PD - 97543 AUIRFZ44Z AUIRFZ44ZS AUTOMOTIVE GRADE Features HEXFET(R) Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * V(BR)DSS D 55V RDS(on) max. G ID S Description 51A D Specifically designed for Automotive applications, this HEXFET(R) Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. 13.9m D G D S G S D2Pak AUIRFZ44ZS TO-220AB AUIRFZ44Z G Gate D D Drain S Source Absolute Maximum Ratings Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T A) is 25C, unless otherwise specified. Max. Units ID @ TC = 25C Continuous Drain Current, VGS @ 10V Parameter 51 A ID @ TC = 100C Continuous Drain Current, VGS @ 10V (See Fig. 9) 36 IDM Pulsed Drain Current 200 PD @TC = 25C Maximum Power Dissipation c Linear Derating Factor VGS EAS Gate-to-Source Voltage EAS (tested) Single Pulse Avalanche Energy Tested Value Single Pulse Avalanche Energy (Thermally Limited) c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range i d h 80 W 0.53 20 W/C V 86 mJ 105 See Fig.12a,12b,15,16 A mJ -55 to + 175 Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting torque, 6-32 or M3 screw C 300 10 lbf*in (1.1N*m) Thermal Resistance k Parameter RJC Junction-to-Case RCS Case-to-Sink, Flat, Greased Surface RJA Junction-to-Ambient RJA j Junction-to-Ambient (PCB Mount, steady state) Typ. Max. Units --- 1.87 C/W 0.50 --- --- 62 --- 40 HEXFET(R) is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/ www.irf.com 1 07/23/2010 AUIRFZ44Z/ZS Static Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter V(BR)DSS VDSS/TJ RDS(on) VGS(th) gfs IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 55 --- --- 2.0 22 --- --- --- --- --- 0.054 11.1 --- --- --- --- --- --- --- --- 13.9 4.0 --- 20 250 200 -200 V V/C m V S A nA Conditions VGS = 0V, ID = 250A Reference to 25C, ID = 1mA VGS = 10V, ID = 31A VDS = VGS, ID = 250A VDS = 25V, ID = 31A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V f Dynamic Electrical Characteristics @ TJ = 25C (unless otherwise specified) Qg Qgs Qgd td(on) tr td(off) tf LD Parameter Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Min. --- --- --- --- --- --- --- --- Typ. 29 7.2 12 14 68 33 41 4.5 Max. 43 11 18 --- --- --- --- --- Units nC ns nH Conditions ID = 31A VDS = 44V VGS = 10V VDD = 28V ID = 31A RG = 15 VGS = 10V Between lead, f f D 6mm (0.25in.) from package LS Internal Source Inductance --- 7.5 --- Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance --- --- --- --- --- --- 1420 240 130 830 190 300 --- --- --- --- --- --- pF Units G and center of die contact S VGS = 0V VDS = 25V = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, = 1.0MHz VGS = 0V, VDS = 44V, = 1.0MHz VGS = 0V, VDS = 0V to 44V Diode Characteristics Min. Typ. Max. IS Continuous Source Current Parameter --- --- 51 ISM (Body Diode) Pulsed Source Current --- --- 200 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time c Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25C, L =0.18mH, RG = 25, IAS = 31A, VGS =10V. Part not recommended for use above this value. ISD 31A, di/dt 840A/s, VDD V(BR)DSS, TJ 175C. Pulse width 1.0ms; duty cycle 2%. --- --- --- --- 23 17 A V ns nC showing the integral reverse D G p-n junction diode. TJ = 25C, IS = 31A, VGS = 0V TJ = 25C, IF = 31A, VDD = 28V di/dt = 100A/s f f S Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 1.2 35 26 Conditions MOSFET symbol Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population, starting TJ = 25C, L =0.18mH, RG = 25, IAS = 31A, VGS =10V. This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. R is rated at TJ of approximately 90C. www.irf.com AUIRFZ44Z/ZS Qualification Information Automotive (per AEC-Q101) Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. Qualification Level Moisture Sensitivity Level TO-220AB N/A TO-262 N/A 2 D Pak Machine Model MSL1 Class M2 (200V) AEC-Q101-002 ESD Human Body Model Class H1A (500V) AEC-Q101-001 Charged Device Model Class C5 (1125V) AEC-Q101-005 RoHS Compliant Yes Qualification standards can be found at International Rectifiers web site: http//www.irf.com/ Exceptions to AEC-Q101 requirements are noted in the qualification report. www.irf.com 3 AUIRFZ44Z/ZS 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 10 4.5V BOTTOM 0.1 4.5V 10 60s PULSE WIDTH 60s PULSE WIDTH Tj = 25C 1 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1 Tj = 175C 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 60 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current () 1000 100 TJ = 175C T J = 25C 10 VDS = 15V 60s PULSE WIDTH 1.0 2 4 6 8 10 12 50 T J = 25C 40 30 T J = 175C 20 10 V DS = 10V 0 0 10 20 30 40 50 ID,Drain-to-Source Current (A) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4 Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com AUIRFZ44Z/ZS 10000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 31A C, Capacitance(pF) C oss = C ds + C gd Ciss 1000 Coss Crss 100 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 0 5 VDS, Drain-to-Source Voltage (V) 10 15 20 25 30 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 1000 ISD, Reverse Drain Current (A) VDS= 44V VDS= 28V VDS= 11V 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175C 10 T J = 25C 1 0.10 VGS = 0V 0.01 0.0 0.5 1.0 1.5 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 2.0 100sec 10 1msec 1 Tc = 25C Tj = 175C Single Pulse 10msec 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 5 AUIRFZ44Z/ZS 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 55 50 40 35 30 25 20 15 10 5 2.0 1.5 1.0 0.5 0 25 50 75 100 125 150 -60 -40 -20 0 175 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (C) T C , Case Temperature (C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 10 Thermal Response ( Z thJC ) ID, Drain Current (A) 45 ID = 31A VGS = 10V 1 D = 0.50 0.20 0.10 0.05 0.1 J 0.02 0.01 0.01 R1 R1 J 1 1 R2 R2 2 2 Ci= i/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 3 C 3 Ri (C/W) i (sec) 0.8487 0.00044 0.6254 0.3974 0.00221 0.01173 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com AUIRFZ44Z/ZS D.U.T RG 20V VGS DRIVER L VDS + V - DD IAS tp A 0.01 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS EAS , Single Pulse Avalanche Energy (mJ) 400 15V ID 3.8A 5.5A BOTTOM 31A 350 TOP 300 250 200 150 100 50 0 tp 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 VCC 1K VGS(th) Gate threshold Voltage (V) 4.0 ID = 250A 3.0 2.0 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( C ) Fig 14. Threshold Voltage vs. Temperature Fig 13b. Gate Charge Test Circuit www.irf.com 7 AUIRFZ44Z/ZS 100 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses 0.01 10 0.05 0.10 1 0.1 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 31A 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Fig 16. Maximum Avalanche Energy vs. Temperature 8 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav www.irf.com AUIRFZ44Z/ZS D.U.T Driver Gate Drive + - * D.U.T. ISD Waveform Reverse Recovery Current + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - D= Period P.W. + V DD Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage + - Body Diode VDD Forward Drop Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width 1 s Duty Factor 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms www.irf.com 9 AUIRFZ44Z/ZS TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information Part Number AUIRFZ44Z YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, LeadFree XX Lot Code TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com AUIRFZ44Z/ZS D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information Part Number AUIRFZ44ZS YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, LeadFree XX Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11 AUIRFZ44Z/ZS D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 12 www.irf.com AUIRFZ44Z/ZS Ordering Information Base part Package Type AUIRFZ44Z AUIRFZ44ZS TO-220 D2Pak www.irf.com Standard Pack Form Tube Tube Tape and Reel Left Tape and Reel Right Complete Part Number Quantity 50 50 800 800 AUIRFZ44Z AUIRFZ44ZS AUIRFZ44ZSTRL AUIRFZ44ZSTRR 13 AUIRFZ44Z/ZS IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements. For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 14 www.irf.com