mA VIN = 5.5 V P_4.2.5 VDEN = 5.5 V Device in RDS(ON) VS = 18 V See Chapter 9.1 Standby current for whole device with load IS(OFF) - 0.1 0.5 A 1) VS = 18 V VOUT = 0 V VIN floating VDEN floating TJ 85C P_4.2.7 Maximum standby current for whole device with load IS(OFF)_150 - - 5 A VS = 18 V VOUT = 0 V VIN floating VDEN floating TJ = 150C P_4.2.10 Standby current for whole device with load, diagnostic active IS(OFF_DEN) - 0.6 - mA 2) P_4.2.8 - VS = 18 V VOUT = 0 V VIN floating VDEN = 5.5 V P_4.2.13 1) Test at TJ = -40C only 2) Not subject to production test. Specified by design. Data Sheet 8 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA General Product Characteristics Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Table 5 Thermal Resistance Parameter Symbol Junction to Case Values RthJC Junction to Ambient All channels active RthJA Min. Typ. Max. - 6 - - 39 - Unit Note or Test Condition Number K/W 1) P_4.3.1 K/W 1)2) P_4.3.2 1) Not subject to production test. Specified by design. 2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power dissipation at TA=105C. The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 7 m Cu, 2 x 35 m Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4. 4.3.1 PCB Set-Up 70m 1.5mm 35m 0.3mm Figure 4 PCB 2s2p.vsd 2s2p PCB Cross Section 1 2 3 8 7 COOLING TAB VS 6 4 5 thermique So8.vsd Figure 5 Data Sheet PC Board Top and Bottom View for Thermal Simulation with 600 mm Cooling Area 9 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA General Product Characteristics 4.3.2 Thermal Impedance 100 ZthJA (K/W) TAMBIENT = 105C 10 1 2s2p 1s0p - 600 mm 1s0p - 300 mm 1s0p - footprint 0,1 0,0001 Figure 6 0,001 0,01 0,1 1 10 Time (s) 100 1000 Typical Thermal Impedance. 2s2p PCB set-up according Figure 4 150 1s0p - Tambient = 105C 130 RthJA (K/W) 110 90 70 50 30 0 Figure 7 Data Sheet 100 200 300 Cooling area (mm) 400 500 600 Typical Thermal Impedance. 2s2p PCB set-up according Figure 4 10 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Power Stage 5 Power Stage The power stage is built using an N-channel vertical power MOSFET (DMOS) with charge pump. 5.1 Output ON-state Resistance The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8 shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 6.4. 400 320 350 300 280 260 RDS(ON) [m ] RDS(ON) [m ] 300 250 240 220 200 200 180 160 150 140 100 -40 Figure 8 120 -20 0 20 40 60 80 100 Junction Temperature TJ [C] 120 140 160 0 5 10 15 20 Supply Voltage VS [V] 25 30 35 Typical ON-state Resistance A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission. 5.2 Turn ON/OFF Characteristics with Resistive Load Figure 9 shows the typical timing when switching a resistive load. IN VIN_H VIN_L t VOUT dV/dt ON dV/dt t ON 90% VS tOFF_delay 70% VS 30% VS 10% VS OFF tON_delay tOFF t Switching times.vsd Figure 9 Data Sheet Switching a Resistive Load Timing 11 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Power Stage 5.3 Inductive Load 5.3.1 Output Clamping When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device by avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless, the maximum allowed load inductance is limited. VS ZDS(AZ) IN VDS LOGIC IL VBAT GND VIN OUT VOUT L, RL ZGND Output_clamp.vsd Figure 10 Output Clamp IN t V OUT VS t V S-VDS(AZ) IL t Switching an inductance.vsd Figure 11 Data Sheet Switching an Inductive Load Timing 12 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Power Stage 5.3.2 Maximum Load Inductance During demagnetization of inductive loads, energy has to be dissipated in the BTS5200-1ENA. This energy can be calculated with following equation: RL IL L V S - V DS ( AZ-) E = V DS ( AZ ) ------ ----------------------------- ln 1 - ------------------------------ + IL RL RL V S - V DS ( AZ ) (5.1) Following equation simplifies under the assumption of RL = 0 . VS 2 1 E = --- L I 1 - ------------------------------ 2 V S - V DS ( AZ ) (5.2) The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for the maximum allowed energy dissipation as a function of the load current. EAS [mJ] 100 10 1 0 0,5 1 1,5 2 2,5 3 IL [A] Figure 12 Data Sheet Maximum Energy Dissipation Single Pulse, TJ_START = 150C; VS = 13.5 V 13 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Power Stage 5.4 Inverse Current Capability In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are available. VBAT VS Gate driver Device logic INV Comp. IL(INV) VINV OUT GND ZGND inverse current.vsd Figure 13 Data Sheet Inverse Current Circuitry 14 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Power Stage 5.5 Electrical Characteristics Power Stage Table 6 Electrical Characteristics: Power Stage VS = 8 V to 18 V, TJ = -40C to 150C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number ON-state resistance RDS(ON)_150 300 360 400 m IL = IL4 = 1 A VIN = 4.5 V TJ = 150C See Figure 8 P_5.5.1 ON-state resistance RDS(ON)_25 - 200 - m 1) P_5.5.21 Nominal load current IL(NOM)1 - 1.5 - A 1) Output voltage drop limitation VDS(NL) at small load currents - 10 22 mV IL = IL0 = 25 mA P_5.5.4 See Chapter 9.3 TJ = 25C TA= 85C TJ < 150C P_5.5.2 Drain to source clamping voltage VDS(AZ) = [VS - VOUT] VDS(AZ) 41 47 53 V IDS = 20 mA P_5.5.5 See Figure 11 See Chapter 9.1 Output leakage current TJ 85C IL(OFF) - 0.1 0.5 A 2) VIN floating VOUT = 0 V TJ 85C P_5.5.6 Output leakage current TJ = 150C IL(OFF)_150 - 1 5 A VIN floating VOUT = 0 V TJ = 150C P_5.5.8 Inverse current capability IL(INV) - 1 - A 1) Vs< VOUTX See Figure 13 P_5.5.9 Slew rate 30% to 70% VS dV / dtON 0.20 0.47 1.0 V/s Slew rate 70% to 30% VS -dV / dtOFF 0.20 0.47 1.0 V/s P_5.5.11 RL = 25 VS = 13.5 V See Figure 9 P_5.5.12 See Chapter 9.1 Slew rate matching dV/dtON - dV/dtOFF dV/ dt -0.15 0 0.15 V/s P_5.5.13 Turn-ON time to VOUT = 90% VS tON 20 70 120 s P_5.5.14 Turn-OFF time to VOUT = 10% VS tOFF 20 70 120 s P_5.5.15 Turn-ON / OFF matching tOFF - tON tSW -50 0 50 s P_5.5.16 Turn-ON time to VOUT = 10% VS tON_delay 10 40 70 s P_5.5.17 Turn-OFF time to VOUT = 90% VS tOFF_delay 10 40 70 s P_5.5.18 Data Sheet 15 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Power Stage Table 6 Electrical Characteristics: Power Stage (cont'd) VS = 8 V to 18 V, TJ = -40C to 150C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition 1) Number Switch ON energy EON - 70 - J RL = 25 P_5.5.19 VOUT = 90% VS VS = 18 V See Chapter 9.1 Switch OFF energy EOFF - 80 - J 1) RL = 25 P_5.5.20 VOUT = 10% VS VS = 18 V See Chapter 9.1 1) Not subject to production test, specified by design. 2) Test at TJ = -40C only Data Sheet 16 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Protection Functions 6 Protection Functions The device provides integrated protection functions. These functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are designed for neither continuous nor repetitive operation. 6.1 Loss of Ground Protection In case of loss of the module ground and the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pins. In case of loss of device ground, it's recommended to use input resistors between the microcontroller and the BTS5200-1ENA to ensure switching OFF the channel. In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches the situation. ZGND is recommended to be a resistor in parallel to a diode . VS ZIS(AZ) ZD(AZ) IS RSENSE VBAT ZDS(AZ) DEN RDEN IN RIN IOUT(GND) LOGIC OUT L, RL ZDESD GND RIS ZGND Loss of ground protection single.vsd Figure 14 Loss of Ground Protection with External Components 6.2 Undervoltage Protection Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM range. Figure 15 sketches the undervoltage mechanism. Data Sheet 17 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Protection Functions VOUT undervoltage behavior .vsd VS(UV) Figure 15 Undervoltage Behavior 6.3 Overvoltage Protection VS VS(OP) There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to overvoltage, the BTS5200-1ENA remains ON. In the case the BTS5200-1ENA was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If the channel is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ZGND is recommended to be a resistor in parallel to a diode. ISOV ZIS(AZ) VS IN1 ZD(AZ) IS RSENSE VBAT ZDS(AZ) DEN RDEN IN RIN LOGIC IN0 OUT ZDESD GND RIS ZGND L, RL Overvoltage protection single.vsd Figure 16 Data Sheet Overvoltage Protection with External Components 18 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Protection Functions 6.4 Reverse Polarity Protection In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. The current in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RIN = RSENSE = 4.7 k. It is recommended to use a resistor in parallel to a diode in the ground path. During reverse polarity, no protection functions are available. Microcontroller protection diodes ZIS(AZ) VS ZD(AZ) IS RSENSE ZDS(AZ) VDS(REV) DEN RDEN LOGIC IN RIN -VS(REV) IN0 OUT ZD ESD GND IS RIS RGND D RIS L, RL Reverse Po larity parallel.vsd Figure 17 Reverse Polarity Protection with External Components 6.5 Overload Protection In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTS5200-1ENA offers several protection mechanisms. 6.5.1 Current Limitation At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects the current flowing in the DMOS. 6.5.2 Temperature Limitation in the Power DMOS The channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches the output until the temperature has reached an acceptable value. Figure 18 gives a sketch of the situation. A retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is switched ON again, if the IN pin is still high (restart behavior). Data Sheet 19 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Protection Functions IN t IL LOAD CURRENT LIMITATION PHASE IL(x)SC LOAD CURRENT BELOW LIMITATION PHASE IL(NOM) t TDMOS T J(SW) TJ(SC) TJ(SW) TJ(SW) TA tsIS(FAULT) t TSTEP IIS tsIS(OT_blank) IIS(FAULT) IL(NOM) / kILIS 0A VDEN t tsIS(OFF ) 0V t Hard start.vsd Figure 18 Overload Protection Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. Data Sheet 20 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Protection Functions 6.6 Electrical Characteristics for the Protection Functions Table 7 Electrical Characteristics: Protection VS = 8 V to 18 V, TJ = -40C to 150C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25C Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. IOUT(GND) - 0.1 - mA 1)2) VS = 28 V See Figure 14 P_6.6.1 VDS(REV) 200 650 700 mV 3) IL = - 1 A See Figure 17 P_6.6.2 VS(AZ) 41 47 53 V ISOV = 5 mA See Figure 16 P_6.6.3 Load current limitation IL5(SC) 9 11 14 A 4) VDS = 5 V See Figure 18 and Chapter 9.3 P_6.6.4 Short circuit current during over temperature toggling IL(RMS) - 2 - A 2) VIN =4.5V RSHORT=100 m LSHORT= 5 H P_6.6.12 Dynamic temperature increase while switching TJ(SW) - 80 - K 5) See Figure 18 P_6.6.8 Thermal shutdown temperature TJ(SC) 150 1705) 2005) C 3) See Figure 18 P_6.6.10 Thermal shutdown hysteresis TJ(SC) - 30 - K 3) 5) Loss of Ground Output leakage current while GND disconnected Reverse Polarity Drain source diode voltage during reverse polarity Overvoltage Overvoltage protection Overload Condition 1) 2) 3) 4) 5) See Figure 18 P_6.6.11 All pins are disconnected except VS and OUT. Not Subject to production test, specified by design Test at TJ = +150C only Test at TJ = -40C only Functional test only Data Sheet 21 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions 7 Diagnostic Functions For diagnosis purpose, the BTS5200-1ENA provides a combination of digital and analog signals at pin IS. These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case DEN is activated, the sense current of the channel is enabled. 7.1 IS Pin The BTS5200-1ENA provides a sense signal called IIS at pin IS. As long as no "hard" failure mode occurs (short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic mechanism is described on Figure 19. The accuracy of the sense current depends on temperature and load current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the supplied device. VS FAULT IIS(FAULT) IIS = IL / kILIS ZIS(AZ) 1 1 IS 0 0 DEN Sense schematic single.vsd Figure 19 Data Sheet Diagnostic Block Diagram 22 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions 7.2 SENSE Signal in Different Operating Modes Table 8 gives a quick reference for the state of the IS pin during device operation. Table 8 Sense Signal, Function of Operation Mode Operation Mode Input level Channel X DEN Output Level Diagnostic Output Normal operation OFF H Z Z Short circuit to GND ~ GND Z Overtemperature Z Z Short circuit to VS VS IIS(FAULT) Open Load < VOL(OFF) > VOL(OFF)1) Z IIS(FAULT) Inverse current ~ VINV IIS(FAULT) ~ VS IIS = IL/kILIS Current limitation < VS IIS(FAULT) Short circuit to GND ~ GND IIS(FAULT) Overtemperature TJ(SW) event Z IIS(FAULT) Short circuit to VS VS IIS< IL/ kILIS Open Load ~ VS2) IIS < IIS(OL) Inverse current ~ VINV IIS < IIS(OL)3) Underload ~ VS4) IIS (OL)< IIS < IL / kILIS Don't care Z Normal operation Don't care 1) 2) 3) 4) ON Don't care L Stable with additional pull-up resistor. The output current has to be smaller than IL(OL). After maximum tINV. The output current has to be higher than IL(OL). Data Sheet 23 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions 7.3 SENSE Signal in the Nominal Current Range Figure 20 shows the current sense as a function of the load current in the power DMOS. Usually, a pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 to limit the power losses in the sense circuitry. A typical value is 1.2 k. The blue curve represents the ideal sense current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full temperature range at a defined current. 6 5 IIS [mA] 4 3 2 1 min/max Sense Current typical Sense Current 0 0 Figure 20 Data Sheet 0.2 0.4 0.6 0.8 IL [A] 1 1.2 1.4 1.6 BTS5200-1EJA Current Sense for Nominal Load 24 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions 7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and temperature conditions, the BTS5200-1ENA allows limited derating of the kILIS value, at a given point (IL3; TJ = +25C). This derating is described by the parameter kILIS. Figure 21 shows the behavior of the sense current, assuming one calibration point at nominal load at +25C. The blue line indicates the ideal kILIS ratio. The red lines indicate the derating on the parameter across temperature and voltage, assuming one calibration point at nominal temperature and nominal battery voltage. The black lines indicate the kILIS accuracy without calibration. 500 calibrated k ILIS min/max k ILIS 450 typical k ILIS 400 k ILIS 350 300 250 200 150 0 0.2 0.4 0.6 0.8 IL [A] 1 1.2 1.4 1.6 BTS5200-1EJA Figure 21 Improved Current Sense Accuracy with One Calibration Point 7.3.2 SENSE Signal Timing Figure 22 shows the timing during settling and disabling of the SENSE. V IN t IL tON tOFF tON 90% of IL static t VDEN IIS tsIS(ON) 90% of IIS static t tsIS(LC) tsIS(OFF) tsIS(ON_DEN) t current sense settling disabling time .vsd Figure 22 Data Sheet Current Sense Settling / Disabling Timing 25 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions 7.3.3 SENSE Signal in Open Load 7.3.3.1 Open Load in ON Diagnostic If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 23 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal current sense. I IS IIS(OL) IL IL(OL) Sense for OL .vsd Figure 23 Current Sense Ratio for Low Currents 7.3.3.2 Open Load in OFF Diagnostic For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be taken into account. Figure 24 gives a sketch of the situation. Ileakage defines the leakage current in the complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the application. To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched to the IIS(FAULT). An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can be used as well for short circuit to battery detection, see Chapter 7.3.4. Data Sheet 26 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions Vbat SOL VS IIS(FAULT) ROL OL comp. OUT IS ILOFF Ileakage GND ZGND RIS VOL(OFF) RPD Rleakage Open Load in OFF.vsd Figure 24 Open Load Detection in OFF Electrical Equivalent Circuit 7.3.3.3 Open Load Diagnostic Timing Figure 25 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please note that a delay tsIS(FAULT_OL_ON_OFF) has to be respected after the falling edge of the input, when applying an open load in OFF diagnosis request, otherwise the diagnosis can be wrong. Load is present Open load VIN VOUT t VS-V OL(OFF) RDS(ON) x IL shutdown with load t IOUT IIS tsIS(FAULT_OL_ON_OFF) t tsIS(LC) Error Settling Disabling Time.vsd Figure 25 Sense Signal in Open Load Timing 7.3.4 SENSE Signal in Short Circuit to VS t In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the normal operation will flow through the DMOS of the BTS5200-1ENA, which can be recognized at the current sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case, an external resistor to ground RSC_VS is required. Figure 26 gives a sketch of the situation. Data Sheet 27 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions Vbat VS IIS(FAULT) VBAT OL comp. IS OUT GND RIS ZGND RSC_VS VOL(OFF) Short circuit to Vs.vsd Figure 26 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit 7.3.5 SENSE Signal in Case of Overload An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details. In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected. The device has a thermal restart behavior, such that when the overtemperature or the exceed dynamic temperature condition has disappeared, the DMOS is reactivated if the IN is still at logic level one. If the DEN pin is activated the SENSE is not toggling with the resstart mechanism and remains to IIS(FAULT). 7.3.6 SENSE Signal in Case of Inverse Current In the case of inverse current, the sense signal will indicate open load in OFF state and indicate open load in ON state. Data Sheet 28 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions 7.4 Electrical Characteristics Diagnostic Function Table 9 Electrical Characteristics: Diagnostics VS = 8 V to 18 V, TJ = -40C to 150C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Load Condition Threshold for Diagnostic Open load detection threshold in OFF state VS- VOL(OFF) 4 - 6 V VIN = 0 V VDEN = 4.5 V See Figure 25 P_7.5.1 Open load detection threshold in ON state IL(OL) 5 - 15 mA VIN = VDEN = 4.5 V IIS(OL) = 33 A See Figure 23 See Chapter 9.4 P_7.5.2 - 0.02 1 A VIN = 4.5 V VDEN = 0 V IL = IL4 = 1 A P_7.5.4 Sense Pin IS pin leakage current when IIS_(DIS) sense is disabled Sense signal saturation voltage VS- VIS (RANGE) 1 - 3.5 V 2) VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V IIS = 6 mA See Chapter 9.4 P_7.5.6 Sense signal maximum current in fault condition IIS(FAULT) 6 15 35 mA VIS = VIN = VDSEL = 0 V VOUT = VS > 10 V VDEN = 4.5 V See Figure 19 See Chapter 9.4 P_7.5.7 41 47 53 V IIS = 5 mA See Figure 19 P_7.5.3 Sense pin maximum voltage VIS(AZ) VS to IS Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition Current sense ratio IL0 = 10 mA kILIS0 -50% 330 +50% Current sense ratio IL1 = 0.05 A kILIS1 -40% 300 +40% Current sense ratio IL2 = 0.2 A kILIS2 -15% 300 +15% P_7.5.10 Current sense ratio IL3 = 0.5 A kILIS3 -11% 300 +11% P_7.5.11 Current sense ratio IL4 = 1 A kILIS4 -9% 300 +9% P_7.5.12 kILIS derating with current and temperature kILIS -5 0 +5 Data Sheet 29 VIN = 4.5 V VDEN = 4.5 V See Figure 20 TJ = -40C; 150C % 2) kILIS3 versus kILIS2 See Figure 21 P_7.5.8 P_7.5.9 P_7.5.17 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions Table 9 Electrical Characteristics: Diagnostics (cont'd) VS = 8 V to 18 V, TJ = -40C to 150C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Current sense settling time tsIS(ON) to kILIS function stable after positive input slope on both INput and DEN - - 150 s VDEN = VIN = 0 to 4.5 V P_7.5.18 VS = 13.5 V RIS = 1.2 k CSENSE < 100 pF IL = IL3 = 0.5 A See Figure 22 Current sense settling time tsIS(ON_DEN) with load current stable and transition of the DEN - - 10 s VIN = 4.5 V VDEN = 0 to 4.5 V RIS = 1.2 k CSENSE < 100 pF IL = IL3 =0.5 A See Figure 22 P_7.5.19 Current sense settling time to IIS stable after positive input slope on current load - - 15 s VIN = 4.5 V VDEN = 4.5 V RIS = 1.2 k CSENSE < 100 pF IL= IL2 = 0.2 A to IL = IL3= 0.5 A See Figure 22 P_7.5.20 - 50 s VIN = 0V VDEN = 0 to 4.5 V RIS = 1.2 k CSENSE < 100 pF VOUT = VS = 13.5 V See Figure 25 P_7.5.22 200 - s 2) VIN= 4.5 to 0 V VDEN =4.5 V RIS = 1.2 k CSENSE< 100 pF VOUT= VS = 13.5 V P_7.5.23 - 150 s 1) Diagnostic Timing in Normal Condition tsIS(LC) 2) Diagnostic Timing in Open Load Condition Current sense settling time to IIS stable for open load detection in OFF state Current sense settling time to IIS stable for open load detection in ON-OFF transition tsIS(FAULT_OL_ - OFF) tsIS(FAULT_OL_ - ON_OFF) Diagnostic Timing in Overload Condition Current sense settling time to IIS stable for overload detection Data Sheet tsIS(FAULT) - 30 VIN = VDEN = 0 to 4.5 V P_7.5.24 RIS = 1.2 k CSENSE < 100 pF VDS = 5 V See Figure 18 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Diagnostic Functions Table 9 Electrical Characteristics: Diagnostics (cont'd) VS = 8 V to 18 V, TJ = -40C to 150C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Current sense over temperature blanking time tsIS(OT_blank) - 350 - s 2) VIN = VDEN = 4.5 V RIS = 1.2 k CSENSE < 100 pF VDS = 5 V to 0 V See Figure 18 P_7.5.32 Diagnostic disable time DEN transition to IIS < 50% IL /kILIS tsIS(OFF) - - 20 s VIN = 4.5 V VDEN = 4.5 V to 0 V RIS = 1.2 k CSENSE < 100 pF IL = IL3 =0.5 A See Figure 22 P_7.5.25 1) Test at TJ = -40C only 2) Not subject to production test, specified by design Data Sheet 31 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Input Pins 8 Input Pins 8.1 Input Circuitry The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input circuitry is compatible with PWM applications. Figure 27 shows the electrical equivalent input circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an 4.7 k input resistor. IN GND Figure 27 Input Pin Circuitry 8.2 DEN Pin Input circuitry .vsd The DEN pins enable and disable the diagnostic functionality of the device. This pin has the same structure as the INput pin, please refer to Figure 27. 8.3 Input Pin Voltage The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a hysteresis is implemented. This ensures a certain immunity to noise. Data Sheet 32 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Input Pins 8.4 Electrical Characteristics Table 10 Electrical Characteristics: Input Pins VS = 8 V to 18 V, TJ = -40C to 150C (unless otherwise specified). Typical values are given at VS = 13.5 V, TJ = 25C Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number INput Pin Characteristics Low level input voltage range VIN(L) -0.3 - 0.8 V See Chapter 9.5 P_8.4.1 High level input voltage range VIN(H) 2 - 6 V See Chapter 9.5 P_8.4.2 Input voltage hysteresis VIN(HYS) - 250 - mV 1) Low level input current IIN(L) 1 10 25 A VIN = 0.8 V High level input current IIN(H) 2 10 25 A VIN= 5.5 V P_8.4.5 See Chapter 9.5 Low level input voltage range VDEN(L) -0.3 - 0.8 V - P_8.4.6 High level input voltage range VDEN(H) 2 - 6 V - P_8.4.7 Input voltage hysteresis VDEN(HYS) - 250 - mV 1) P_8.4.8 Low level input current IDEN(L) 1 10 25 A VDEN= 0.8 V P_8.4.9 High level input current IDEN(H) 2 10 25 A VDEN = 5.5 V P_8.4.10 P_8.4.3 See Chapter 9.5 P_8.4.4 DEN Pin 1) Not subject to production test, specified by design Data Sheet 33 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Characterization Results 9 Characterization Results The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed at 8 V, 13.5 V and 18 V over temperature range. When no dependency to voltage is seen, only one curve (13.5 V) is sketched. 9.1 General Product Characteristics P_4.2.4 6,00 6,00 5,50 5,50 5,00 5,00 4,50 4,50 [V] [V] P_4.2.3 4,00 4,00 3,50 3,50 3,00 3,00 2,50 2,50 2,00 2,00 -50 -25 0 25 50 75 100 125 -50 150 -25 0 25 Temperature [C] 50 75 100 Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ) Undervoltage Threshold VS(UV) = f(TJ) P_4.2.5 P_4.2.7, P_4.2.10 3,00 1,20 2,50 1,00 2,00 0,80 [A] [mA] 125 150 125 150 Temperature [C] 1,50 0,60 0,40 1,00 8V 0,50 0,20 13.5V 18V 0,00 0,00 -50 -25 0 25 50 75 100 125 150 -50 Current Consumption for Whole Device with Load Channel Active IGND_1 = f(TJ;VS) Data Sheet -25 0 25 50 75 100 Temperature [C] Temperature [C] Standby Current for Whole Device with Load IS(OFF)= f(TJ;VS) 34 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Characterization Results 9.2 Power Stage P_5.5.4 P_5.5.5 18,00 50,00 16,00 49,00 48,00 14,00 47,00 12,00 [V] [mV] 46,00 10,00 45,00 8,00 44,00 6,00 43,00 4,00 42,00 2,00 41,00 0,00 40,00 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 Temperature [C] Temperature [C] Output Voltage Drop Limitation at Low Load Drain to Source Clamp Voltage VDS(AZ) = f(TJ) Current VDS(NL) = f(TJ) P_5.5.12 1,00 1,00 0,90 0,90 0,80 0,80 0,70 0,70 0,60 0,60 [V\s] [V\s] P_5.5.11 0,50 0,40 0,50 0,40 0,30 0,30 8V 0,20 8V 0,20 13.5V 0,10 13.5V 0,10 18V 0,00 18V 0,00 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 Temperature [C] Temperature [C] Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 25 Slew Rate at Turn OFF -dV/dtOFF = f(TJ;VS), RL = 25 P_5.5.14 P_5.5.15 80,00 70,00 70,00 60,00 60,00 50,00 50,00 [s] 90,00 80,00 [s] 90,00 40,00 40,00 30,00 30,00 20,00 20,00 8V 13.5V 10,00 8V 13.5V 10,00 18V 18V 0,00 0,00 -50 -25 0 25 50 75 100 125 150 -50 Temperature [C] Turn ON tON = f(TJ;VS), RL = 25 Data Sheet -25 0 25 50 75 100 125 150 Temperature [C] Turn OFF tOFF = f(TJ;VS), RL = 25 35 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Characterization Results P_5.5.20 100,00 100,00 90,00 90,00 80,00 80,00 70,00 70,00 60,00 60,00 [J] [J] P_5.5.19 50,00 40,00 50,00 40,00 30,00 8V 30,00 8V 13.5V 20,00 13.5V 20,00 18V 18V 10,00 10,00 0,00 0,00 -50 -25 0 25 50 75 100 125 150 -50 Temperature [C] 0 25 50 75 100 125 150 Temperature [C] Switch ON Energy EON = f(TJ;VS), RL = 25 9.3 -25 Switch OFF Energy EOFF = f(TJ;VS), RL = 25 Protection Functions P_6.6.4 16,00 14,00 12,00 [A] 10,00 8,00 6,00 4,00 2,00 0,00 -50 -25 0 25 50 75 100 125 150 Temperature [C] Overload Condition in the Low Voltage Area IL5(SC) = f(TJ) Data Sheet 36 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Characterization Results 9.4 Diagnostic Mechanism P_7.5.2 14,00 1,60 1,40 12,00 1,20 10,00 1,00 [mA] [A] 8,00 0,80 6,00 0,60 4,00 0,40 8V 2,00 13.5V 0,20 18V 0,00 0,00 -50 -25 0 25 50 75 100 125 -50 150 -25 0 25 Temperature [C] 50 75 100 125 Current Sense at no Load IIS = f(TJ;VS), IL = 0 A Open Load Detection ON State Threshold IL(OL)= f(TJ) P_7.5.3 P_7.5.7 50,00 30,00 49,00 28,00 48,00 26,00 47,00 24,00 46,00 22,00 [mA] [V] 150 Temperature [C] 45,00 20,00 44,00 18,00 43,00 16,00 42,00 14,00 41,00 12,00 40,00 10,00 -50 -25 0 25 50 75 100 125 150 -50 Temperature [C] Sense Signal Maximum Voltage VIS(AZ) = f(TJ) Data Sheet -25 0 25 50 75 100 125 150 Temperature [C] Sense Signal Maximum Current in Fault Condition IIS(FAULT)= f(TJ) 37 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Characterization Results 9.5 Input Pins P_8.4.1 P_8.4.2 1,80 1,50 1,40 1,70 1,30 1,60 1,20 1,50 [V] [V] 1,10 1,00 0,90 1,40 1,30 0,80 1,20 0,70 1,10 0,60 0,50 1,00 -50 -25 0 25 50 75 100 125 -50 150 -25 0 25 Temperature [C] 50 75 100 125 150 75 100 125 150 Temperature [C] Input Voltage Threshold VIN(L)= f(TJ;VS) Input Voltage Threshold VIN(H)= f(TJ;VS) P_8.4.3 P_8.4.5 20,00 600,00 18,00 500,00 16,00 14,00 400,00 [A] [mV] 12,00 300,00 10,00 8,00 200,00 6,00 4,00 8V 100,00 13.5V 2,00 18V 0,00 0,00 -50 -25 0 25 50 75 100 125 150 -50 Input Voltage Hysteresis VIN(HYS)= f(TJ;VS) Data Sheet -25 0 25 50 Temperature [C] Temperature [C] Input Current High Level IIN(H)= f(TJ) 38 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Application Information 10 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBAT Voltage Regulator OUT T1 VS GND CVDD Z CVS ROL VS VDD GPIO RDEN DEN Microcontroller GPIO RIN D OUT OUT4 IN COUT RPD ADC IN Bulb IS RSENSE GND GND CSENSE RIS RGND Figure 28 Application Diagram with BTS5200-1ENA Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 11 Bill of Material Reference Value Purpose RIN 4.7 k Protection of the microcontroller during overvoltage, reverse polarity Guarantee BTS5200-1ENA channel is OFF during loss of ground RDEN 4.7 k Protection of the microcontroller during overvoltage, reverse polarity RPD 47 k Polarization of the output for short circuit to VS detection Improve BTS5200-1ENA immunity to electomagnetic noise ROL 1.5 k Ensures polarization of the BTS5200-1ENA output during open load in OFF diagnostic Data Sheet 39 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Application Information Table 11 Bill of Material (cont'd) Reference Value Purpose RIS 1.2 k Sense resistor RSENSE 4.7 k Overvoltage, reverse polarity, loss of ground. Value to be tuned with microcontroller specification. CSENSE 100 pF Sense signal filtering. COUT 10 nF Protection of the device during ESD and BCI RGND 1 k Protection of the BTS5200-1ENA during overvoltage D BAS21 Protection of the BTS5200-1ENA during reverse polarity Z 36 V Zener diode Protection of the device during overvoltage CVS 100 nF Filtering of voltage spikes at the battery line T1 BC 807 Switch the battery voltage for open load in OFF diagnostic 10.1 Further Application Information * Please contact us to get the pin FMEA * Existing App. Notes * For further information you may visit www.infineon.com/profet Data Sheet 40 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Package Outlines 11 Package Outlines Figure 29 PG-TDSO-8-31 (Plastic Dual Small Outline Package) (RoHS-Compliant) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Data Sheet 41 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Revision History 12 Revision History Version Date Changes 1.0 2018-05-14 Creation of the document Data Sheet 42 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PCB Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 11 12 12 13 14 15 6 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 18 19 19 19 19 21 7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 7.3.4 7.3.5 7.3.6 7.4 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 23 24 25 25 26 26 26 27 27 28 28 29 8 8.1 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Data Sheet 43 4 4 4 5 Rev. 1.0 2018-05-14 PROFETTM+ 12 V BTS5200-1ENA 8.2 8.3 8.4 DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9 9.1 9.2 9.3 9.4 9.5 Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 34 34 35 36 37 38 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Data Sheet 44 Rev. 1.0 2018-05-14 Please read the Important Notice and Warnings at the end of this document Trademarks of Infineon Technologies AG HVICTM, IPMTM, PFCTM, AU-ConvertIRTM, AURIXTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, CoolDPTM, CoolGaNTM, COOLiRTM, CoolMOSTM, CoolSETTM, CoolSiCTM, DAVETM, DI-POLTM, DirectFETTM, DrBladeTM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPACKTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, GaNpowIRTM, HEXFETTM, HITFETTM, HybridPACKTM, iMOTIONTM, IRAMTM, ISOFACETM, IsoPACKTM, LEDrivIRTM, LITIXTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OPTIGATM, OptiMOSTM, ORIGATM, PowIRaudioTM, PowIRStageTM, PrimePACKTM, PrimeSTACKTM, PROFETTM, PRO-SILTM, RASICTM, REAL3TM, SmartLEWISTM, SOLID FLASHTM, SPOCTM, StrongIRFETTM, SupIRBuckTM, TEMPFETTM, TRENCHSTOPTM, TriCoreTM, UHVICTM, XHPTM, XMCTM. Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-05-14 Published by Infineon Technologies AG 81726 Munich, Germany (c) 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference BTS5200-1ENA IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. Legal Disclaimer for Short-Circuit Capability Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures below the threshold limit. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.