1
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
S2068
®
DUAL GIGABIT ETHERNET TRANSCEIVER
DEVICE
SPECIFICATION
FEATURES
Functionally compliant with IEEE 802.3z Gigabit
Ethernet Applications
1250 MHz (Gigabit Ethernet) operating rate
– Half rate operation
Dual Transmitter incorporating phase-locked
loop (PLL) clock synthesis from low speed
reference
Dual Receiver PLL provides clock and data
recovery
Internally series terminated TTL outputs
Low-jitter serial PECL interface
Local Loopback
Interfaces with coax, twinax, or fiber optics
Single +3.3V supply, 1.37W power dissipation
Compact 21mm x 21mm 156 TBGA package
APPLICATIONS
High-speed data communications
Ethernet Backbones
Multi-port Gigabit Ethernet Cards
Switched networks
Data broadcast environments
GENERAL DESCRIPTION
The S2068 dual transmitter and receiver chip is de-
signed to provide two channels of high-speed serial
data transmission over fiber optic or copper interfaces
conforming to the requirements of the IEEE 802.3z
Gigabit Ethernet specification. The chip runs at
1250.0 Mbps serial data rate with an associated
10-bit parallel data word. The chip provides two sepa-
rate receive PLLs which can be operated asynchro-
nously at slightly different frequencies.
Each bi-directional channel provides parallel to serial
and serial-to-parallel conversion, clock generation
and recovery, and framing. The on-chip transmit PLL
synthesizes the high-speed clock from a low-speed
reference. The on-chip dual receive PLL is used for
clock recovery and data re-timing on the two inde-
pendent data inputs. The transmitter and receiver
each support differential PECL-compatible I/O for
copper or fiber optic component interfaces and pro-
vide excellent signal integrity. Local loopback mode
allows for system diagnostics. The chip requires a
3.3V power supply and dissipates 1.37 watts.
Figure 1 shows the use of the S2062 and S2068 in a
Gigabit Ethernet application. Figure 2 summarizes
the input/output signals of the device. Figures 3 and
4 show the transmit and receive block diagrams, re-
spectively.
Figure 1. Typical Dual Gigabit Ethernet Application
MAC
(ASIC)
S2062
DUAL
GIGABIT
ETHERNET
INTERFACE MAC
(ASIC)
TO SERIAL
BACKPLANE
S2068
GE INTERFACE SERIAL BP DRIVER
2
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 2. S2068 Input/Output Diagram
REFCLK
RATE
RESET
TCLKO
TXAP/N
TXBP/N
RXAP/N
RXBP/N
DINA[0:9]
10
DINB[0:9]
10
TBCA
TBCB
10
RBC1/0A
10
RBC1/0B
DOUTA[0:9]
DOUTB[0:9]
CLKSEL
TMODE
COM_DETA
COM_DETB
LPEN
CMODE
TESTMODE1
TESTMODE
3
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 3. Transmitter Block Diagram
10
DINA[0:9]
TMODE
10
Shift
Reg
10
DINB[0:9] 10
Shift
Reg
TBCB
DIN PLL
10x/20x
REFCLK
CLKSEL
RATE REFCLK
TCLKO
FIFO
(input)
FIFO
(input)
TBCA
TXAP
TXAN
TXABP
TXBP
TXBN
TXBBP
01
01
4
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 4. Receiver Block Diagram
DOUT CRU
Serial-
Parallel
DOUT CRU
Serial-
Parallel
DOUTA[0:9] RXAP
RXAN
RXBP
RXBN
DOUTB[0:9]
Q
FIFO
(output)
TXBBP
TXABP
REFCLK
10
10
RBC1/0A 2
RBC1/0B 2
CMODE
RATE
FIFO
(output) 10
10
COM_DETA
COM_DETB
LPEN
TMODE
5
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
TRANSMITTER DESCRIPTION
The transmitter section of the S2068 contains a
single PLL which is used to generate the serial rate
transmit clock for all transmitters. Transmitter
functionalities shown schematically in Figure 3. Two
channels are provided with a variety of options re-
garding input clocking and loopback. The transmit-
ters operate at 1.250 GHz, 10 or 20 times the
reference clock frequency.
Data Input
The S2068 has been designed to simplify the paral-
lel interface data transfer and provides flexibility in
the clocking of parallel data. Prior implementations
of this function have either forced the user to syn-
chronize transmit data to the reference clock or to
provide the output clock as a reference to the PLL,
resulting in increased jitter at the serial interface.
The S2068 incorporates a unique FIFO structure
which enables the user to provide a “clean” refer-
ence source for the PLL and to accept a separate
external clock which is used exclusively to reliably
clock data into the device.
The S2068 also provides a system clock output,
TCLKO, which is derived from the internal VCO. The
frequency of this output is constant at the parallel
word rate, 1/10 the serial data rate, regardless of
whether the reference is provided at 1/10 or 1/20 the
serial data rate. This clock can be used by upstream
circuitry as a system clock. See Table 1.
Data to be input to the S2068 should be coded to
ensure transition density and DC balance. Data is
input to each channel of the S2068 as a 10 bit wide
word. An input FIFO and a clock input, TBCx, are
provided for each channel of the S2068. This device
can operate in two different modes. The S2068 can
be configured to use either the TBCx (TBC MODE)
input or the REFCLK input (REFCLK MODE). Table
2 provides a summary of the input modes for the
S2068.
Operation in the TBC MODE makes it easier for us-
ers to meet the relatively narrow setup and hold time
window required by the 125 Mbit/sec 10 bit interface.
The TBC signal is used to clock the data into an
internal holding register and the S2068 synchronizes
its internal data flow to ensure stable operation.
REFCLK, not TBCx, is used as the reference for the
transmit PLL. This ensures minimum jitter on the
high speed serial data stream.
ETARLESKLC KLCFER ycneuqerF tuptuOlaireS etaR 0KLCT ycneuqerF
00 01/RDSspbM052101/RDS
01 02/RDSspbM052101/RDS
10 01/RDSspbM52601/RDS
11 02/RDSspbM52601/RDS
Table 1. Operating Rates
REFCLK
S2068
125 MHz or 62.5 MHz
TBCx
DINx[0:9]
REF
OSCILLATOR
MAC
ASIC
TCLKO
PLL
Figure 5. DIN Clocking with TBC
Note that internal synchronization of FIFOs is performed upon
de-assertion of RESET.
EDOMTnoitarepO
0atadkcolcotdesuKLCFER.edoMKLCFER .slennahcllarofsOFIFotni
1sOFIFotniatadkcolcotdesuxCBT.edoMCBT .slennahcllarof
Table 2. Input Modes
Note: SDR = Serial Data Rate.
6
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
The TBC must be frequency locked to REFCLK, but
may have an arbitrary but fixed phase relationship.
Adjustment of internal timing of the S2068 is per-
formed during reset. Once synchronized, the S2068
can tolerate up to ±3ns of phase drift between TBC
and REFCLK.
Figure 5 demonstrates the flexibility afforded by the
S2068. A low jitter reference is provided directly to
the S2068 at either 1/10 or 1/20 the serial data rate.
This insures minimum jitter in the synthesized clock
used for serial data transmission. A system clock
output at the parallel word rate, TCLKO, is derived
from the PLL and provided to the upstream circuit as
a system clock. This clock can be buffered as re-
quired without concern about added delay. There is
no phase requirement placed upon TCLKO and the
TBCx clock, which is provided back to the S2068,
other than that they remain within ± 3ns of the phase
relationship established at reset.
The S2068 also supports the traditional REFCLK
clocking found in many Gigabit Ethernet applications
and is illustrated in Figure 6.
Half Rate Operation
The S2068 supports full and half rate operation for
all modes of operation. When RATE is LOW, the
S2068 serial data rate equals the VCO frequency.
When RATE is HIGH, the VCO is divided by two
before being provided to the chip. Thus, the S2068
can support Gigabit Ethernet and serial backplane
functions at full and half the VCO rate.
Parallel to Serial Conversion
The 10-bit parallel data handled by the S2068 device
should be from a DC-balanced encoding scheme,
such as the 8B/10B transmission code, in which in-
formation to be transmitted is encoded, 8 bits at a
time, into a 10-bit transmission character and must
be compliant with IEEE 802.3z Gigabit Ethernet.
The 8B/10B transmission code includes serial en-
coding and decoding rules, special characters, and
error control. Information is encoded, 8 bits at a time,
into a 10 bit transmission character. The characters
defined by this code ensure that short run lengths
and enough transitions are present in the serial bit
stream to make clock recovery possible at the re-
ceiver. The encoding also greatly increases the like-
lihood of detecting any single or multiple errors that
might occur during the transmission and reception of
data1.
Table 3 identifies the mapping of the 8B/10B charac-
ters to the data inputs of the S2068. The S2068 will
serialize the parallel data for each channel and will
transmit bit “a” or DIN[0] first.
Frequency Synthesizer (PLL)
The S2068 synthesizes a serial transmit clock from
the reference signal provided. The S2068 will obtain
phase and frequency lock within 2500 bit times after
the start of receiving reference clock inputs. Reliable
locking of the transmit PLL is assured, but a lock-
detect output is NOT provided.
Reference Clock Input
The reference clock input must be supplied with a
low-jitter clock source. All reference clocks in a sys-
tem must be within 200 ppm of each other to insure
that the clock recovery units can lock to the serial
data.
etyBataD
]9:0[TUODro]9:0[NID 0123456789
.rper.hplaB01/B8 abcdeifghj
Table 3. Data to 8B/10B Alphabetic Representation
1. A.X. Widner and P.A. Franaszek, "A Byte-Oriented DC Bal-
anced (0,4) 8B/10B Transmission Code," IBM Research Report
RC9391, May 1982.
Figure 6. GE DIN Clocking with REFCLK
REFCLK
S2068
TBCx
DINx[0:9]
REF
OSCILLATOR
MAC
ASIC
TCLKO PLL
125 MHz
7
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
The frequency of the reference clock must be either
1/10 the serial data rate, CLKSEL = 0, or 1/20 the
serial data rate, CLKSEL = 1. Note that in both
cases, the frequency of the parallel word rate output,
TCLKO, is constant at 1/10 the serial data rate.
Serial Data Outputs
The S2068 provides LVPECL level serial outputs.
Each high speed output should be provided with a
resistor to VSS (Gnd) near the device. A value of
4.5K provides optimal performance with minimum
impact on power dissipation. The resistance may be
as low as 450 , but will dissipate additional power
with no substantive performance improvement.
Transmit FIFO Initialization
The transmit FIFO must be initialized after stable de-
livery of data and TBC to the parallel interface, and
before entering the normal operational state of the
circuit. FIFO initialization is performed upon the de-
assertion of the RESET signal. The TCLKO output will
operate normally even when RESET is asserted and
is available for use as an upstream clock source.
RECEIVER DESCRIPTION
Each receiver channel is designed to implement the
IEEE 802.3z Gigabit Ethernet receiver function
through the physical layer. A block diagram showing
the basic function is provided in Figure 4.
Whenever a signal is present, the receiver attempts
to recover the serial clock from the received data
stream. After acquiring bit synchronization, the
S2068 searches the serial bit stream for the occur-
rence of a K28.5 character on which to perform word
synchronization. Once synchronization on both bit
and word boundaries is achieved, the receiver pro-
vides the word-aligned data on its parallel outputs.
Data Input
A differential input receiver is provided for each
channel of the S2068. Each channel has a loopback
mode in which the serial data from the transmitter
replaces external serial data. The loopback function
for the two channels is controlled by the loopback
enable signal, LPEN.
The high speed serial inputs to the S2068 are inter-
nally biased to VDD-1.3V. This facilities AC-coupling
of the differential inputs and termination with a single
differential termination.
Clock Recovery Function
Clock recovery is provided for each channel of the
S2068. The receiver PLL has been optimized for the
needs of Gigabit Ethernet systems. A simple state
machine in the clock recovery macro decides whether
to acquire lock from the serial data input or from the
reference clock. The decision is based upon the fre-
quency and run length of the serial data inputs.
The run-length requirements insure that the S2068
will respond appropriately and quickly to a loss of
signal. The run-length checker looks for a minimum
of 120 consecutive ones or zeros. The checking is
done in parallel, thus 12 parallel words are exam-
ined.
An off-frequency detection circuit in the S2068 moni-
tors the receiver VCO frequency to insure that the
input signal is at a valid data rate. The data stream
must be within 200 ppm of the appropriate rate for
reliable locking of the CRU to the data stream.
If both the off-frequency test and the run-length test
are satisfied, the CRU will attempt to lock to the
incoming data. Note that if the run length test is sat-
isfied due to noise on the inputs, and no signal is
present, the receiver VCO will maintain frequency
accuracy to within 100 ppm of the target rate as
determined by the REFCLK.
In any transfer of PLL control from the serial data to
the reference clock, the RBC1/0x outputs remain
phase continuous and glitch free, assuring the integ-
rity of downstream clocking.
If at any time, the frequency or run length checks are
violated, the state machine forces the VCO to lock to
the reference clock. This is required to guarantee
that the VCO maintains the correct frequency in the
absence of data.
Reference Clock Input
The reference clock must be provided from a low
jitter clock source. The frequency of the received
data stream (divided by 10 or 20) must be within 200
ppm of the reference clock to insure reliable locking
of the receiver PLL. A single reference clock is pro-
vided to both the transmitter and the receiver of the
S2068.
8
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Serial-to-Parallel Conversion
Once bit synchronization has been attained by the
S2068 CRU, the S2068 must synchronize to the 10
bit word boundary. Word synchronization in the
S2068 is accomplished by detecting and aligning to
the 8B/10B K28.5 codeword. The S2068 will detect
and byte-align to either polarity of the K28.5. Each
channel of the S2068 will detect and align to a K28.5
anywhere in the data stream. The presence of a
K28.5 is indicated for each channel by the assertion
of the COM_DETx (Comma Detect) signal.
Data Output
Data is output on the DOUTx[0:9] outputs. The
COM_DETx signal is used to indicate the reception
of a valid K28.5 character and is driven concurrent
with the K28.5 character on the DOUTx[0:9] outputs.
The S2068 TTL outputs are optimized to drive 65
line impedences. Internal source matching provides
good performance on unterminated lines of reason-
able length.
Parallel Output Clock Rate
Two output clock modes are supported. When
CMODE is HIGH, a complementary TTL clock at the
data rate is provided on the RBC1/0x outputs. Data
should be clocked on the rising edge of RBC1x.
When CMODE is LOW, the S2068 outputs a
complementary TTL clock at 1/2 the data rate in
compliance with the the Gigabit Ethernet Physical
Media Attachment (PMA) specification. Data should
be latched on the rising edge of RBC1x and the
rising edge of RBC0x.
If consecutive K28.5 characters are received, the
S2068 RBC1/0x clock operates without glitches or
loss of cycles.
edoMEDOMC.qerFx0/1CBR
edoMkcolCflaH0zHM5.26
edoMkcolClluF1zHM521
Table 4. Output Clock Modes
9
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
emaNniPleveLO/I#niPnoitpircseD
PAXT NAXT .ffiD LCEPVL O61D 51E .AlennahCrofstuptuolairesdeepshgiH
PBXT NBXT .ffiD LCEPVL O51G 61G .BlennahCrofstuptuolairesdeepshgiH
OKLCTLTTO 41KrofdedivorpsikcolcsihT.etaratadlellarapehttakcolCtuptuOLTT .yrtiucricmaerts-puybesu
Table 6. Transmitter Output Signals Assignment and Descriptions
emaNniPleveLO/I#niPnoitpircseD
9ANID 8ANID 7ANID 6ANID 5ANID 4ANID 3ANID 2ANID 1ANID 0ANID
LTTI 51T 31R 21P 41T 21R 11P 31T 11R 21T 01P
dekcolcsisubsihtnoatadlellaraP.AlennahCrofataDtimsnarT .KLCFERroACBTfoegdegnisirehtnoni
ACBTLTTI 01Rdesusilangissiht,hgiHsiEDOMTnehW.AkcolCetyBtimsnarT ,woLsiEDOMTnehW.8602Sehtotni]9:0[ANIDnoataDkcolcot .derongisiACBT
9BNID 8BNID 7BNID 6BNID 5BNID 4BNID 3BNID 2BNID 1BNID 0BNID
LTTI51L 41L 61M 51M 41M 61N 51N 41N 61P 51P
nidekcolcsisubsihtnoatadlellaraP.BlennahCrofataDtimsnarT .KLCFERroBCBTfoegdegnisirehtno
BCBTLTTI 61Rdesusilangissiht,hgiHsiEDOMTnehW.BkcolCetyBtimsnarT ,woLsiEDOMTnehW.8602Sehtotni]9:0[BNIDnoataDkcolcot .derongisiBCBT
Table 5. Transmitter Input Signals Assignment and Descriptions
Note: All TTL inputs except REFCLK have internal pull-up networks.
10
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Table 7. Receiver Output Signals Assignment and Descriptions
emaNniPleveLO/I#niPnoitpircseD
9ATUOD 8ATUOD 7ATUOD 6ATUOD 5ATUOD 4ATUOD 3ATUOD 2ATUOD 1ATUOD 0ATUOD
LTTO2J2G2L1L2K1K3J1J3H2H
dilavsisubsihtnoatadlellaraP.stuptuOataDrevieceRAlennahC ehtnodilavdnaedomkcolcllufniA1CBRfoegdegnisirehtno .edomkcolcflahniA0CBRdnaA1CBRhtobfoegdegnisir
ATED_MOCLTTO1GatahtsetacidnituptuosihtnohgiHA.tceteDammoCAlennahC atadlellarapehtnotneserpsidnadetcetedneebsah5.82Kdilav .]9:0[ATUODstuptuo
A1CBR A0CBR LTTO1M3L dna]9:0[ATUOD,atadeviecerlellaraP.skcolCetyBevieceR llufninehwA1CBRfoegdegnisirehtnodilaveraATED_MOC dnaA1CBRhtobfoegdegnisirehtnodilavdnaedomkcolc .edomkcolcflahniA0CBR
9BTUOD 8BTUOD 7BTUOD 6BTUOD 5BTUOD 4BTUOD 3BTUOD 2BTUOD 1BTUOD 0BTUOD
LTTO4P1R8P5T6R6P5R3T5P3R
dilavsisubsihtnoatadlellaraP.stuptuOataDrevieceRBlennahC ehtnodilavdnaedomkcolcllufniB1CBRfoegdegnisirehtno .edomkcolcflahniB0CBRdnaB1CBRhtobfoegdegnisir
BTED_MOCLTTO2PatahtsetacidnituptuosihtnohgiHA.tceteDammoCBlennahC atadlellarapehtnotneserpsidnadetcetedneebsah5.82Kdilav .]9:0[BTUODstuptuo
B1CBR B0CBR LTTO7R7P dna]9:0[BTUOD,atadeviecerlellaraP.skcolCetyBevieceR llufninehwB1CBRfoegdegnisirehtnodilaveraBTED_MOC dnaB1CBRhtobfoegdegnisirehtnodilavdnaedomkcolc .edomkcolcflahniB0CBR
11
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
emaNniPleveLO/I#niPnoitpircseD
EDOMTSETLTTI3D.noitarepolamronrofwoLpeeK.lortnoCedoMtseT
1EDOMTSETLTTI61L.noitarepolamronrofwoLpeeK.lortnoCedoMtseT
EDOMTLTTI 31AdesusiKLCFER,woLsiEDOMTnehW.lortnoCedoMtimsnarT siEDOMTnehW.8602Sehtotni]9:0[xNIDnoatadkcolcot .8602SehtotniatadkcolcotdesusixCBT,hgiH
LESKLCLTTI 11BehtrofLLPehtserugifnoclangissihT.tupnItceleSKLCFER KLCFEReht,0=LESKLCnehW.ycneuqerfKLCFERetairporppa nehW.etardrowlellarapehtlauqedluohsycneuqerf lellarapeht2/1ebdluohsycneuqerfKLCFEReht,1=LESKLC .etaratad
KLCFERLTTI51JycneuqerfdnaOCVtimsnartehtrofdesusikcolCecnerefeR .atadlairesreviecerehtmorfderevocerkcolcehtrofkcehc
TESERLTTI 51BdecrofsiLLPreviecerehT.tesernidlehsi8602Seht,woLnehW egdegnisirehtnodezilaitinierasOFIFehT.KLCFERehtotkcolot .yllamronsetarepo8602Seht,hgiHnehW.TESERfo
ETARLTTI 11Clauqeetartuptuolairesehthtiwsetarepo8602Seht,woLnehW ehthtiwsetarepo8602Seht,hgiHnehW.ycneuqerfOCVehtot .snoitcnufllarof2ybdedividyllanretniOCV
Table 10. Mode Control Signal Assignment and Descriptions
Table 8. Receiver Input Signals Assignment and Descriptions
emaNniPleveLO/I#niPnoitpircseD
PAXR NAXR .ffiD LCEPVL I5B4A ehtsiPAXR.AlennahcrofstupnielbitapmocLCEPVLlaitnereffiD DDVotdesaibyllanretnI.evitagenehtsiNAXR,tupnievitisop .snoitacilppadelpuocCArofV3.1-
PBXR NBXR .ffiD LCEPVL I01B 11A ehtsiPBXR.BlennahcrofstupnielbitapmocLCEPVLlaitnereffiD DDVotdesaibyllanretnI.evitagenehtsiNBXR,tupnievitisop .snoitacilppadelpuocCArofV3.1-
Table 9. Receiver Control Signals Assignment and Descriptions
emaNniPleveLO/I#niPnoitpircseD
NEPLLTTI 41Cehtsilennahchcaerofecruostupni,woLnehW.elbanEkcabpooL hcaeroftuptuolaireseht,hgiHnehW.tuptuolairesdeepshgih .tupnistiotkcabdepoolsilennahc
EDOMCLTTI2Cskcolctuptuolellarapeht,woLnehW.lortnoCedoMkcolC lellarapeht,hgiHnehW.etaratadeht2/1slauqeetar)x0/1CBR( .etaratadehtotlauqesietar)x0/1CBR(skcolctuptuo
Note: All TTL inputs except REFCLK have internal pull-up networks.
Note: All TTL inputs except REFCLK have internal pull-up networks.
12
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
emaNniP.ytQ#niPnoitpircseD
ADDV3 5C31B8B.esionwol)DDV(rewoPgolanA
ASSV3 31C4B8A.)SSV(dnuorGgolanA
DDV3 6C21B01A.)DDV(yrtiucricdeepshgihrofrewoP
SSV BUSSSV 821A7A5A3A 21C01C8C41A .)SSV(yrtiucricdeepshgihrofdnuorG
RWPLCEP2 61J41G.)DDV(rewoPLCEP
DNGLCEP3 61F51D61C.)SSV(dnuorGLCEP
RWPGID5 1N61K2D1C2B.)DDV(rewoPyrtiucriceroC
DNGGID8 41J3E2E1D3C 1T1P51K .)SSV(dnuorGyrtiucriceroC
RWPLTT9 3N2M1H3G1F 7T8R4R9P .)DDV(O/ILTTrofrewoP
DNGLTT113M3K3F2F1E 8T4T2T3P2N 11T
.)SSV(O/ILTTrofdnuorG
RWP4 9B1B61A2A.rewoP
DNG9 9C6B3B9A6A 61H51H51F61E .dnuorG
1PAC 2PAC 251A 41B .roticapacretlifpoollanretxerofsniP
CN027C4C61B7B1A 41F41E41D51C 2R41P31P41H 6T51R41R9R 61T01T9T
.tcennoCtoNoD.sniPtseTsadesU.detcennoctoN
Table 11. Power and Ground Signals Assignment and Descriptions
13
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 7. S2068 Pinout (Bottom View)
A B C D E F G H J K L M N P R T
1CNRWPRWPGIDDNGGIDDNGLTTRWPLTT _MOC ATED RWPLTT2ATUOD4ATUOD6ATUODA1CBRRWPGIDDNGGID8BTUODDNGGID
2RWPRWPGIDEDOMCRWPGIDDNGGIDDNGLTT8ATUOD0ATUOD9ATUOD5ATUOD7ATUODRWPLTTDNGLTT _MOC BTED CNDNGLTT
3BUSSSVDNGDNGGID TSET EDOM DNGGIDDNGLTTRWPLTT1ATUOD3ATUODDNGLTTA0CBRDNGLTTRWPLTTDNGLTT0BTUOD2BTUOD
4NAXRASSVCN 9BTUODRWPLTTDNGLTT
5SSVPAXRADDV 1BTUOD3BTUOD6BTUOD
6DNGDNGDDV 4BTUOD5BTUODCN
7BUSSSVCNCN B0CBRB1CBRRWPLTT
8ASSVADDVBUSSSV 7BTUODRWPLTTDNGLTT
9DNGRWPDNG RWPLTTCNCN
01 DDVPBXRSSV 0ANIDACBTCN
11 NBXRLESKLCETAR 4ANID2ANIDDNGLTT
21 BUSSSVDDVBUSSSV 7ANID5ANID1ANID
31 EDOMTADDVASSV CN8ANID3ANID
41 SSV2PACNEPLCNCNCNLCEP RWP CNDNGGIDOKLCT8BNID5BNID2BNIDCNCN6ANID
51 1PACTESERCNLCEP DNG NAXTDNGPBXTDNGKLCFERDNGGID9BNID6BNID3BNID0BNIDCN9ANID
61 RWPCNDNGLCEPPAXTDNG LCEP DNG NBXTDNG LCEP RWP RWPGID TSET 1EDOM 7BNID4BNID1BNIDBCBTCN
Note: NC used as Test Pins. Do Not Connect.
14
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 8. S2068 Pinout (Top View)
T R P N M L K J H G F E D C B A
DNGGID8BTUODDNGGIDRWPGIDA1CBR6ATUOD4ATUOD2ATUODRWPLTT _MOC ATED RWPLTTDNGLTTDNGGIDRWPGIDRWPCN1
DNGLTTCN_MOC BTED DNGLTTRWPLTT7ATUOD5ATUOD9ATUOD0ATUOD8ATUODDNGLTTDNGGIDRWPGIDEDOMCRWPGIDRWP 2
2BTUOD0BTUODDNGLTTRWPLTTDNGLTTA0CBRDNGLTT3ATUOD1ATUODRWPLTTDNGLTTDNGGID TSET EDOM DNGGIDDNGBUSSSV 3
DNGLTTRWPLTT9BTUOD CNASSVNAXR 4
6BTUOD3BTUOD1BTUOD ADDVPAXRSSV 5
CN5BTUOD4BTUOD DDVDNGDNG 6
RWPLTTB1CBRB0CBR CNCNBUSSSV 7
DNGLTTRWPLTT7BTUOD BUSSSVADDVASSV 8
CNCNRWPLTT DNGRWPDNG 9
CNACBT0ANID SSVPBXRDDV 01
DNGLTT2ANID4ANID ETARLESKLCNBXR 11
1ANID5ANID7ANID BUSSSVDDVBUSSSV 21
3ANID8ANIDCN ASSVADDVEDOMT 31
6ANIDCNCN2BNID5BNID8BNIDOKLCTDNGGIDCNLCEP RWP CNCNCNNEPL2PACSSV 41
9ANIDCN0BNID3BNID6BNID9BNIDDNGGIDKLCFERDNGPBXTDNGNAXT LCEP DNG CNTESER1PAC 51
CNBCBT1BNID4BNID7BNID TSET 1EDOM RWPGID LCEP RWP DNGNBXT LCEP DNG DNGPAXTDNGLCEPCNRWP 61
Note: NC used as Test Pins. Do Not Connect.
15
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 9. 156 TBGA Package
Device
S2068 19.8˚C/W
Θja
3.5˚C/W
Θjc
Thermal Management
16
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 11. Transmitter Timing (TBC Mode, TMODE = 1)
Table 13. S2068 Transmitter Timing (TBC Mode, TMODE = 1)
TBCx
DINx[0:9]
T
1
T
2
SERIAL DATA OUT
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
T
1
CBT.t.r.wputeSataD0.1sn.1etoNeeS
T
2
CBT.t.r.wdloHataD5.0sn
xCBTneewtebtfirdesahP KLCFERdna 3–3+sn
1. All AC measurements are made from the reference voltage level of the clock (1.4V) to the valid input or
output data levels (.8V or 2.0V).
C
E
R
T
I
F
I
E
D
I
S
O
9
0
0
1
Figure 10. Transmitter Timing (REFCLK Mode, TMODE = 0)
Table 12. S2068 Transmitter Timing (REFCLK Mode, TMODE = 0)
1. All AC measurements are made from the reference voltage level of the clock (1.4V) to the valid input or
output data levels (.8V or 2.0V).
REFCLK
DINx[0:9]
T
1
T
2
SERIAL DATA OUT
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
T
1
KLCFER.t.r.wputeSataD5.0sn.1etoNeeS
T
2
KLCFER.t.r.wdloHataD3.1sn
17
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
T
3
KLCFER.t.r.wOKLCT25.7sn
elcyCytuDOKLCT%04%06%
Note: Measurements are made at 1.4V level of clocks.
Table 15. S2068 Transmitter (TCLKO Timing)
REFCLK
T3
TCLKO
Figure 12. TCLKO Timing
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
T
RDS
T,
FDS
llaFdnaesiRataDlaireS003sp.sisabelpmasnodetset,%08-%02 k5.4 .dnuorgot
T
J
rettijlatottuptuOataDlaireS )p-p( 291spelpmasnoderusaem,kaep-ot-kaeP 2ro5.82K±htiwderusaeM.sisab
7
1-
.zHG52.1tanrettap
T
JD
tuptuOataDlaireS )p-p(rettijcitsinimreted 08spelpmasanodetset,kaep-ot-kaeP nrettap5.82K±htiwderusaeM.sisab .zHG52.1ta
Table 14. Transmitter Timing
18
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 13. Receiver Timing (Full Clock Mode, CMODE = 1)
Table 16. S2068 Receiver Timing (Full Clock Mode, CMODE = 1)
Figure 14. Receiver Timing (Half Clock Mode, CMODE = 0)
Table 17. S2068 Receiver Timing (Half Clock Mode, CMODE = 0)
RBC0x
DOUTx[0:9],
COM_DETx
SERIAL DATA IN
T
4
T
5
RBC1x
1. All AC measurements are made from the reference voltage level of the clock (1.4V) to the valid input or
output data levels (.8V or 2.0V).
RBC0x
DOUTx[0:9],
COM_DETx
SERIAL DATA IN
RBC1x
T
6
T
7
T
6
T
7
T
8
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
T
4
x1CBR.t.r.wputeSataD57.2sn.1etoNeeS
T
5
x1CBR.t.r.wdloHataD0.2sn
elcyCytuDx0/1CBR0406%
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
T
6
x0/1CBR.t.r.wputeSataD5.2sn.1etoNeeS
T
7
x0/1CBR.t.r.wdloHataD0.2sn
T
8
otesiRx1CBRmorfemiT esiRx0CBR 8.728.8sn
elcyCytuDx0/1CBR0406%
1. All AC measurements are made from the reference voltage level of the clock (1.4V) to the valid input or
output data levels (.8V or 2.0V).
19
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
OTHER OPERATING MODES
Loopback Mode
When loopback mode is enabled, the serial data
from the transmitter is provided to the serial input of
the receiver. Loopback mode can be simultaneously
enabled for both channels using the loopback-en-
able input, LPEN.
The loopback mode provides the ability to perform
system diagnostics and off-line testing of the inter-
face to guarantee the integrity of the serial channel
before enabling the transmission medium.
Note that the high speed outputs are disabled during
loopback operation.
Test Modes
The RESET pin is used to initialize the transmit
FIFOs and must be asserted (LOW) prior to entering
the normal operational state (see section Transmit
FIFO Initialization).
Operating Frequency Rate
The S2068 is designed to operate at the Gigabit
Ethernet rate of 1.250 GHz.
output
disabled
CRU
CSU
Figure 15. S2068 Diagnostic Loopback Operation
Table 18. S2068 Receiver Timing
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
T
RCR
T,
FCR
emiTllaFdnaesiR0CBR,1CBR0.3sneeS.V0.2+otV8.+derusaeM .71erugiF
T
RD
T,
FD
emiTllaFdnaesiRtuptuOataD0.3sneeS.V0.2+otV8.+derusaeM .61erugiF
T
KCOL
)ycneuqerF( emiTkcoLnoitisiuqcAycneuqerF )spbG52.1()kcoLfossoL( 571sµ.purewopretfA
T
J
ecnareloTrettiJtupnIlatoT995sp.z3.208EEEInideificepssA
T
JD
ecnareloTrettiJtupnIcitsinimreteD073sp.z3.208EEEInideificepssA
20
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Table 19. Absolute Maximum Ratings
Table 20. Recommended Operating Conditions
Table 21. Reference Clock Requirements
retemaraPniMpyTxaMstinU
saiBrednUerutarepmeTesaC55–521C˚
saiBrednUerutarepmeTnoitcnuJ55–051C˚
erutarepmeTegarotS56–051C˚
DNGottcepseRhtiwDDVnoegatloV5.0–0.7+V
niPtupnILTTynanoegatloV5.0–74.3V
niPtupnILCEPynanoegatloV0DDVV
tnerruCkniStuptuOLTT8Am
tnerruCecruoStuptuOLTT8Am
tnerruCecruoStuptuOLCEPdeepShgiH03Am
O/ILTT,egatloVegrahcsiDcitatS0002V
O/ILCEP,egatloVegrahcsiDcitatS0051V
retemaraPniMpyTxaMstinU
saiBrednUerutarepmeTtneibmA007C˚
saiBrednUerutarepmeTnoitcnuJ031C˚
ottcepserhtiwniPrewoPynanoegatloV SSV/DNG 31.33.374.3V
niPtupnILTTynanoegatloV074.3V
niPtupnILCEPynanoegatloV DDV V2- DDVV
sretemaraPnoitpircseDniMxaMstinUsnoitidnoC
TFecnareloTycneuqerF001–001+mpp
DT
2-1
yrtemmyS0406% .tp%05taelcyCytuD
T
RCR
T,
FCR
emiTllaFdnaesiRKLCFER2sn.%08%02
—rettiJ08sp.eyeatad%77,kaeP-ot-kaeP
21
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Table 22. DC Characteristics
sretemaraPnoitpircseDniMpyTxaMstinUsnoitidnoC
V
HO
)LTT(egatloVhgiHtuptuO4.28.2DDVV Inim=DDV
HO
Am4=
V
LO
)LTT(egatloVwoLtuptuODNG520.5.0V Inim=DDV
LO
Am4=
V
HI
)LTT(egatloVhgiHtupnI0.2V
V
LI
)LTT(egatloVwoLtupnIDNG8.0V
I
HI
)LTT(tnerruChgiHtupnI04AµV
NI
xaM=DDV,V4.2=
I
LI
)LTT(tnerruCwoLtupnI006AµV
NI
xaM=DDV,V8.0=
DDItnerruCylppuS514335Am.nrettaP0101
P
D
noitapissiDrewoP73.148.1W .nrettaP0101
V
FFID
gniwsegatlovtupnilaitnereffid.niM stupniLCEPlaitnereffidrof 0010022Vm.91erugiFeeS
V
TUO
egatloVtuptuOlaireSlaitnereffiD gniwS 005100910022Vm
k5.4htiwdelpuocCA
001dnanwodllup eeS.noitanimretlaitnereffid .81erugiF
C
NI
ecnaticapaCtupnI3fp
22
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
OUTPUT LOAD
The S2068 serial outputs require a resistive load to
set the output current. The recommended resistor
value is 4.5 k to ground. This value can be varied
to adjust drive current, signal voltage swing, and
power usage on the board.
ACQUISITION TIME
With the input eye diagram shown in Figure 21, the
S2068 will recover data with a 1E-9 BER within the
time specified by TLOCK in Table 18 after an instan-
taneous phase shift of the incoming data.
Figure 19. High Speed Differential Inputs
Figure 16. Serial Input/Output Rise and Fall Time Figure 20. Receiver Input Eye Diagram Jitter Mask
Figure 17. TTL Input/Output Rise and Fall Time
Figure 18. Serial Output Load Figure 21. Acquisition Time Eye Diagram
T
r
T
f
80%
20%
50%
80%
20%
50%
T
r
T
f
+2.0V
+0.8V
+2.0V
+0.8V
4.5 k
4.5 k
0.01 µf
0.01 µf
Vcc -1.3 V
100
0.01 µf
0.01 µf
Vcc - 1.3 V
Bit Time
Amplitude
24%
1.3
Normalized Amplitude
Normalized Time
1.0
0.0
0.2
0.3
0.5
0.7
0.8
0.1
0.6
0.4
0.3
0.7
0.9
1.0
0.0
23
S2068DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
Figure 22. Loop Filter Capacitor Connections
CAP1
270
22 nf
CAP2
270
S2068
24
S2068 DUAL GIGABIT ETHERNET TRANSCEIVER
October 13, 2000 / Revision D
AMCC is a registered trademark of Applied Micro Circuits Corporation.
Copyright ® 2000 Applied Micro Circuits Corporation
D56/R248
AMCC reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and
advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied
on is current.
AMCC does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it
convey any license under its patent rights nor the rights of others.
AMCC reserves the right to ship devices of higher grade in place of those of lower grade.
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
Applied Micro Circuits Corporation • 6290 Sequence Dr., San Diego, CA 92121
Phone: (858) 450-9333 • (800) 755-2622 • Fax: (858) 450-9885
http://www.amcc.com
C
E
R
T
I
F
I
E
D
I
S
O
9
0
0
1
Ordering Information
XXXXX X
Prefix Device Package
XIFERPECIVEDEGAKCAP
tiucriCdetargetnIS8602AGBT651BT