30E D Ml 7929237 029767 3 MT 39-1\ | ISTA SG S=-THOMSON ~ SGS-THOMSON w MICROELECTROMICS IRF 520/Fl-521/Fl IRF 522/F1-523/FI N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS TYPE Voss Rosco) Ip" IRF520 100 V 0.27 2 92A IRF520F 100 V 0.27 2 7 A IRF521 80 V 0.27 2 92A IRF521Fl 80 V 0.27 2 7A IRF522 100 V 0.36 2 8 A IRF522F1 100 V 0.36 Q 6 A IRF523 80 V 0.36 2 8 A IRF523FI 80 V 0.36 Q 6 A 80-100 VOLTS - FOR DC/DC CONVERTERS HIGH CURRENT RATED FOR UNCLAMPED INDUCTIVE TO-220 ISOWATT220 SWITCHING (ENERGY TEST) * e ULTRA FAST SWITCHING - EASY DRIVE- FOR REDUCED COST AND SIZE INDUSTRIAL APPLICATIONS: INTERNAL SCHEMATIC D- UNINTERRUPTIBLE POWER SUPPLIES DIAGRAM e MOTOR CONTROLS N - channel enhancement mode POWER MOS field ef- fect transistors. Easy drive and very fast switching times G make these POWER MOS transistors ideal for high speed switching applications. Applications include DC/DC con- verters, UPS, battery chargers, secondary regulators, ser- 3 vo control, power-audio amplifiers and robotics. _ ABSOLUTE MAXIMUM RATINGS . IRF TO-220 520 521 522 523 ISOWATT220 520Fl 521Fl 522Fil 523Fl Vps * Drain-source voltage (Vgs = 0) 100 80 100 80 Vv Vper * Drain-gate voltage (Reg =20 KQ) 100 80 100 80 Vv Ves Gate-source voltage +20 Vv Ibu (*) = Drain current (pulsed) 37 37 32 32 A 520 521 522 523 lb Drain current (cont.) at T,= 25C 9.2 9.2 8 8 A Ib Drain current (cont.) at T,= 100C 6.5 6.5 5.6 5.6 A 520Fl 521Fl 522Fl 523Fi Ip" Drain current (cont.) at T,= 25C 7 7 6 6 A lp" Drain current (cont.) at T,= 100C 4 4 3.5 3.5 A . TO-220 ISOWATT220 Prot Total dissipation at T, <25C 60 30 Ww " Derating factor 0.48 0.24 WIG Tetg Storage temperature 55 to 150 C Th Max. operating junction temperature 150 C * T.= 25C to 125C (e) Repetitive Rating: Pulse width limited by max junction temperature. = See note on ISOWATT220 on this datasheet. * Introduced in 1988 week 44 June 1988 1/6 285_IRF 520/FI - 521/Fl - 522/Fl - 523/Fl JOE D MM 7929237 00297b8 5S THERMAL DATA" SG S-THOMSON | TO-220 | ISOWATT220 2.08 | 4.16 Rin) - case Thermal resistance junction-case max C/W thes Thermal resistance case-sink typ 0.5 CAW Rih-amb Thermal resistance junction-ambient max 80 C/W T Maximum lead temperature for soldering purpose 300 C T~39-11 - ELECTRICAL CHARACTERISTICS (T,,5,= 25C unless otherwise specified) Parameters Test Conditions Min. | Typ. | Max. | Unit OFF Vier) pss Drain-source Ip= 250 pA Veg= 0 breakdown voliage for IRF520/522/520F1/522FI 100 Vv for IRF521/523/521FI/523FI 80 Vv loss Zero gate voltage Vps= Max Rating 250 | nA drain current (Veg =0) | Vopg= Max Rating x 0.8 T,= 125C 1000 | 2A lass Gate-body leakage Veg= 20 V +500) nA current (Vpg = 0) ON at Vas in) Gate threshold voltage} Vpg= Vas Ip= 250 pA 2 4 Vv Ipfon) On-siate drain current | Vpg> Ip (on) * Rogen) max Vas= 10 V for IRF520/521/520F1/521FI 9.2 A for IRF521/523/521F1/523Fl 8 A Ros (on) Static drain-source Ves= 10 Vv Ip = 5.6 A on resistance for IRF520/521/520F1/521Fi 0.27) Q for IRF522/523/522F1/523Fl 0.36 Q ENERGY TEST luis Unclamped inductive | Vpp= 30 V L = 100 pH switching current starting Tj= 25C (single pulse) for IRF520/521/520F1/521Fl 9.2 A for IRF522/523/522F1/523FI 8 A. DYNAMIC Vis ** Forward Vps> lb on) x Ros (on) max 2.7 mho transconductance Ip= 5.6 A Ciss Input capacitance 600 | pF oss Output capacitance Vps= 25 V f= 1 MHz 400 | pF 188 Reverse transfer Vag= 0 100 | pF capacitance 2/6 286 477, SGS:THOMSON MISEDELESTRENICSS 6 S- THOMSON sae soovel-s24/F1. 522/61 - 520/F JOE D MM ?5e2%9e3? O0e97b4S ? = fe 39-1) -39-11 ELECTRICAL CHARACTERISTICS (Continued) Parameters Test Conditions Min. | Typ. | Max. | Unit SWITCHING t Turn-on time Vpp= 40 V Ip= 4.0A 40 ns o (on) Rise time Ria 50 2 70 ns ? (oy _Lurn-off delay time (see test circuit) 100 | ns Fall time 70 ns a, Total Gate Charge Veg=15 V Ip= 9.2A 15 | nc Vps= Max Rating x 0.8 __ . (see test circuit) SOURCE DRAIN DIODE Isp Source-drain current 921 A Ispy (*) Source-drain current 37 A (pulsed) Vsp** Forward on voltage Isn= 9.2 A Veg= 0 2.5 Vv te Reverse recovery T;= 150C 280 ns time Qe Reverse recovered Isp= 9.2 A di/dt = 100 A/ps 1.6 pC charge ** Pulsed: Pulse duration < 300 ps, duty cycle < 1.2% (*) Repetitive Rating: Pulse v width limited by max junction temperature See note on ISOWATT220 in this datasheet Safe operating areas Thermal impedance Derating curve (standard package) (standard package) (standard package) hla) K yt oa 2 8 ee z wef fg ig? Yost) 0 27 40 60) 80) 100) 420. Tease (C) 3/6 - ky7, SESsTHOMSON. 287 a aaaF 520/Fi - 521/Fl - 522/Fl - 523/Fl___ SG S-THOMSON. JOE D MM 79249237 0029770 3 a Output characteristics oct IA} 0 1 2 3 4 VpslV) Transconductance Ros ton) Gate charge vs gate-source voltage Vgsll 20 16 Qg (nC) 416 288 Output characteristics Co~ast IA) 6 40 Vgsi) Static drain-source on resistance Oc-t508 Fasten) ia} Q 10 20 30 hl Capacitance variation C{pFt 800 600 400 200 40 Vpsi) ky7, SSS;THOMSON T-39-11 Transfer characteristics *RDs (on)max. Ty = 125C Ty = 25C Ty =-55C 8 Vas (vt Maximum drain current vs temperature IRF520/524 IRF522/523 0 25 50 B 100 125 Tr (C) Normalized breakdown voltage vs temperature wo Ty 0) -hO 0 40 80 oO =a] &SG S-THOMSON IRF 520/FI - 521/Fl - 522/FI - 523/FI JOE D MM 7929237 0029771 5 Source-drain diode forward characteristics ~ Normalized on resistance vs temperature GSE {noret) 15 10 05 -80 -40 0 40 80 120 Ty Unclamped inductive test circuit T-39-11 : Keo tAl 10! 1 0 Veq(VI Unclamped inductive waveforms L Vian) oss LEBTT VARY #) TO OBTAIN REQUIRED PEAK kyr iL 3 = & Vesey | A tb h 0.05a $C-0338 C-0339 Switching times test circuit Gate charge test circuit O Von ADJUST Ry PULSE RL | TO OBTAIN GENERATOR V SPECIFIED ly privtiiesonetioeseeg Gs y i os : DUT i SC-0246 CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR SC-0244 i SGS-THOMSON 5/6 JF. CEAELECTECS ES 289_IRF 520/FI - 521/Fl - 522/Fl - 523/FI _ 30E D MM 7925237 OO2497?c 7 ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION. ISOWATT220 is fully isolated to 2000V dc. its ther- mal impedance, given in the data sheet, is optimi- sed to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum distan- ces between the pins and heatsink. The ISOWATT220 package eliminates the need for ex- ternal isolation so reducing fixing hardware. Accu- rate moulding techniques used in manufacture assure consistent heat spreader-to-heatsink capa- citance. ISOWATT220 thermal performance is better than that of the standard part, mounted with a 0.4mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT220 packages is determined by: Ty - Te Pp = Rin from this Ipmax for the POWER MOS can be cal- culated: Pp Ipmax s Brass ses sano DS(on) (at 150C) ISOWATT DATA Safe operating areas tA) 3 to! 1 . Pot CCFL TR ee te ety iy 6/6 290 Thermal impedance SG S- ~THOMSON 1-39-11 THERMAL IMPEDANCE OF ISOWATT220 PACKAGE Fig. 1 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT220 package. The total thermal resistance Ri, got) is the sum of each of these elements. The transient thermal impedance, Z,, for different pulse durations can be estimated as follows: 1 - for a short duration power pulse less than 1ms; Zin< Rinsc 2 - for an intermediate power pulse of 5ms to 50ms: Zn= Rinc 3 - for long power pulses of the order of 500ms or greater: Zn= Rinec + Pincus + Rinys-amb It is often possibile to discern these areas on tran- sient thermal impedance curves. Fig. 1 Rens-c Renc-Hs Rths-amb WA VA A Derating curve O 25 60 75 100 125 TeggglCh